The present invention relates to an electronic clutch for a power tool.
One embodiment provides a power tool including a housing, a motor within the housing, a clutch collar on the housing including a plurality of settings, a wireless transceiver operable to form a wireless connection with a remote device, and a processor coupled to the clutch collar and the wireless transceiver. The processor is configured to receive, via the wireless transceiver, a mapping including a plurality of torque levels corresponding to the plurality of settings and detect that the clutch collar is set to a setting of the plurality of settings. The processor is further configured to determine the torque level for the setting from the mapping and detect, during the operation of the power tool, that a torque of the power tool exceeds the torque level. The processor is also configured to generate an indication that the torque exceeds the torque level.
Another embodiment provides a method of operating a power tool including a housing, a motor within the housing, a clutch collar on the housing including a plurality of settings, and an electronic clutch. The method includes receiving, with a processor via a wireless transceiver, a mapping including a plurality of torque levels corresponding to the plurality of settings and detecting, with the processor, that the clutch collar is set to a setting from the plurality of settings. The method also includes determining, with the processor, the torque level for the setting from the mapping, and detecting, with the processor, that a torque of the power tool exceeds the torque level during operation of the power tool. The method further includes generating, with the processor, an indication that the torque exceeds the torque level.
Another embodiment provides a method of operating a housing, a motor within the housing, a clutch collar on the housing including a plurality of settings, and an electronic clutch. The method includes receiving, with a processor via a wireless transceiver, a first torque value generated by a remote device based on user input and wirelessly transmitted by the remote device to the wireless transceiver. The method further includes the processor detecting that the clutch collar is set to a setting of the plurality of settings. The processor calculates a torque level for the setting based on the position of the setting among the plurality of settings and the first torque value. The method further includes controlling the motor based on the torque level.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
Each of the Hall sensors 128 outputs motor feedback information, such as an indication (e.g., a pulse) when a magnet of the motor's rotor rotates across the face of that Hall sensor. Based on the motor feedback information from the Hall sensors 128, the motor control unit 130 can determine the position, velocity, and acceleration of the rotor. The motor control unit 130 also receives user controls from user input 132, such as by depressing the trigger 112 or shifting the forward/reverse selector 110. In response to the motor feedback information and user controls, the motor control unit 130 transmits control signals to control the FETs 124 to drive the motor 126. By selectively enabling and disabling the FETs 124, power from the power source 122 is selectively applied to stator coils of the motor 126 to cause rotation of a rotor. Although not shown, the motor control unit 130 and other components of the power tool 100 are electrically coupled to the power source 122 such that the power source 122 provides power thereto.
The current sensor 135 detects current to the motor, for example, by detecting current flowing between the power source 122 and the FETS 124 or between the FETS 124 and the motor 126, and provides an indication of the current sensed to the motor control unit 130. The voltage sensor 136 detects voltages of the power tool 100, such as a voltage level of the power source 122 and a voltage across the motor 126. The wireless transceiver 137 provides a wireless connection between the motor control unit 130 and an external device to enable wireless communication with the external device, such as a remote device 140.
In some embodiments, the motor control unit 130 includes a memory and an electronic processor configured to execute instructions stored on the memory to effect the functionality of the motor control unit 130 described herein.
The tool 100 includes an electronic clutch, also referred to as an e-clutch. More particularly, the tool 100 includes an e-clutch control module 134. The e-clutch control module 134 may be implemented in hardware, software, or a combination thereof. In the illustrated embodiment, the e-clutch control module 134 includes instructions stored on and executed by the motor control unit 130 to implement the e-clutch functionality described herein. The e-clutch control module 134 takes input from a user from the clutch collar 108. As will be discussed in more detail below, the clutch collar 108 provides the user a rotatable selector that provides an electrical signal indicative of the user selection to the e-clutch control module 134. The position of the speed select switch 111, which a user can toggle between two settings (for example, a high speed setting (“1”) and a low speed setting (“2”)), is monitored by the e-clutch control module 134 as well.
The user selection on the clutch collar 108 is translated into a desired/target torque output level for the tool 100. Then, when the tool 100 is in operation, the e-clutch control module 134 calculates an output torque of the power tool by taking into account one or more of a gear ratio, battery current, effect of speed control or pulse-width-modulation (PWM) on root mean squared (RMS) current, and changes in motor velocity and acceleration. For example, the e-clutch control module 134 calculates the output torque based on a current flowing to the motor 126 as sensed by the current sensor 135. When the target torque is reached, the motor control unit 130 generates an indication of reaching the target torque by one or more of stopping the tool 100 from further driving, shaking (i.e., ratcheting) the motor 126 to indicate that the target torque has been reached, and flashing the light 116 to indicate that the target torque has been reached.
The clutch collar 108 allows the user to select the desired torque level at which the tool 100 clutches. The clutch collar 108 is able to rotate continuously and is not limited, for example, to a single revolution or 360 degrees of rotation. In other words, the clutch collar 108 is able to be rotated multiple revolutions (i.e., more than 360 degrees of rotation). The continuous rotation feature allows the clutch collar 108 to go from a maximum torque setting (e.g., at a 0 degree rotational position) to the minimum torque setting (e.g., at a 359 degree rotational position), which are adjacent, more quickly than if the clutch collar 108 had to rotate back through the various intervening settings between the maximum and minimum setting.
In other embodiments, the clutch collar 108 is limited in rotation, for example, by a rotational stop physically blocking rotation beyond a certain point (e.g., 180 degrees, 270 degrees, 300 degrees, 360 degrees, 540 degrees, 720 degrees, an amount between 300 and 360 degrees, or another degree amount). As an example, the clutch collar 108 may include a projection that rotates with the collar and the motor housing 106 may have a fixed tab (i.e., a rotational stop). The clutch collar 108 is free to rotate until the projection abuts the fixed tab. The projection and tab may be internal (i.e., inside the clutch collar 108 and motor housing 106, respectively) or external (i.e., on an outside surface of the clutch collar 108 and the motor housing 106, respectively).
