This invention relates to systems for supplying airborne particulate coal to the combustion chamber of a coal-fired boiler of the type used to generate steam for turbines in an electric utility plant, and more particularly to a mixer device for reducing or eliminating non-uniform flow rates in parallel supply conduits located between a pulverizer and a combustion chamber.
It is well known to feed combustion chambers for turbine generator boilers with airborne particulate coal; structures for carrying out this function are commonly found in electric utility plants throughout the United States and Canada. It is common in these systems to use a main supply conduit to receive particulate coal from a pulverizer/classifier. It is also common to divide the main supply conduit into several parallel branches which are connected to spaced points around the combustion chamber.
A problem which arises in systems of the type described above is ensuring that the branch conduits exhibit at least approximately equal coal flow rates so that the fireball in the combustion chamber is stabilized as to size and location within the combustion chamber. The flow of particulate coal through parallel branch conduits of different lengths and configurations tends to be unstable and inherently non-uniform. Many devices have been created to deal with this problem; see, for example, U.S. Pat. Nos. 5,873,156, 6,055,914, 6,186,079, 6,257,415 and 6,234,090.
The present invention is, according to one aspect, a mixer for use in a coal-fired combustion chamber supply conduit, typically the main supply conduit downstream of a pulverizer, the effect of which is to promote uniformity in the rate of flow of airborne particulate coal from the main supply conduit to the various branches of a parallel branch feed system. In general, the invention comprises a mixer comprising a plurality of substantially concentric walls, typically but not necessarily cylindrical and made of a wear-resistant material such as steel or a steel alloy, defining at least two substantially concentric annular flow channels receiving airborne particulate coal from a source such as a pulverizer/classifier. The two channels may be referred to as “inner” and “outer” channels but it is to be understood that there may be three, four or more such concentric channels in a particular embodiment. In the case of three channels, they are referred to as “inner,” “intermediate” and “outer” channels. A first plurality of circumferentially spaced vanes are located in the outer flow channel and are oriented to impart a clockwise spin to the airborne particulate coal flowing therethrough. A second plurality of circumferentially spaced vanes are located in the inner flow channel to impart a counterclockwise spin to the airborne particulate coal flowing therethrough.
In the above description as well as throughout this document, the terms “clockwise” and “counterclockwise” are used only in a relative sense to make it clear that the flow in one of the annular flow channels spins or rotates around the axis of the supply conduit in a direction which is opposite to the spin or rotation of flow in the adjacent annular flow channel or channels.
The mixer may be fabricated as an integral part of the supply conduit or made in the form of an insert which can be removed for servicing or replacement.
In the preferred embodiment hereinafter described in detail, there are three or more annular and concentric flow channels defined by cylindrical walls and consisting of at least an outer flow channel, an intermediate flow channel and an inner flow channel. The cross-sectional areas of all of the flow channels are at least approximately the same. To achieve this, the radial spacing between the walls of the outermost flow channel is less than the radial spacing between the walls of the innermost flow channel. The vanes in these channels are located in an overlapping fashion so there is no straight path for coal particulates to follow through the mixer.
The mixer may optionally be combined with other, downstream turbulence-causing features as hereinafter described.
Other applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
Referring first to
Referring to
As better shown in
As best shown in
As best shown in
In operation, lump coal is gravity fed through the inlet supply conduit 12 to the pulverizer/classifier 10 which operates in a conventional fashion. Pulverized coal is carried upwardly in an air stream through the main supply conduit 14 into the mixer insert 16 where the opposite sense spins are imparted to the three divided concentric annular flow quantities by the vanes 42, 44 and 46 disposed in the channels 32, 36 and 40. The spinning airborne particulate coal then encounters the transition section and the various means 47, 48 and 50 therein where it is turbulently intermixed before entering the four parallel branch conduits 20, 22, 24 and 26. Those conduits supply the four corners of the combustion chamber or “firebox” 28 of the turbine boiler.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Number | Name | Date | Kind |
---|---|---|---|
1165869 | Fraser | Dec 1915 | A |
1315719 | Grindle | Sep 1919 | A |
2623700 | Scherer | Dec 1952 | A |
5685240 | Briggs et al. | Nov 1997 | A |
5873156 | Wark | Feb 1999 | A |
6055914 | Wark | May 2000 | A |
6186079 | Wark et al. | Feb 2001 | B1 |
6234090 | Wark et al. | May 2001 | B1 |
6257415 | Wark | Jul 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040206279 A1 | Oct 2004 | US |