This invention relates to computer hardware technology, and more particularly, to a multi-socket circuit board chip bridging device which is designed for use in conjunction with a multi-socket circuit board having multiple sockets and utilizing a special type of bus architecture, such as the HT (HyperTransport) bus architecture, for use to be mounted on a selected one of sockets for the purpose of connecting one chip, such as an AMD (Advanced Micro Devices) microprocessor chip, mounted on a first socket to another chip, such as another AMD microprocessor chip or an I/O port module chip, mounted on a second socket on the multi-socket circuit board.
In computer engineering, data processing speed can be increased by utilizing parallel processing technology which employs two or more processors on a single motherboard. With parallel processing, data can be concurrently processed by two or more processors at the same time, so that the overall processing speed from multi-processor systems is significantly higher than conventional uni-processor systems.
In the manufacture of multi-processor computer motherboards, since the market demands different number of processors on the motherboard, the manufacturer often needs to design varieties of multi-processor computer motherboards for different parallel processing requirements, which may include dual-processor motherboard, triple-processor motherboard, quad-processor motherboard, and so on. In other words, the manufacturer needs to design one kind of circuit board to implement dual-processor systems, another kind of circuit board to implement triple-processor systems, and still another kind of circuit board to implement quad-processor systems, and so forth. One apparent drawback to this practice is that it would significantly increase manufacture cost.
The computer industry therefore needs a new technology that allows the manufacturer to utilize just one kind of circuit board for the implementation of a variety of multi-processor computer motherboards having different number of processors.
It is therefore an objective of this invention to provide a multi-socket circuit board chip bridging device which can be utilized for the implementation of a variety of multi-processor computer motherboards or hardware platforms having different number of processors.
It is another objective of this invention to provide a multi-socket circuit board chip bridging device which represents a cost-effective solution to the manufacture of multi-processor computer motherboard
The multi-socket circuit board chip bridging device according to the invention is designed for use in conjunction with a multi-socket circuit board having multiple sockets and utilizing a special type of bus architecture, such as the HT (HyperTransport) bus architecture, for use to be mounted on a selected one of sockets for the purpose of connecting one chip, such as an AMD (Advanced Micro Devices) microprocessor chip, mounted on a first socket to another chip, such as another AMD microprocessor chip or an I/O port module chip, mounted on a second socket on the multi-socket circuit board.
The multi-socket circuit board chip bridging device according to the invention is advantageous to use in that it allows manufacturer to utilize just one kind of circuit board for the implementation of a variety of multi-processor computer motherboards having different number of processors, without having to design different types of multi-processor computer motherboards. The invention thus represents a cost-effective solution to the manufacture of multi-processor computer motherboards.
The invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
The multi-socket circuit board chip bridging device according to the invention is disclosed in full details by way of preferred embodiments in the following with reference to the accompanying drawings.
In practice, it is assumed that the first socket 11 is mounted with a microprocessor chip 21, such as an AMD (Advanced Micro Devices) microprocessor whose I/O utilizes the HT bus architecture, and the third socket 13 and the fourth socket 14 are respectively mounted with chip device 23, 24 that operate in conjunction with the microprocessor chip 21. In this case, the multi-socket circuit board chip bridging device of the invention 100 can be mounted on the second socket 12 for connecting the microprocessor chip 21 mounted on the first socket 11 by way of the second socket 12 to the chip device 23 mounted on the third socket 13 so as to allow the microprocessor chip 21 to communicate via the multi-socket circuit board chip bridging device of the invention 100 with the chip device 23.
As shown in
In addition, if two 1/0 port module chips 23, 24 are respectively mounted on the third socket 13 and the fourth socket 14 as shown in
The housing member 110 is for example is rectangular body of printed circuit whose size is dimensioned to be fittable to the third socket 13. In practice, the housing member 110 can be formed in a shape similar to the encapsulation body of an IC chip for easy handling.
The first set of electrical connecting points 121 are arranged on a first side of the housing member 110 and implemented as pins or solder balls (i.e., similar to the electrical contacts on most chip devices). For use with the multi-socket circuit board 10 shown in
The second set of electrical connecting points 122 are arranged on a second side of the housing member 110 (either on the adjacent side as shown in
The electrically-conductive lines 130 are arranged inside the housing member 110 for electrically interconnecting the first set of electrical connecting points 121 with the second set of electrical connecting points 122. These electrically-conductive lines 130 can be realized either as bent lines to connect the first set of electrical connecting points 121 on one side to the second set of electrical connecting points 122 on the adjacent side as illustrated in
In conclusion, the invention provides a multi-socket circuit board chip bridging device for use with a multi-socket circuit board having multiple sockets and utilizing a special type of bus architecture, such as the HT (HyperTransport) bus architecture, for use to be mounted on a selected one of sockets for the purpose of connecting one chip mounted on a first socket to another chip mounted on a second socket on the multi-socket circuit board. The multi-socket circuit board chip bridging device according to the invention is advantageous to use in that it allows manufacturer to utilize just one kind of circuit board for the implementation of a variety of multi-processor computer motherboards having different number of processors, without having to design different types of multi-processor computer motherboards. The invention thus represents a more cost-effective solution to the manufacture of multi-processor computer motherboard than the prior art.
The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.