The present invention relates generally to multi-spindle machines and, more particularly, to controlling the phase of the spindles.
Manufacturing industries use many types of machine tools for the production of precision parts. Machine tools include a wide range of vertical/horizontal machining centers and boring mills. The machine tools also include multiple-spindle machining centers that precisely machine or cut parts within a narrow margin of tolerance. Multiple-spindle machines often use a large gantry capable of supporting multiple spindle carriers that use electric motors to drive the spindles. Attached to the spindles are multi toothed cutters that shape the workpiece.
As each spindle turns and cuts a workpiece, tooth impacts from the individual cutter teeth on each spindle can create undesirable forces and torques that are added and subtracted to both the workpiece and the machine tool. If tooth impacts from each individual spindle become synchronized with tooth impacts from one or more of the other spindles, this can result in cutting variations of greater magnitude than intended. In some cases, the forces and torques cause chatter and excessive deflection of the cutter attached to the spindle. One method to reduce the chatter and excessive deflection calls for adjusting the position of the spindles so that the spindles are out of phase by an amount equal to 360 degrees divided by the product of the number of spindles and the number of cutting edges on each spindle. This method is described in U.S. Pat. No. 6,135,682 granted to Paul McCalmont. Previous systems implementing the methods described in the McCalmont patent have sensed the position of spindles using an external position sensor for each spindle, such as a high-precision rotary encoder. Rotary encoders, or any other position sensors, add cost to a machine. Additionally, spindles operate at high rotational speeds and as a result rotary encoders may require high sampling rates to accurately measure the position of a spindle. Such high sampling rates and high rotational speeds can require equipment that is costly and complex to implement.
According to an aspect of the invention, there is provided a first method of controlling a multiple spindle machine. The first method includes measuring the motor currents provided to a first spindle and a second spindle over a period of time, establishing an amount of time between impacts on a workpiece of a cutting tooth of the first spindle relative to a cutting tooth of the second spindle based on the measured motor currents of the first spindle and the second spindle, determining an angle to shift the second spindle relative to the first spindle, and increasing or decreasing the amount of time between impacts to obtain the determined shift angle for the second spindle.
According to another aspect of the invention, there is provided a second method of controlling a multiple spindle machine. The second method includes measuring the motor current of a first spindle over a defined period of time, measuring the motor current of a second spindle over the defined period of time, determining an amount of time elapsed between a first temporal point when the motor current of the second spindle equals a measured amount and a second temporal point when the motor current of the first spindle equals the measured amount, adjusting the angular position of the second spindle by increasing or decreasing the amount of time so that a cutting tooth of the first spindle is synchronized with a cutting tooth of a second spindle, calculating a desired shift angle between the first spindle and the second spindle, and shifting the position of a cutting tooth of the second spindle relative to a cutting tooth of the first spindle to minimize vibration, wherein the cutting tooth of the first spindle is positioned out of phase of the cutting tooth of the second spindle.
According to another aspect of the invention, there is provided a third method of controlling a multiple spindle machine. The third method includes determining a motor current sampling rate for measuring the motor current of a first spindle and a second spindle, where the sampling rate is variable and proportional to spindle speed, measuring the motor current for the first spindle over a period of time that the first spindle is engaged with a workpiece, measuring the motor current for the second spindle over a period of time that the second spindle is engaged with the workpiece, calculating a series of correlation values over the period of time using cross-correlation analysis, determining an elapsed time that corresponds to a correlation value nearest to a correlation value of one (1), and adjusting the impact of a cutting tooth of the second spindle relative the impact of a cutting tooth of the first spindle based on the elapsed time, wherein the cutting tooth of the first spindle is positioned out of phase of the cutting tooth of the second spindle.
According to another aspect of the invention, there is provided a fourth method of controlling a multiple spindle machine. The fourth method includes measuring the motor wattages provided to a first spindle and a second spindle over a period of time, establishing an amount of time between impacts on a workpiece of a cutting tooth of the first spindle relative to a cutting tooth of the second spindle based on the measured motor wattages of the first spindle and the second spindle, determining an angle to shift the second spindle relative to the first spindle, and increasing or decreasing the amount of time between impacts to obtain the determined shift angle for the second spindle to minimize vibration.