The clutch collar 108 includes a wiper (not shown) that contacts one of several resistive elements, each associated with a particular clutch setting. The particular resistive element contacted by the wiper depends on the rotational position of the clutch collar 108.
For instance,
In some embodiments, the ability to continuously rotate the clutch collar 108 (e.g., multiple revolutions in the clockwise direction, and the counter-clockwise direction), allows the clutch collar 108 to specify more settings than wiper-resistor positions on the PCBA 200. For instance, when rotating the clutch collar 108 so that the wiper moves clockwise on the PCBA 200 shown in
Accordingly, the continuously rotating clutch collar 108 essentially allows an infinite number of settings to be indicated, as a user can continuously rotate in a first direction to continuously increment the torque setting, and continuously rotate in the opposition direction to decrement the torque setting. In turn, the e-clutch control module 134 can provide a maximum and minimum torque setting (e.g., in software) where, for instance, further increments from the clutch collar 108 are ignored because the maximum setting has been reached. Additionally, the increased number of setting positions allows tuning of a torque setting with finer granularity. For instance, rather than dividing up the potential torque settings among thirteen positions, the e-clutch control module 134 can divide the same range of potential torque settings among 26, 39, 50, 100, or another number of positions.
The PCBA 200 is further associated with the mode selector ring 109 to allow a user to select between the drilling mode, driving mode, hammering mode, and adaptive mode. The PCBA 200 includes further surface mount resistors R31, R32, R33, and R34 on the bottom portion of the PCBA 200, each resistor being conductively coupled to a wiper connection point (M1-M4) and being associated with one of the four modes for selection. Similar to the clutch collar 108, the mode selector ring 109 includes a wiper that contacts a resistive element (R31-R34) to complete a circuit and indicate the mode selection to the motor control unit 130, albeit the signal is output via the mode pin 202, rather than the e-clutch pin 204.
The position of the speed select switch 111, which a user can toggle between two settings (e.g., a “1” and “2”), is monitored by the e-clutch control module 134 as well. A similar resistor, wiper, and PCBA track setup as described with respect to
In other embodiments, rather than a wiper-resistor ring technique, different clutch collar selection and mode selection user interface technology is used, such as inputs using mutual inductive sensing and capacitive sensing.
The e-clutch control module 134 estimates the output torque of the tool 100 (torque at the shaft) using a measurement of battery current. The current sensor 135, or another sensor used to infer battery current, provides a measurement to the e-clutch control module 134. For instance, to determine battery current, the current sensor 135 may be positioned to measure the current along the connection between the power source 122 and the FETs 124 labeled “power” in
The current-torque relationship is fairly linear, and the relationship depends on a motor constant (e.g., torque per unit current (k_t)), gear ratio, gear friction, motor speed and other factors. Determining the output torque of the tool 100 based on current may be improved by subtracting current that is due to motor inertia from the measured battery current. The inertia is specific to the motor used and takes into account the effects of velocity and acceleration. Taking motor inertia into consideration when estimating torque assists in preventing inadvertent shutdowns on startup or due to changes in the trigger position, where the current-torque relationship can sometimes be non-linear, unreliable, or both. The current-to-torque calculation may also be improved by calculating an RMS current based on the measured battery current, a PWM duty ratio, and motor design characteristics. This calculation helps maintain a similar torque output across different PWM duty ratios. The output torque calculation may also account for the gear ratio of the power tool 100, which is selected by the user via the speed select switch 111. For example, the output torque calculation includes one or more of different offsets and constants, which may be empirically determined, to compensate for the different speed settings (i.e., gear ratios) selectable by the speed select switch 111.
The calculated output torque is compared against the threshold torque level set by the user (e.g., via the clutch collar 108) and the tool 100 provides feedback when the threshold torque level is met or exceeded. In some embodiments, because the output torque calculation takes into consideration and accounts for the gear ratio indicated by the speed select switch 111, regardless of the particular speed setting selected, the tool 100 achieves approximately the same torque output for a particular torque setting (e.g., “2”) selected by the user via the clutch collar 108. A torque level (or, torque value) that is considered approximately the same as another torque level may vary by embodiment and may be, for example, within 2% of the other torque level, within 5% of the other torque level, or within 10% of the other torque level.
The tool 100 indicates to the user that the desired torque has been reached by ratcheting the motor and flashing the light 116. By ratcheting the motor 126, the e-clutch control module 134 simulates to the user the ratcheting feel and sound of a mechanical clutch. This technique makes the experience for the user similar to a mechanical clutch and it is also cost effective because no additional hardware is needed. The e-clutch control module 134 will also control the light 116 to blink when the tool 100 has reached the selected target torque.
The feedback (e.g., ratcheting) intensity is scaled up and down with the desired output torque to prevent the ratcheting from being stronger than the target torque, while maximizing or ensuring the effectiveness of the feedback to the user. The ratcheting of the motor 126 is implemented by controlling a pulse-width modulated (PWM) signal generated by the motor control unit 130 to drive the motor 126 (via the FETS 124) to be output in short bursts. For instance, the PWM signal generated by the motor control unit 130 cycles between an active state with a non-zero percent duty cycle for a first time period, and an inactive (off) state with a zero or near zero percent duty cycle for a second time period. In some instances, the frequency and duty cycles for the active and inactive periods of the PWM signal may vary during the course of ratcheting. The amount of motor ratcheting generated is based on the target torque selected by the user. More particularly, the higher the target torque selected (e.g., as indicted by the clutch collar 108 and determined by the motor control unit 130), the more motor ratcheting generated by the tool 100 to indicate when the target torque is reached. Similarly, the lower the target torque selected, the less motor ratcheting generated by the tool 100 to indicate when the target torque is reached. Scaling the motor ratcheting in accordance with the selected target torque level 1) prevents over-torqueing a fastener from the ratcheting motion itself, which could occur if the amount of motor ratcheting is too high; and 2) allows a level of motor ratcheting commensurate with the driving action so as to be low enough at low torques to not startle the user and high enough at high torques to be felt and recognized by the user.
