The present disclosure relates to electric motors including permanent split capacitor (PSC) motors having multiple speeds.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
A variety of multi-speed electric motors are known in the art that employ capacitors to achieve multi-speed operation. Some of these motors employ at least one start capacitor for starting the motor and at least one run capacitor for running the motor, once started. The start capacitor is often an electrolytic capacitor and the run capacitor is often an oil-filled capacitor.
Additionally, some of these motors include a speed-dependent mechanical actuator coupled to a mechanical switch for energizing a start circuit during starting, and for energizing one or more run circuits (and run capacitors) thereafter. The position of the mechanical switch is controlled by the speed-dependent actuator. During starting, the mechanical switch engages a first set of contacts to energize the start circuit. Thereafter, as the motor speed increases, centrifugal force acting on the speed-dependent actuator will cause the mechanical switch to switch from the first set of contacts to a second set of contacts for opening the start circuit and/or energizing a run circuit.
As recognized by the present inventors, these known motors suffer several disadvantages. For example, a mechanical switch could weld due to continuous arcing, resulting in damage to the motor windings and/or capacitors in the starting circuits. Further, because speed-dependent actuators typically include mechanical parts such as spools, springs and weights, such actuators are also subject to wear and could cease to work properly over time, which could make the motor inoperable. In addition, electrolytic capacitors have a tendency for the electrolyte to dry out prematurely in high temperature environments, such as spas and pool applications, which could cause the start capacitor to not function properly.
According to one aspect of the present disclosure, a multi-speed permanent split capacitor motor includes a first winding circuit having an auxiliary winding and a main winding, a second winding circuit having an auxiliary winding and a main winding, a capacitor and a switching device. The switching device is configured to selectively couple the capacitor to the auxiliary winding of the first winding circuit to operate the motor at a first pole speed, and to selectively couple the capacitor to the auxiliary winding of the second winding circuit to operate the motor at a second pole speed.
According to another aspect of the present disclosure, a multi-speed permanent split capacitor motor includes a first speed winding circuit having an auxiliary winding and a main winding, a second speed winding circuit having an auxiliary winding and a main winding, and a switching device. The switching device is configured to open-circuit the first speed winding circuit when the motor is operating at the second speed, and to open-circuit the second speed winding circuit when the motor is operating at the first speed.
According to yet another aspect of the present disclosure, a two-speed permanent split capacitor motor includes a two-pole winding circuit and a four pole winding circuit. Each winding circuit has a main winding and an auxiliary winding. The motor further includes a capacitor and a relay. The relay is configured to selectively couple the capacitor in series with the auxiliary winding of the two-pole winding circuit to operate the motor at a two-pole speed, and to selectively couple the capacitor in series with the auxiliary winding of the four-pole winding circuit to operate the motor at a four-pole speed.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
Throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
The following description is merely exemplary in nature and is not intended to limit the scope of this disclosure nor its potential applications.
A stator circuit for a multi-speed PSC motor according to one embodiment of the present disclosure is illustrated in
The switching device 108 is configured to selectively couple the capacitor 106 to the auxiliary winding 102a of the first winding circuit 102 to operate the motor 100 at a first pole speed. Further, the switching device 108 is configured to selectively couple the capacitor 106 to the auxiliary winding 104a of the second winding circuit 104 to operate the motor 100 at a second pole speed. In this manner, the stator circuit 100 can operate at two different pole speeds using only one capacitor 106. The stator circuit 100 of
In the specific embodiment of
Although the benefit of open-circuiting one of the winding circuits is described and illustrated in conjunction with switching the capacitor 106 between two (or more) winding circuits 102, 104, the teachings of this disclosure are not so limited. For example, if the capacitor 106 in
With further reference to
Those skilled in the art will appreciate that capacitor 106 can be any suitable type of capacitor, and that switching device 108 can be any suitable type of switching means including but not limited to electronic switches, relays, etc. Further, while only one capacitor 106 is shown in
As shown in
In the specific embodiment of
It should be noted that the stator circuit 300 illustrated in
The teachings of this disclosure can be applied to a wide variety of applications. One such application is in fluid (e.g., air and/or liquid) pump assemblies, including pump assemblies for swimming pools and spas (including hot tubs and whirlpool baths).