1. Field of the Invention
The present invention relates in general to the field of signal processing, and more specifically to a system and method for processing signals with a multi-stage amplifier having multiple fixed and variable voltage rails.
2. Description of the Related Art
Many electronic devices utilize one or more amplifiers to amplify an electrical signal. For example, in an audio context, a microphone utilizes transducers to convert sound waves into a corresponding electrical signal. An audio and/or video playback device reads stored data and converts the data into an electrical signal. The electrical signal often has insufficient power to drive an output device such as an audio speaker. An amplifier amplifies the smaller electrical signal to a level sufficient to drive the output device. Conventional amplifiers utilize a single set of voltage rails to supply voltage rails to a multi-stage amplifier.
A multi-stage amplifier includes multiple amplification stages. In at least one embodiment, operational-amplifier 102 includes multiple amplification stages. Each amplification stage utilizes power supplied by a power supply to amplify an input signal. The power supply provides a set of voltage rails, such as VDD and VSS, to each amplification stage of the multi-stage amplifier. In at least one embodiment, voltage rail VDD represents a higher voltage with respect to voltage rail VSS, and voltage rail VSS represents a negative voltage or ground.
Referring to
Efficiency of an amplification stage, in terms of power loss, increases as a difference between an input signal voltage and voltage rail decreases. Thus, when the input signal voltage approximately equals the supplied voltage rail, the amplifier operates with a high degree of efficiency.
However, to amplify a signal, the voltage rails to amplification stage are set so that each amplification stage operates properly. In at least one embodiment, proper operation includes providing sufficient bias voltages to transistors within the amplification stage for operation in a predetermined mode, such as in a saturation mode, and providing sufficient input signal headroom. Input signal headroom represents a difference between an input signal level and a maximum input signal level that can be accommodated while still allowing the amplification stage to operate. Unless otherwise indicated, “input signal headroom” is referred to herein as “headroom”.
To provide sufficient headroom during operation, the voltage supply rails are fixed at specific voltage levels. During operation, input signals swing between minimum and maximum voltage levels. Thus, the efficiency of the amplifier decreases as the input signal decreases.
In one embodiment of the present invention, a method of amplifying an input signal includes receiving an input signal with a multi-stage amplifier. The method also includes receiving a mixed set of voltage rails, wherein each amplification stage of the multi-stage amplifier receives a set of the voltage rails and at least one member of one set of the voltage rails is a variable voltage rail. The method further includes amplifying the input signal using the multi-stage amplifier to generate an amplified input signal.
In another embodiment of the present invention, a signal processing device includes a multi-stage amplifier. The amplifier includes a first amplification stage having an output node and first and second power supply nodes, wherein during operation the first and second power supply nodes of the first amplification stage are coupled to respective first and second voltage rails. The amplifier also includes a second amplification stage, coupled to the output node of the first amplification stage, having first and second power supply nodes, wherein during operation the first and second power supply nodes of the second amplification stage are respectively coupled to a variable voltage rail and to a third voltage rail, and the first voltage rail is greater than the variable voltage rail.
In a further embodiment of the invention, a method of amplifying an input signal includes receiving first and second power supply voltages with a first amplification stage of a multi-stage amplifier. The method further includes receiving third and fourth power supply voltages with a second amplification stage of the multi-stage amplifier, wherein the first power supply voltage is greater than the third power supply voltage, the third power supply voltage varies over time during operation of the multi-stage amplifier and the first and third power supply voltages are more positive than respective second and fourth power supply voltages. The method also includes receiving an input signal with the multi-stage amplifier and amplifying the input signal using the multi-stage amplifier to generate an amplified input signal.
In a further embodiment of the invention, a signal processing system includes a first amplification stage, wherein during operation the first amplification stage receives a fixed supply voltage and a first variable supply voltage, and the fixed supply voltage is greater than the first variable supply voltage. The system also includes a second amplification stage, coupled to an output of the first amplification stage, wherein during operation the second amplification stage receives the fixed supply voltage and the variable supply voltage. The system further includes a third amplification stage, coupled to an output of the second amplification stage, wherein during operation the third amplification stage receives a second variable supply voltage and the first variable supply voltage, wherein the fixed supply voltage is greater than a maximum second variable supply voltage.
The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.