To scale the intensity of the motor ratcheting, the length of time that the PWM signal is active and not active can be adjusted. Generally, the longer the active time period, the more intense the ratcheting effect. Similarly, the duration of the inactive time period of the PWM signal can be adjusted to increase and decrease the intensity of the ratcheting feedback. Generally, the longer the PWM signal is inactive, the less intense the ratcheting feedback. For instance, to increase the intensity of the ratcheting, the time period that the PWM signal is active is increased, the time period that the PWM signal is inactive is decreased, or both.
The particular threshold torque level used by the tool 100 varies depending on the selected mode of the tool 100. When in the drilling mode and the hammering mode, as selected via the mode selector ring 109, the tool 100 generally does not implement threshold torque levels as described above. When in the driving mode, the e-clutch control module 134 uses the default threshold torque level setting assigned to the currently selected torque setting indicated by the rotational position of the clutch collar 108. The e-clutch control module 134 may include a mapping of default threshold torque levels corresponding to the settings of the clutch collar 108. When in the adaptive mode, as indicated by the mode selector ring 109 based on a user selection, the tool 100 may operate implement threshold torque levels as described above. The threshold torque levels may be set through wireless communications between the power tool 100 and the remote device 140, as described in further detail below.
The GUI 250 is operable to receive a user selection of the adjustable mode or the fixed mode via a clutch ring settings selector 255 (see, e.g.,
Alternatively, the power tool 100 may receive a custom drive control profile from the remote device 140 indicating that the tool 100 is to operate in the adjustable mode. In the adjustable mode, a set-up screen of which is shown in
In an example mapping generation by the GUI 250, the user is able to assign a maximum and minimum torque level (via the slider 260 or text boxes 265) that can be selected via the clutch collar 108, such that the lowest torque setting of the clutch collar 108 is assigned the minimum torque level selected and the highest torque setting of the clutch collar 108 is assigned the maximum torque level selected. The remaining intermediate torque settings are then assigned a proportional torque level between the minimum and maximum torque levels. For instance, assuming thirteen torque settings (1-13) on the clutch collar 108 and a user selecting a minimum torque level of 50 inch-pounds (in.-lbs.) and a maximum torque level of 110 in.-lbs., the remote device 140 will assign the following torque levels to the tool 100, in some embodiments:
These assigned values assume a linear scale between minimum and maximum values. However, in some instances, non-linear scales are used, such as an exponential scale. In some embodiments, the GUI 250 may receive a selection of the scale to apply via user input. The maximum and minimum selected torque levels can also be expressed as a percentage of the maximum torque available. For instance, the right column of the above table illustrates the torque levels expressed as a percentage. Furthermore, as noted above with respect to the continuously rotating feature of the clutch collar 108, more or fewer than 13 torque setting positions are assigned a torque level in some embodiments. For instance, each increment or decrement of the position of the clutch collar 108 can increment or decrement, respectively, the torque level by 1 in-lb (or by 1% of maximum torque) until the maximum or minimum torque levels are reached.
The GUI 250 further includes a speed setting selector 270 to select between a high speed mapping and a low speed mapping. In other words, the GUI 250 is operable to receive torque levels for a first mapping when the high speed mapping is selected via the speed setting selector 270, and to receive torque levels for a second mapping when the low speed mapping is selected via the speed setting selector 270. The remote device 140 is further operable to generate and provide to the motor control unit 130 a profile including the first mapping applicable when the power tool is in the high speed setting and the second mapping applicable when the power tool is in the low speed setting (selected via the speed select switch 111).
In some embodiments, the profile provided to the power tool 100 based on user input received by the GUI 250 may indicate that, in one of the speed settings (e.g., the high speed setting), the power tool 100 is in the adjustable mode and, in the other of the speed settings (e.g., the low speed setting), the power tool is in the fixed mode. For example, with the low speed mapping selected on the GUI 250 via the speed setting selector 270, the GUI 250 may receive a selection of the adjustable mode via the clutch ring settings selector 255. Further, with the high speed mapping selected on the GUI 250 via the speed setting selector 270, the GUI 250 may receive a selection of the fixed mode via the clutch ring settings selector 255. The remote device 140 then generates a profile including a first mapping and the adjustable mode for the low speed setting and a fixed torque level and the fixed mode indication for the high speed setting. Accordingly, a user is operable to cycle the power tool 100, by moving the speed select switch 111, between an adjustable mode whereby the user may specify a torque level via the clutch collar 108 and a fixed mode whereby the torque level is fixed (based on input via the GUI 250).
The profile generated by the remote device 140 and provided to the power tool 100 based on the GUI 250 may further include a maximum speed for the motor 126 (one for each of the high and low speed setting), a trigger ramp up parameter indicating a pace at which the motor 126 should ramp up to a desired speed, a work light duration indicating how long to keep the light 116 enabled (e.g., after the trigger 112 is pressed or released), and a work light brightness level.
Using the e-clutch control module 134, clutch collar 108, and remote device 140, rather than a traditional mechanical clutch, allows for more sophisticated mappings of torque control. A mechanical input (clutch collar 108) provides the user with a mechanical input mechanism on the tool 100 that is coupled with programmable electronic control to provide greater tool customization, intelligence, and usability. The ability to remap the torque settings selectable by the clutch collar 108 results in a tool 100 having an extended user interface, where the indications that are provided by the mechanical input are programmable and are not fixed. For instance, torque setting “2” is not fixed to indicate 55 in-lbs. (or another value) of torque. Rather, via the remote device 140, the meaning of a particular output signal from the mechanical input can be remapped by the user to indicate something different to the motor control unit 130 and e-clutch control module 134. The particular indication from the mechanical input, specified through the mapping, is then used to control the motor in a certain predetermined manner. This extended user interface provided by the remote device 140 provides extended functionality and customization of the tool 100, which has limited surface real estate for additional user interface components.