One or more preferred exemplary embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
The method described below involves controlling a multiple spindle machine. The use of a multiple spindle machine can include the machining of workpieces using a plurality of spindles rotatably and simultaneously operated. But it has been noted that vibrations can occur during the use of multiple spindles. Vibrations can be reduced by phase-shifting or delaying individual spindles, and the cutting teeth linked to the spindles, relative to each other. A positional relationship between spindles capable of reducing the vibrations depends on the number of spindles and the number of cutting teeth per spindle. For example, using a three-spindle machine and three-tooth face mills, the positional relationship can be calculated by dividing the value 360 by the number of spindles and then dividing by the number of teeth on each mill. In this case, the calculation results in a 40 degree difference between the spindles (360/33=40). The first and second spindles can be positioned 40 degrees from each other and the third spindle can then be positioned 40 degrees from the second spindle (or 80 degrees from the first spindle). In another example, an eight-tooth cutter used on a five spindle machine would call for each of the eight spindles to be positioned 9 degrees from every other tooth (360/8/5=9). The first spindle can be positioned 9 degrees from each other, the first and third spindles can be positioned 18 degrees from each other, and so forth.
Generally speaking, the angular or phase position of any particular spindle, created by delaying individual spindles, can be determined by measuring or monitoring the current provided to the electric motor driving the spindle (or cutter). By measuring the current supplied to the motor over a period of time and noting the peaks and troughs of the supplied current it is possible to determine when a tooth on a spindle cutter impacts a workpiece. The higher measurements of current (or peaks) indicate those times when the cutting tooth is engaged with the workpiece. Alternatively, the lower measurements of currents (or troughs) indicate those times when the cutting tooth is disengaged with the workpiece.
As shown in
Turning now to
The method 300 begins at step 310. At step 310, a motor current sampling rate is determined for measuring the motor current of a first spindle and a second spindle, where the sampling rate is variable and proportional to spindle speed. Depending on the type of material of the workpiece, different spindle speeds are used to machine different materials. For instance, in order to obtain a sufficient amount of data representative of motor current, it is beneficial to establish sufficient frequency resolution for measuring motor feedback data. Sampling theory suggests that the sampling rate be at least twice the desired resolution. In one example, the face milling of steel involves a spindle speed of 400 revolutions per minute (RPM), a cutter diameter of 6 inches (in.), and 8 cutter teeth per cutter. This relationship results in a tooth impact frequency of 53.3 hertz (Hz) which translates into a tooth impact on the workpiece every 0.01875 seconds (sec.) and a practical surface speed limitation of 628 surface feet per minute (SFM). In this example of face milling, the period of tooth impacts is roughly 19 milliseconds (ms) which would benefit from a sampling rate period of approximately 9 ms. But an even finer resolution may be used when multiple spindles are used. For a 3-spindle machine, the sampling rate used to resolve tooth impacts to within ⅓ of tooth spacing (i.e. 15 degrees) may be approximately 3 ms. In another example, the end milling of titanium may involve a spindle speed of 250 RPM, a cutter diameter of 3 in., and 6 teeth per cutter. This relationship results in a tooth impact frequency of 25 Hz which translates into a tooth impact every 0.04 seconds and a practical surface speed limitation of 196 SFM. For a 3 in. diameter, 6 tooth end mill, the period of tooth impacts increases to around 40 ms. The minimum sampling rate used in this situation for the three spindle machine described above is approximately 6 ms. Alternatively, the sampling rate could be increased at a user's direction to produce a finer resolution as situations require. The method can then proceed to step 320.