A signal processing system and method utilizes a multi-stage amplifier to amplify an input signal. The multi-stage amplifier uses a mixed set of voltage rails to improve the operating efficiency of at least one of the amplification stages while allowing other amplification stages to operate in a predetermined operating mode. Efficiency of at least one of the stages is improved by providing a different set of the amplifier stages is improved by utilizing at least one variable voltage rail supplied to an amplification stage of the multi-stage amplifier. The variable voltage rail varies in response to changes in an input signal voltage to the amplification stage. For amplifier stages having different voltage supply requirements, the multi-stage amplifier operates with mixed sets of voltage supply rails to allow amplification stage efficiency and provide adequate voltage to allow operation of all amplification stages. Accordingly, at least one amplification stage utilizes a variable voltage rail, and all amplification stages are supplied with a set of voltage rails that provides sufficient input signal headroom.
In at least one embodiment, the multi-stage amplifier includes at least first and second amplification stages. The two amplification stages have different supply voltage requirements. During operation of the multi-stage amplifier, the signal processing system and method provide a first set of voltage rails, which can be variable or fixed, to the first amplification stage and at least one variable voltage rail to the second amplification stage. Thus, the multi-stage amplifier can operate more efficiently than a conventional multi-stage amplifier with a fixed set of voltage rails for each amplification stage and still maintain sufficient input signal headroom for all amplification stages.
Commonly assigned U.S. patent application Ser. No. 11/610,498, filed 13 Dec. 2006, entitled “Energy-Efficient Consumer Device Audio Power Output Stage” and U.S. patent application Ser. No. 11/611,069, filed 14 Dec. 2006, and entitled “Method and Apparatus for Controlling a Selectable Voltage Audio Power Output Stage” describe illustrative method and apparatus embodiments of providing a variable voltage rail for an audio power stage. The Cirrus Applications describe utilizing a charge pump to vary the supply voltage to an amplifier depending upon the voltage level of the input signal. In at least one embodiment, the charge pump dynamically varies the supply voltage to decrease a difference between the input signal voltage and the amplifier supply voltage, thus, increasing the efficiency of the amplifier. U.S. patent application Ser. Nos. 11/610,498 and 11/611,069 (collectively referred to herein as the “Cirrus Applications”) claim priority to U.S. Provisional Application No. 60/823,036 filed on 21 Aug. 2006, and the Cirrus Applications are incorporated herein by reference in their entireties.
In at least one embodiment, at least one set of voltage rails is provided by a variable voltage supply, such as the charge pump power supply illustratively described in the Cirrus Applications. In at least one embodiment, for each amplification stage connected to the variable voltage supply, each variable voltage rail supplied by the variable voltage supply dynamically adjusts, in response to the voltage level of an input signal to the amplification stage. The adjustment reduces a difference between the voltage of the output signal and the voltage supplied to the amplification stage while providing sufficient output signal headroom. Thus, efficiency of the amplification stage stages is improved.
Different amplification stages have different voltage supply requirements for providing sufficient headroom and operational efficiency. For the same input signal level, at least one of the amplification stages 402.0, 402.1, . . . , 402.N has a greater voltage supply requirement to provide headroom for the input signal. For example, in at least one embodiment, an analog input signal x(t) has a voltage level of +Vin. To provide sufficient headroom for the input signal x(t) and allow the transistors of amplification stage 402.0 operate in saturation mode, voltage rail VDD
One or more power supplies provide voltage rails VDD
In at least one embodiment, amplification stages 502.0 and 502.1 have different circuitry than amplification stage 502.2. In at least one embodiment, amplification stages 502.0 and 502.1 operate properly with the same voltage supply rails VDD
In at least one embodiment, multi-stage amplifier 500 is part of an audio signal processing system. The multi-stage amplifier 500 provides the analog output signal y(t) to speaker 508. In at least one embodiment, components 410, such as a low pass filter, post-process the analog output signal y(t) prior to reception by speaker 508.
When voltage rail VDD
Vx≧VSUMM
Vx≧VSUMM
Vx=VDD
To provide sufficient headroom voltage for input signal voltages VSUMM and VSUMP, VDD
VSUMP≧2·VDSsat+VTH+VSS
rearranging Equation [5] yields:
VSS
VSS
In at least one embodiment, amplification stage 600 is configured as part of an operational-amplifier with feedback to the inverting terminal, and, thus, VSUMP is approximately equal to VSUMM. From Equations [4] and [7], to maintain FETs M1, M2, M3, and M4 in saturation and provide sufficient headroom for input signal VSUMM and VSUMP:
VDD
VSS
The power supply requirements of at least one embodiment of amplification stages 502.0 and 502.2 can be met by providing a mixed set of voltage rails to amplification stages 502.0 and 502.2. In at least one embodiment, VDSsat=0.100 V, VSUMMmax=+0.9 V, VSUMMmin=0 V, VTH=0.7 V, and VSUMM=VSUMP, from Equation [8], VDD
Thus, the multi-stage amplifier uses a mixed set of voltage rails to improve the operating efficiency of at least one of the amplification stages while allowing other amplification stages to operate in a predetermined operating mode.
Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims. For example, the signal processing systems, including multi-stage amplifier 400, can be implemented using discrete, integrated, or a combination of discrete and integrated components. Additionally, the multi-stage amplifier can be used in any signal processing system including audio signal processing systems and video signal processing systems.
This application claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Application No. 60/885,673, filed Jan. 19, 2007 and entitled “Amplifier with Fixed and Variable Supply Rails.” U.S. Provisional Application No. 60/885,673 includes exemplary systems and methods and is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4414493 | Henrich | Nov 1983 | A |
4677366 | Wilkinson et al. | Jun 1987 | A |
4721919 | LaRosa et al. | Jan 1988 | A |
4786880 | Voorman | Nov 1988 | A |
4797633 | Humphrey | Jan 1989 | A |
4940929 | Williams | Jul 1990 | A |
4973919 | Allfather | Nov 1990 | A |
5200711 | Andersson | Apr 1993 | A |
5278490 | Smedley | Jan 1994 | A |
5323157 | Ledzius et al. | Jun 1994 | A |
5359180 | Park et al. | Oct 1994 | A |
5477481 | Kerth | Dec 1995 | A |
5481178 | Wilcox et al. | Jan 1996 | A |
5565761 | Hwang | Oct 1996 | A |
5747977 | Hwang | May 1998 | A |
5777519 | Simopoulos | Jul 1998 | A |
5783909 | Hochstein | Jul 1998 | A |
5825248 | Ozawa | Oct 1998 | A |
5963086 | Hall | Oct 1999 | A |
5994885 | Wilcox et al. | Nov 1999 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6043633 | Lev et al. | Mar 2000 | A |
6072969 | Yokomori et al. | Jun 2000 | A |
6083276 | Davidson et al. | Jul 2000 | A |
6084450 | Smith et al. | Jul 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6211626 | Lys et al. | Apr 2001 | B1 |
6211627 | Callahan | Apr 2001 | B1 |
6229271 | Liu | May 2001 | B1 |
6246183 | Buonavita | Jun 2001 | B1 |
6259614 | Ribarich et al. | Jul 2001 | B1 |
6304066 | Wilcox et al. | Oct 2001 | B1 |
6304473 | Telefus et al. | Oct 2001 | B1 |
6344811 | Melanson | Feb 2002 | B1 |
6445600 | Ben-Yaakov | Sep 2002 | B2 |
6509913 | Martin, Jr. et al. | Jan 2003 | B2 |
6580258 | Wilcox et al. | Jun 2003 | B2 |
6583550 | Iwasa et al. | Jun 2003 | B2 |
6636003 | Rahm et al. | Oct 2003 | B2 |
6713974 | Patchornik et al. | Mar 2004 | B2 |
6727832 | Melanson | Apr 2004 | B1 |
6741123 | Melanson et al. | May 2004 | B1 |
6781351 | Mednik et al. | Aug 2004 | B2 |
6788011 | Mueller et al. | Sep 2004 | B2 |
6806659 | Mueller et al. | Oct 2004 | B1 |
6860628 | Robertson et al. | Mar 2005 | B2 |
6870325 | Bushell et al. | Mar 2005 | B2 |
6882552 | Telefus et al. | Apr 2005 | B2 |
6888322 | Dowling et al. | May 2005 | B2 |
6940733 | Schie et al. | Sep 2005 | B2 |
6944034 | Shytenberg et al. | Sep 2005 | B1 |
6956750 | Eason et al. | Oct 2005 | B1 |
6967448 | Morgan et al. | Nov 2005 | B2 |
6970503 | Kalb | Nov 2005 | B1 |
6975079 | Lys et al. | Dec 2005 | B2 |
7064498 | Dowling et al. | Jun 2006 | B2 |
7088059 | McKinney et al. | Aug 2006 | B2 |
7102902 | Brown et al. | Sep 2006 | B1 |
7109791 | Epperson et al. | Sep 2006 | B1 |
7135824 | Lys et al. | Nov 2006 | B2 |
7145295 | Lee et al. | Dec 2006 | B1 |
7161816 | Shytenberg et al. | Jan 2007 | B2 |
7183957 | Melanson | Feb 2007 | B1 |
7221130 | Ribeiro et al. | May 2007 | B2 |
7255457 | Ducharm et al. | Aug 2007 | B2 |
7266001 | Notohamiprodjo et al. | Sep 2007 | B1 |