In some embodiments, the e-clutch control module 134 limits the maximum allowable torque setting to be that which is allowable according to applicable laws, rules, or regulations for a driving tool without a side handle. In some embodiments, the e-clutch control module 134 receives an input regarding whether a side handle is present on the tool and limits the maximum allowable torque setting based on the input. More particularly, when the e-clutch control module 134 determines that the side handle is not present, the maximum allowable torque setting is limited to that which is permitted according to applicable laws, rules, or regulations. When the e-clutch control module 134 determines that the side handle is present, the maximum torque setting allowable is permitted to be higher than when the side handle is not present. The higher maximum torque setting may again be limited by applicable laws, rules, or regulations for a driving tool with a side handle.
In some embodiments, a switch on the tool 100 allows a user to indicate to the e-clutch control module 134 whether a side handle is present. The switch may be similar in function and structure to the speed select switch 111, may be a push button, or another electro-mechanical input device that provides an output to the e-clutch control module 134 indicative of whether a side handle is present. In another embodiment, attaching the side handle to the tool itself actuates a switch that provides an indication to the e-clutch control module 134 of the presence of the side handle, and removal of the handle provides an indication to the e-clutch control module 134 that that the side handle has been removed. In another embodiment, the GUI of the remote device 140 includes an input (e.g., radio buttons or two-position slider) enabling a user to select or toggle between a side handle on indication and a side handle off indication. This selection is then communicated to the e-clutch control module 134 and used as described above to set the maximum allowable torque setting.
As noted above, the tool includes a speed selector switch 111 allowing the user to select between two gear ratios, which results in a different output speed range. Generally, a high gear ratio allows for higher maximum speed, but lower maximum torque, while a low gear ratio allows for a higher maximum torque, but lower maximum speed. In tools with traditional mechanical clutches, the maximum torque allowable is typically limited to a maximum torque to be provided in the high gear ratio (high speed) mode. As a result, while the low gear ratio mode would allow for a higher maximum torque absent the mechanical clutch, the mechanical clutch limits the maximum torque allowable in the low gear ratio (low speed) mode to the maximum torque to be provided in the high gear ratio mode. As such, the higher torques of the low gear ratio mode remain unavailable in a clutching mode. In contrast, the tool 100 includes an e-clutch rather than a mechanical clutch. The configurability of the e-clutch control module 134 removes the torque limit imposed by the higher gear ratio to be able to take advantage of the extra torque levels available by the low gear ratio.
Accordingly, in some embodiments, the e-clutch control module 134 allows a user to specify a higher torque level for the low speed mode than is selectable for the high speed mode. For instance, in
In some embodiments, the e-clutch control module 134 allows a user to individually provide a torque level for each setting of the clutch collar 108. A GUI of the remote device 140 may include a text box, slider, or other input mechanism, for each setting of the clutch collar 108 to enable a user to enter a custom torque level for each clutch collar setting. For example, the user may enter 200 in-lbs for setting 1, 150 in-lbs for setting 2, and 700 in-lbs for setting 3. In other embodiments, the GUI of the remote device 140 may receive, from a user, custom values for a subset of the settings, and a range for the other settings. For instance, for a clutch collar 108 having thirteen settings (e.g. 1-13), the GUI may receive custom torque levels for settings the three settings (e.g., 1-3), and a range for the remaining settings (e.g., 4-13) defined by a maximum value and a minimum value. The remote device 140 may, in turn, divide the range among the remaining settings (e.g., 4-13), similar to as described above with respect to Table I.
In some embodiments, the e-clutch control module 134 receives via a GUI of the remote device 140 different ranges for different subsets of the settings of the clutch collar 108. For example, the GUI may provide a mapping of torque levels to the e-clutch control module 134, based on received user input, specifying a first range of torques for a first group of settings (e.g., 1-5) of the clutch collar and a second range of torques for a second group of settings (e.g., 6-13) of the clutch collar, the ranges each defined by maximum and minimum torque levels similar to as described above.
In operation, while the power tool 100 is performing a drilling operation with the anti-kickback feature is enabled, the e-clutch control module 134 monitors the battery current to the motor 126 using the current sensor 135, as described above. The e-clutch control module 134 also determines a current threshold based on the selected torque shutoff setting (e.g., using a look up table mapping each torque shutoff setting to a current value). When the e-clutch control module 134 determines that the battery current level reaches the current threshold, the motor control unit 130 ceases driving the motor 126 to bring the motor 126 to a quick stop. Thus, the motor control unit 130 infers that a kickback situation is occurring based on an increase in motor torque, which is inferred via battery current, and shuts down the motor 126.
When the anti-kickback toggle 302 is disabled, and the remote device 140 communicates the custom drill profile configuration data to the power tool with the disabled feature status, the power tool 100 proceeds without a torque shutoff as described.
As illustrated in
In some embodiments, as described above, the mapping includes torque levels for two or more revolutions of the clutch collar 108. For example, the mapping may include torque levels corresponding to a plurality of settings for a first revolution of the clutch collar and a second plurality of torque levels corresponding to the plurality of settings for a second revolution of the clutch collar. Assuming that the clutch collar 108 includes thirteen settings for one revolution of the clutch collar 108, this mapping may include twenty-six torque levels, one for each setting (or, position) of the clutch collar 108 over two revolutions. In some embodiments, torque levels for more than two revolutions of settings of the clutch collar are provided. In some embodiments, the mapping specifies a maximum torque level, and minimum torque level, and an increment/decrement level indicating the change in target torque levels between settings of the clutch collar 108.