At steps 320 and 330, the motor current for the first and second spindles are measured over a period of time that the first spindle and the second spindles are engaged with a workpiece. The motor current values may be measured by any suitable device known to those skilled in the art. One example of such device is the Startup Trace drive signal analysis software available on a Siemens Sinumarik 840D CNC control. The 840D drive signal analysis software can measure motor current, torque command, motor speed, and power. These variables can be obtained using an 840D servo trace data capture feature carried by the 840D drive analysis software. In addition, the motor current, torque command, motor speed, and other variables can be recorded using the 840D drive analysis software or any other suitable device for recording data. For example,
As can be appreciated in
In another embodiment, the frequency of cutting tooth impacts can be determined by measuring the speed of the spindles rather than the current.
At step 340, returning to
The result of this particular example of normalization is commonly referred to as the Pearson product-moment correlation coefficient which can be described as [Pn=1/(n−1)*Σj[f(j)−fm]/sf*[g(n+j)−gm]/sg] where fm and gm are the sample means and sf and sg are the standard deviations of the discrete real functions f(j) and g(j). Pearson's coefficient can indicate the degree of linear relationship between two variables ranging from +1 and −1. A correlation of +1 indicates a perfectly positive linear relationship between variables while a correlation of −1 indicates a perfectly negative linear relationship between variables. A correlation of 0 indicates that no linear relationship exists between the variables. For instance, over the period of time, such as the amount of time that passes during one complete spindle rotation, a varying number of correlation calculations can be completed, representing the series. The number of correlation calculations can be defined by the amount of time that passes between calculations, represented by delta t(Δt) and the period of time. Delta t(Δt) is a variable that can be defined by the user. The smaller the duration of Δt, the higher the resolution or number of the calculations over the period of time. The series of calculations can then represent a function over the period of time that the correlations calculations were calculated. Finding the correlation value nearest to one (1) can be accomplished by finding the maximum point of the function. The method 300 can then proceed to step 350.
At step 350, an elapsed time that provides a correlation value nearest to the value one (1) is determined. In one instance, this can be accomplished by relating the elapsed time or lag and the correlation value. For example, using the motor currents for the first spindle (CM1) and the second spindle (CM2) shown in
In yet another embodiment, it is unnecessary to calculate the correlation values. An elapsed time between a current value recorded at the first spindle and the current value recorded at a second spindle may be determined. Or in other words, it is possible to determine the time elapsed between a first temporal point where the current supplied to the first spindle equals a predetermined value or predetermined measured amount and a second temporal point where the current supplied to the second spindle equals the predetermined value or the predetermined amount. This embodiment can also encompass determining the amount of time between cutter tooth impacts on the workpiece. For instance, the timing of
At step 360, the impact of the cutting tooth of the second spindle relative the impact of the cutting tooth of the first spindle is adjusted by increasing or decreasing the elapsed time. Increasing or decreasing the elapsed time, or lag, can involve changing the angular speed or phase position of individual spindles relative to other individual spindles. This can be accomplished in one of a multitude of ways. For instance the second spindle can be adjusted or phase-shifted relative to the first spindle so that the cutters, or cutter teeth are synchronized. The spindles then can be re-adjusted or phase-shifted a second time to desynchronize the cutters. In another example, the cutters or spindles can be desynchronized appropriately in one step. For instance,
Phase shifting, changing the angular speed of the spindles, or inserting a time delay/lag can occur by delaying CM2 by a period of time. Phase shifting can be accomplished by various methods known in the art. One example of a device used to phase shift spindles or cutters is a Siemens 611D Spindle Drive. This device may also be used to maintain the phase shift once the cutters are in position using a speed controller. Phase shifting, changing the angular speed of the spindles, or the addition of time or lag can be implemented to create spindle positions equal to the tooth impact period divided by the number of spindles. This formula can be represented as follows where Ds is the number of degrees between spindles or cutting teeth and is represented by the formula Ds=s*60/RPM/Nteeth/Nspindles where s=1 to (Nspindles−1).
In another example, once the position of the spindles CM1 and CM2 can be determined from the motor current measurements or the spindle speed measurements as shown in
It is to be understood that the foregoing is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
As used in this specification and claims, the terms “for example,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.