7292013 | Chen et al. | Nov 2007 | B1 |
20020145041 | Muthu et al. | Oct 2002 | A1 |
20020166073 | Nguyen et al. | Nov 2002 | A1 |
20030058039 | Noro | Mar 2003 | A1 |
20030223255 | Ben-Yaakov | Dec 2003 | A1 |
20040085030 | Laflamme et al. | May 2004 | A1 |
20040085117 | Melbert et al. | May 2004 | A1 |
20040169477 | Yancie et al. | Sep 2004 | A1 |
20040227571 | Kuribayashi | Nov 2004 | A1 |
20040228116 | Miller et al. | Nov 2004 | A1 |
20040239262 | Ido et al. | Dec 2004 | A1 |
20050110574 | Richard et al. | May 2005 | A1 |
20050156770 | Melanson | Jul 2005 | A1 |
20050184895 | Petersen et al. | Aug 2005 | A1 |
20050253533 | Lys et al. | Nov 2005 | A1 |
20050275354 | Hausman, Jr. et al. | Dec 2005 | A1 |
20060022916 | Aiello | Feb 2006 | A1 |
20060023002 | Hara et al. | Feb 2006 | A1 |
20060066411 | Sim | Mar 2006 | A1 |
20060125420 | Boone et al. | Jun 2006 | A1 |
20060159292 | Guilbert | Jul 2006 | A1 |
20060226795 | Walter et al. | Oct 2006 | A1 |
20060261754 | Lee | Nov 2006 | A1 |
20070029946 | Yu et al. | Feb 2007 | A1 |
20070040512 | Jungwirth et al. | Feb 2007 | A1 |
20070053182 | Robertson | Mar 2007 | A1 |
20070182490 | Hau et al. | Aug 2007 | A1 |
20070182699 | Ha et al. | Aug 2007 | A1 |
20080044041 | Tucker et al. | Feb 2008 | A1 |
20080144861 | Melanson et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
1014563 | Jun 2000 | EP |
1164819 | Dec 2001 | EP |
1213823 | Jun 2002 | EP |
1528785 | May 2005 | EP |
2043382 | Oct 1980 | GB |
0197384 | Dec 2001 | WO |
0227944 | Apr 2002 | WO |
02091805 | Nov 2002 | WO |
2006067521 | Jun 2006 | WO |
WO2006135584 | Dec 2006 | WO |
2007026170 | Mar 2007 | WO |
2007079362 | Jul 2007 | WO |
Entry |
---|
Jones, “Multistage Amplifiers” Harvard University, EE 105 Week 13, Lecture 31, Spring 2000. |
“HV9931 Unity Power Factor LED Lamp Driver, Initial Release” 2005, Supertex Inc., Sunnyvale, CA USA. |
AN-H54 Application Note: “HV9931 Unity Power Factor LED Lamp Driver” Mar. 7, 2007, Supertex Inc., Sunnyvale, CA, USA. |
Dustin Rand et al: “Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps” Power Electronics Specialists Conference, 2007. PESC 2007, IEEE, IEEE, P1, Jun. 1, 2007, pp. 1398-1404. |
Spiazzi G et al: “Analysis of a High-Power-Factor Electronic Ballast for High Brightness Light Emitting Diodes” Power Electronics Specialists, 2005 IEEE 36TH Conference on Jun. 12, 2005, Piscatawa, NJ USA, IEEE, Jun. 12, 2005, pp. 1494-1499. |
International Search Report PCT/US2008/062381 dated Feb. 5, 2008. |
International Search Report PCT/US2008/056739 dated Dec. 3, 2008. |
Written Opinion of the International Searching Authority PCT/US2008/062381 dated Feb. 5, 2008. |
Ben-Yaakov et al, “The Dynamics of a PWM Boost Converter with Resistive Input” IEEE Transactions on Industrial Electronics, IEEE Service Center, Piscataway, NJ, USA, vol. 46, No. 3, Jun. 1, 1999. |
International Search Report PCT/US2008/062398 dated Feb. 5, 2008. |
Partial International Search PCT/US2008/062387 dated Feb. 5, 2008. |
Noon, Jim “UC3855A/B High Performance Power Factor Preregulator”, Texas Instruments, SLUA146A, May 1996, Revised Apr. 2004. |
“High Performance Power Factor Preregulator”, Unitrode Products from Texas Instruments, SLUS382B, Jun. 1998, Revised Oct. 2005. |
International Search Report PCT/GB2006/003259 dated Jan. 12, 2007. |
Written Opinion of the International Searching Authority PCT/US2008/056739. |