At step 720, the motor control unit 130 detects the clutch collar 108 position selected by the user of the power tool 100. As described above with respect to
At step 740, the motor control unit 130 detects a torque of the power tool 100. The motor control unit 130 detects the torque, for example, based on motor current. For example, the current sensor 135 senses the current flowing to the motor 126 and provides a signal indicative of the current to the motor control unit 130. The motor control unit 130 may use techniques described above to determine the torque based on the signal received from the current sensor 135.
At step 750, the motor control unit 130 determines whether the toque of the power tool 100 exceeds the torque level determined at step 730. In some embodiments, this determination may involve a comparison of torque levels (e.g., in inch-pounds or Newton-meters), and, in other embodiments, the determination may involve a comparison of current values indicative of a torque (e.g., in Amperes). When the torque detected in step 740 exceeds the torque level determined at step 730, the motor control unit 130 generates an indication (at step 760). The indication includes, for example, flashing the light 116, ratcheting the motor 126, and/or stopping the motor 126. In other words, in response to determining that the detected torque of the power tool exceeds the torque level, the motor control unit 130 may stop the motor 126 to provide the indication, for instance, by ceasing the sending of driving signals to the FETs 124 or by controlling the FETs 124 to actively brake the motor 124. In some embodiments, the motor control unit 130 may ratchet the motor 126 to provide the indication in step 750. In some embodiments, the motor control unit 130 may control the light 116 to flash to provide the indication. In yet further embodiments, the motor control unit 130 generates the indication by using a combination of flashing the light 116, ratcheting the motor 126, and stopping the motor 126. For example, the control unit 130 may flash the light 116 and ratchet the motor 126 for a first period of time, and then stop the motor 126. The method 700 repeats steps 740 and 750 until the torque exceeds the torque level determined in step 730, until a new position of the clutch collar 108 is selected, or until the trigger 112 is released.
In some embodiments, the mapping received in step 710 includes a first mapping for a high speed setting and a second mapping for a low speed setting. When the power tool 100 is in the high speed setting, indicated by the speed select switch 111, the first mapping is used by the e-clutch control module 134 (e.g., in step 730 for determining the torque level). However, when the power tool is in the low speed setting, indicated by the speed select switch 111, the second mapping is used by the e-clutch control module 134. Accordingly, the clutch collar 108 may indicate different desired torque levels at same rotational position depending on the position for the speed select switch 111. In some embodiments, the maximum torque level of the first mapping is less than the maximum torque level of the second mapping.
In some embodiments, the method includes receiving, from a speed select switch, a speed setting. The method further includes compensating for the speed setting in detecting the torque of the power tool in step 740 or in calculating the torque level in step 730 to provide similar performance regardless of the speed setting. For example, through the compensation, the torque of the power tool upon generating the indication in step 750 for a particular setting of the clutch collar 108 is approximately the same regardless of the speed setting.
In some embodiments, the method 700 includes a further step of receiving, via the wireless transceiver, a request to enter a fixed torque mode and a fixed torque level. The request and the fixed torque level may be provided by the remote device 140 as part of a control profile generated based on user input on the GUI 250. In a subsequent operation of the power tool, the e-clutch control module 134 detects, during a subsequent operation of the power tool, that a subsequent torque of the power tool exceeds the fixed torque level. The subsequent torque of the power tool is detected similar to the torque detection of step 740. The motor control unit 130 then generates a second indication that the subsequent torque exceeds the fixed torque level. The second indication is generated similar to the indication of step 760, and may include one or more of stopping the motor 126, ratcheting the motor 126, and flashing the light 116.
In some embodiments, the mapping received in step 710 includes a first torque value generated by the remote device 140 based on user input, for example, received via the GUI 250. The motor control unit 130 uses the first torque value and calculates, in advance or as needed, torque levels for the plurality of settings. For example, in step 730, the motor control unit 130 calculates a torque level for the clutch collar setting detected in step 720 based on the position of the clutch collar setting among the plurality of settings and the first torque value. The first torque value may indicate a maximum torque level or a minimum torque level. Taking, for example, the first torque value as indicative of a minimum torque level, the motor control unit 130 may calculate the torque level of the setting by assuming a particular torque increment and incrementing the minimum torque level by the number of settings that the clutch collar setting is above the minimum clutch collar setting. Alternatively, the motor control unit 130 may use a default maximum torque level in combination with the received minimum torque level and calculate the torque level for the clutch collar setting to be a value proportional or corresponding to the position of the clutch setting among the plurality of settings. For example, a clutch collar setting of six out of thirteen possible settings would result in a torque level that is greater than the mid-point between the minimum and maximum torque levels, assuming a linear scale, and a clutch collar setting of five out of thirteen settings would result in a torque level that is below the mid-point. The motor control unit proceeds to control the motor based on the calculated torque level. For example, the motor control unit 130 proceeds to execute steps 740, 750, and 760, in some embodiments, and uses the calculated torque level in the determination of step 750.
In some embodiments, in step 710, a first torque value and a second torque value are received, and calculating the torque level is further based on the second torque value. In some examples, the first torque value is indicative of a minimum torque level and the second torque value is indicative of a maximum torque level. Similar to as described immediately above, the motor control unit 130 uses the first torque value and the second torque value to calculate, in advance or as needed, torque levels for the plurality of settings. In some examples, the first torque value is indicative of a first torque level for a first setting, the second torque value is indicative of a second torque level for a second setting, the method further includes associating remaining settings of the plurality of settings with torque levels between the first torque level and the second torque level.
Although the flow chart of
Although the tool 100 is described as a hammer drill, in some embodiments, the tool 100 is a standard, non-hammering drill/driver, or another drill/driving tool, such as an angle driver or an impact driver.
Thus, the invention provides, among other things, a power tool having a configurable electronic clutch and methods of configuring an electronic clutch. Various features and advantages of the invention are set forth in the following claims.
This application claims priority to U.S. Provisional Patent Application No. 62/169,671, filed on Jun. 2, 2015, and U.S. Provisional Patent Application No. 62/180,586, filed on Jun. 16, 2015, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3671837 | Kanno | Jun 1972 | A |
3882305 | Johnstone | May 1975 | A |
4249117 | Leukhardt et al. | Feb 1981 | A |
4487270 | Huber | Dec 1984 | A |
4545106 | Juengel | Oct 1985 | A |
4625160 | Hucker | Nov 1986 | A |
4661756 | Murphy | Apr 1987 | A |
4680862 | Wieland et al. | Jul 1987 | A |
4685050 | Polzer et al. | Aug 1987 | A |
4854786 | Alexander et al. | Aug 1989 | A |
4991473 | Gotman | Feb 1991 | A |
5025903 | Elligson | Jun 1991 | A |
5277261 | Sakoh | Jan 1994 | A |
5315501 | Whitehouse | May 1994 | A |
5592396 | Tambini et al. | Jan 1997 | A |
5903462 | Wagner et al. | May 1999 | A |
5942975 | Sørensen | Aug 1999 | A |
6055484 | Lysaght | Apr 2000 | A |
6123241 | Walter et al. | Sep 2000 | A |
6157313 | Emmermann | Dec 2000 | A |
6161629 | Hohmann et al. | Dec 2000 | A |
6279668 | Mercer | Aug 2001 | B1 |
6349266 | Lysaght et al. | Feb 2002 | B1 |
6405598 | Bareggi | Jun 2002 | B1 |
6424799 | Gilmore | Jul 2002 | B1 |
6431425 | Moorman et al. | Aug 2002 | B1 |
6469615 | Kady et al. | Oct 2002 | B1 |
6508313 | Carney et al. | Jan 2003 | B1 |
6520270 | Wissmach et al. | Feb 2003 | B2 |
6522949 | Ikeda et al. | Feb 2003 | B1 |
6547014 | McCallops et al. | Apr 2003 | B2 |
6565476 | Bae | May 2003 | B1 |
6598684 | Watanabe | Jul 2003 | B2 |
6668212 | Colangelo, II et al. | Dec 2003 | B2 |
6687567 | Watanabe | Feb 2004 | B2 |
6784801 | Watanabe et al. | Aug 2004 | B2 |
6836614 | Gilmore | Dec 2004 | B2 |
6848516 | Giardino | Feb 2005 | B2 |
6872121 | Wiener et al. | Mar 2005 | B2 |
6913087 | Brotto et al. | Jul 2005 | B1 |
6923285 | Rossow et al. | Aug 2005 | B1 |
6938689 | Farrant et al. | Sep 2005 | B2 |
6954048 | Cho | Oct 2005 | B2 |
6968908 | Tokunaga et al. | Nov 2005 | B2 |
6981311 | Seith et al. | Jan 2006 | B2 |
7034711 | Sakatani et al. | Apr 2006 | B2 |
7035710 | Balling | Apr 2006 | B2 |
7035898 | Baker | Apr 2006 | B1 |
7036703 | Grazioli et al. | May 2006 | B2 |
7062998 | Hohmann et al. | Jun 2006 | B2 |
7064502 | Garcia et al. | Jun 2006 | B2 |
7086483 | Arimura et al. | Aug 2006 | B2 |
7102303 | Brotto et al. | Sep 2006 | B2 |
7112934 | Gilmore | Sep 2006 | B2 |
7123149 | Nowak et al. | Oct 2006 | B2 |
7137541 | Baskar et al. | Nov 2006 | B2 |
7211972 | Garcia et al. | May 2007 | B2 |
7218227 | Davis et al. | May 2007 | B2 |
7243440 | DeKeyser | Jul 2007 | B2 |
7328086 | Perry et al. | Feb 2008 | B2 |
7328757 | Davies | Feb 2008 | B2 |
7330129 | Crowell et al. | Feb 2008 | B2 |
7343764 | Solfronk | Mar 2008 | B2 |
7346422 | Tsuchiya et al. | Mar 2008 | B2 |
7359762 | Etter et al. | Apr 2008 | B2 |
7382272 | Feight | Jun 2008 | B2 |
7437204 | Lev-Ami et al. | Oct 2008 | B2 |
7464769 | Nakazawa et al. | Dec 2008 | B2 |
7501778 | Hashimoto et al. | Mar 2009 | B2 |
7540334 | Gass et al. | Jun 2009 | B2 |
7613590 | Brown | Nov 2009 | B2 |
7646155 | Woods et al. | Jan 2010 | B2 |
RE41185 | Gilmore et al. | Mar 2010 | E |
7690569 | Swanson et al. | Apr 2010 | B2 |
7750811 | Puzio et al. | Jul 2010 | B2 |
7784104 | Innami et al. | Aug 2010 | B2 |
7787981 | Austin et al. | Aug 2010 | B2 |
7795829 | Seiler et al. | Sep 2010 | B2 |
7809495 | Leufen | Oct 2010 | B2 |
7817062 | Li et al. | Oct 2010 | B1 |
7834566 | Woods et al. | Nov 2010 | B2 |
7868591 | Phillips et al. | Jan 2011 | B2 |
7898403 | Ritter et al. | Mar 2011 | B2 |
7900524 | Calloway et al. | Mar 2011 | B2 |
7911379 | Cameron | Mar 2011 | B2 |
7928673 | Woods et al. | Apr 2011 | B2 |
7931096 | Saha | Apr 2011 | B2 |
7942084 | Wilson, Jr. et al. | May 2011 | B2 |
7942211 | Scrimshaw et al. | May 2011 | B2 |
7953965 | Qin et al. | May 2011 | B2 |
7982624 | Richter et al. | Jul 2011 | B2 |
8004397 | Forrest et al. | Aug 2011 | B2 |
8004664 | Etter et al. | Aug 2011 | B2 |
8005647 | Armstrong et al. | Aug 2011 | B2 |
8044796 | Carr, Sr. | Oct 2011 | B1 |
8049636 | Buckingham et al. | Nov 2011 | B2 |
8169298 | Wiesner et al. | May 2012 | B2 |
8171828 | Duvan et al. | May 2012 | B2 |
8210275 | Suzuki et al. | Jul 2012 | B2 |
8251158 | Tomayko | Aug 2012 | B2 |
8255358 | Ballew et al. | Aug 2012 | B2 |
8260452 | Austin et al. | Sep 2012 | B2 |
8264374 | Obatake et al. | Sep 2012 | B2 |
8281871 | Cutler et al. | Oct 2012 | B2 |
8286723 | Puzio et al. | Oct 2012 | B2 |
8294424 | Bucur | Oct 2012 | B2 |
8310206 | Bucur | Nov 2012 | B2 |
8316958 | Schell et al. | Nov 2012 | B2 |
8330426 | Suzuki et al. | Dec 2012 | B2 |
8351982 | Rofougaran | Jan 2013 | B2 |
8406697 | Arimura et al. | Mar 2013 | B2 |
8412179 | Gerold et al. | Apr 2013 | B2 |
8438955 | Wilson, Jr. et al. | May 2013 | B2 |
8464808 | Leü | Jun 2013 | B2 |
8485049 | Yokoyama et al. | Jul 2013 | B2 |
8611250 | Chen et al. | Dec 2013 | B2 |
8645176 | Walton et al. | Feb 2014 | B2 |
8657482 | Malackowski et al. | Feb 2014 | B2 |
8666936 | Wallace | Mar 2014 | B2 |
8674640 | Suda et al. | Mar 2014 | B2 |
8678106 | Matsunaga et al. | Mar 2014 | B2 |
8823322 | Noda et al. | Sep 2014 | B2 |
8890449 | Suzuki et al. | Nov 2014 | B2 |
8919456 | Ng et al. | Dec 2014 | B2 |
8965841 | Wallace | Feb 2015 | B2 |
9030145 | Brennenstuhl et al. | May 2015 | B2 |
9031585 | Kahle et al. | May 2015 | B2 |
9038743 | Aoki | May 2015 | B2 |
9061392 | Forgues et al. | Jun 2015 | B2 |
9073134 | Koeder et al. | Jul 2015 | B2 |
9126317 | Lawton et al. | Sep 2015 | B2 |
9144875 | Schlesak et al. | Sep 2015 | B2 |
9193055 | Lim et al. | Nov 2015 | B2 |
9216505 | Rejman et al. | Dec 2015 | B2 |
9232614 | Hiroi | Jan 2016 | B2 |
9233457 | Wanek et al. | Jan 2016 | B2 |
9242356 | King et al. | Jan 2016 | B2 |
9257865 | Hiuggins et al. | Feb 2016 | B2 |
9281770 | Wood et al. | Mar 2016 | B2 |
20010052416 | Wissmach et al. | Dec 2001 | A1 |
20020033267 | Schweizer et al. | Mar 2002 | A1 |
20030121677 | Watanabe et al. | Jul 2003 | A1 |
20030127932 | Ishida | Jul 2003 | A1 |
20030173096 | Setton | Sep 2003 | A1 |
20040182587 | May et al. | Sep 2004 | A1 |
20050035659 | Hahn et al. | Feb 2005 | A1 |
20060009879 | Lynch et al. | Jan 2006 | A1 |
20060076385 | Etter et al. | Apr 2006 | A1 |
20060236827 | Chiu | Oct 2006 | A1 |
20070034394 | Gass et al. | Feb 2007 | A1 |
20070252675 | Lamar | Nov 2007 | A1 |
20080084334 | Ballew | Apr 2008 | A1 |
20080086320 | Ballew | Apr 2008 | A1 |
20080086323 | Petrie et al. | Apr 2008 | A1 |
20080086349 | Petrie et al. | Apr 2008 | A1 |
20080086427 | Wallace | Apr 2008 | A1 |
20080086428 | Wallace | Apr 2008 | A1 |
20080086685 | Janky et al. | Apr 2008 | A1 |
20090101376 | Walker | Apr 2009 | A1 |
20090250364 | Gerold et al. | Oct 2009 | A1 |
20090251330 | Gerold et al. | Oct 2009 | A1 |
20090273436 | Gluck et al. | Nov 2009 | A1 |
20100032179 | Hanspers | Feb 2010 | A1 |
20100089600 | Borinato | Apr 2010 | A1 |
20100096151 | Östling | Apr 2010 | A1 |
20100116519 | Gareis | May 2010 | A1 |
20100154599 | Gareis | Jun 2010 | A1 |
20100175902 | Rejman | Jul 2010 | A1 |
20100176766 | Brandner et al. | Jul 2010 | A1 |
20100224356 | Moore | Sep 2010 | A1 |
20100307782 | Iwata | Dec 2010 | A1 |
20110056716 | Jönsson et al. | Mar 2011 | A1 |
20110067895 | Nobe et al. | Mar 2011 | A1 |
20110139473 | Braun | Jun 2011 | A1 |
20110162858 | Coste | Jul 2011 | A1 |
20110180284 | Carrier | Jul 2011 | A1 |
20110220379 | Bixler | Sep 2011 | A1 |
20110303427 | Tang | Dec 2011 | A1 |
20120167721 | Fluhrer | Jul 2012 | A1 |
20120168189 | Eckert | Jul 2012 | A1 |
20120175142 | Van Der Linde | Jul 2012 | A1 |
20120292070 | Ito et al. | Nov 2012 | A1 |
20130000938 | Matsunaga | Jan 2013 | A1 |
20130024245 | Nichols et al. | Jan 2013 | A1 |
20130025078 | Heil | Jan 2013 | A1 |
20130056235 | Pozgay | Mar 2013 | A1 |
20130062086 | Ito et al. | Mar 2013 | A1 |
20130062088 | Mashiko | Mar 2013 | A1 |
20130071815 | Hudson et al. | Mar 2013 | A1 |
20130082632 | Kusakawa | Apr 2013 | A1 |
20130087355 | Oomori et al. | Apr 2013 | A1 |
20130109375 | Zeiler et al. | May 2013 | A1 |
20130118767 | Cannaliato et al. | May 2013 | A1 |
20130126202 | Oomori et al. | May 2013 | A1 |
20130133907 | Chen et al. | May 2013 | A1 |
20130133911 | Ishikawa et al. | May 2013 | A1 |
20130133912 | Mizuno | May 2013 | A1 |
20130138465 | Kahle et al. | May 2013 | A1 |
20130138606 | Kahle et al. | May 2013 | A1 |
20130140050 | Eshleman | Jun 2013 | A1 |
20130153250 | Eckert | Jun 2013 | A1 |
20130187587 | Knight et al. | Jul 2013 | A1 |
20130188058 | Nguyen et al. | Jul 2013 | A1 |
20130191417 | Petrie et al. | Jul 2013 | A1 |
20130204753 | Wallace | Aug 2013 | A1 |
20130255980 | Linehan et al. | Oct 2013 | A1 |
20130269961 | Lim | Oct 2013 | A1 |
20130304545 | Ballew et al. | Nov 2013 | A1 |
20130327552 | Lovelass et al. | Dec 2013 | A1 |
20140006295 | Zeiler et al. | Jan 2014 | A1 |
20140015389 | Vatterott et al. | Jan 2014 | A1 |
20140069672 | Mashiko et al. | Mar 2014 | A1 |
20140107853 | Ashinghurst et al. | Apr 2014 | A1 |
20140122143 | Fletcher et al. | May 2014 | A1 |
20140151079 | Furui et al. | Jun 2014 | A1 |
20140159662 | Furui et al. | Jun 2014 | A1 |
20140159919 | Furui et al. | Jun 2014 | A1 |
20140159920 | Furui et al. | Jun 2014 | A1 |
20140166324 | Puzio et al. | Jun 2014 | A1 |
20140184397 | Volpert | Jul 2014 | A1 |
20140231116 | Pollock | Aug 2014 | A1 |
20140284070 | Ng et al. | Sep 2014 | A1 |
20140292245 | Suzuki et al. | Oct 2014 | A1 |
20140324194 | Larsson et al. | Oct 2014 | A1 |
20140331830 | King et al. | Nov 2014 | A1 |
20140334270 | Kusakawa | Nov 2014 | A1 |
20140336810 | Li et al. | Nov 2014 | A1 |
20140336955 | Li et al. | Nov 2014 | A1 |
20140350716 | Fly et al. | Nov 2014 | A1 |
20140365259 | Delplace et al. | Dec 2014 | A1 |
20140367134 | Phillips et al. | Dec 2014 | A1 |
20140379136 | Schlegel et al. | Dec 2014 | A1 |
20150000944 | Dusselberg et al. | Jan 2015 | A1 |
20150002089 | Rejman et al. | Jan 2015 | A1 |
20150042247 | Kusakawa | Feb 2015 | A1 |
20150122524 | Papp | May 2015 | A1 |
20150135306 | Winkler et al. | May 2015 | A1 |
20150135907 | Hirabayashi et al. | May 2015 | A1 |
20150137721 | Yamamoto et al. | May 2015 | A1 |
20150158157 | Hirabayashi et al. | Jun 2015 | A1 |
20150158170 | Nitsche et al. | Jun 2015 | A1 |
20150171654 | Horie et al. | Jun 2015 | A1 |
20150340921 | Suda et al. | Nov 2015 | A1 |
20160031072 | Lim et al. | Feb 2016 | A1 |
20160129569 | Lehnert et al. | May 2016 | A1 |
20160193726 | Rompel | Jul 2016 | A1 |
20170008159 | Boeck et al. | Jan 2017 | A1 |
20170165822 | Rompel | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
10029132 | Jan 2002 | DE |
10309703 | Sep 2004 | DE |
202006014606 | Jan 2007 | DE |
2147750 | Jan 2010 | EP |
2671681 | Dec 2013 | EP |
S58181544 | Oct 1983 | JP |
2000176850 | Jun 2000 | JP |
2004072563 | Mar 2004 | JP |
2006123080 | May 2006 | JP |
100782593 | Dec 2007 | KR |
WO02030624 | Apr 2002 | WO |
WO2007090258 | Aug 2007 | WO |
WO2013116303 | Aug 2013 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US2016/030769 dated Aug. 5, 2016 (11 pages). |
Bosch Media Service “Power Tools” Bosch Press Release, Mar. 3, 2016 (3 pages). |
Korean Patent Office Action for Application No. 10-2017-7037714 dated Mar. 15, 2019, with English Translation, 15 pages. |
Korean Patent Office Action for Application No. 10-20177037714, dated Sep. 26, 2019 (7 pages, English translation included). |
Korean Patent Office Notice of Allowance for Application No. 10-20177037714, dated Nov. 12, 2019 (7 pages, English translation included). |
Extended European Search Report for Application No. 16803935.2 dated Dec. 14, 2018, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20160354888 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62180586 | Jun 2015 | US | |
62169671 | Jun 2015 | US |