International Search Report PCT/US2008/056606 dated Dec. 3, 2008. |
Written Opinion of the International Searching Authority PCT/US2008/056606 dated Dec. 3, 2008. |
International Search Report PCT/US2008/056608 dated Dec. 3, 2008. |
Written Opinion of the International Searching Authority PCT/US2008/056608 dated Dec. 3, 2008. |
International Search Report PCT/GB2005/050228 dated Mar. 14, 2006. |
International Search PCT/US2008/062387 dated Jan. 10, 2008. |
Data Sheet LT3496 Triple Output LED Driver, 2007, Linear Technology Corporation, Milpitas, CA. |
News Release, Triple Output LED, LT3496. |
Freescale Semiconductor, Inc., Dimmable Light Ballast with Power Factor Correction, Design Reference Manual, DRM067, Rev. 1, Dec. 2005. |
J. Zhou et al., Novel Sampling Algorithm for DSP Controlled 2 kW PFC Converter, IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001. |
A. Prodic, Compensator Design and Stability Assessment for Fast Voltage Loops of Power Factor Correction Rectifiers, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007. |
M. Brkovic et al., “Automatic Current Shaper with Fast Output Regulation and Soft-Switching,” S.15.C Power Converters, Telecommunications Energy Conference, 1993. |
Dallas Semiconductor, Maxim, “Charge-Pump and Step-Up DC-DC Converter Solutions for Powering White LEDs in Series or Parallel Connections,” Apr. 23, 2002. |
Freescale Semiconductor, AN3052, Implementing PFC Average Current Mode Control Using the MC9S12E128, Nov. 2005. |
D. Maksimovic et al., “Switching Converters with Wide DC Conversion Range,” Institute of Electrical and Electronic Engineer's (IEEE) Transactions on Power Electronics, Jan. 1991. |
V. Nguyen et al., “Tracking Control of Buck Converter Using Sliding-Mode with Adaptive Hysteresis,” Power Electronics Specialists Conference, 1995. PESC apos; 95 Record., 26th Annual IEEE vol. 2, Issue , Jun. 18-22, 1995 pp. 1086-1093. |
S. Zhou et al., “A High Efficiency, Soft Switching DC-DC Converter with Adaptive Current-Ripple Control for Portable Applications,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 53, No. 4, Apr. 2006. |
K. Leung et al., “Use of State Trajectory Prediction in Hysteresis Control for Achieving Fast Transient Response of the Buck Converter,” Circuits and Systems, 2003. ISCAS apos;03. Proceedings of the 2003 International Symposium, vol. 3, Issue , May 25-28, 2003 pp. III-439-III-442 vol. 3. |
K. Leung et al., “Dynamic Hysteresis Band Control of the Buck Converter with Fast Transient Response,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 52, No. 7, Jul. 2005. |
Y. Ohno, Spectral Design Considerations for White LED Color Rendering, Final Manuscript, Optical Engineering, vol. 44, 111302 (2005). |
S. Skogstad et al., A Proposed Stability Characterization and Verification Method for High-Order Single-Bit Delta-Sigma Modulators, Norchip Conference, Nov. 2006 http://folk.uio.no/savskogs/pub/A—Proposed—Stability—Characterization.pdf. |
J. Turchi, Four Key Steps to Design a Continuous Conduction Mode PFC Stage Using the NCP1653, ON Semiconductor, Publication Order No. AND184/D, Nov. 2004. |
Megaman, D or S Dimming ESL, Product News, Mar. 15, 2007. |
J. Qian et al., New Charge Pump Power-Factor-Correction Electronic Ballast with a Wide Range of Line Input Voltage, IEEE Transactions on Power Electronics, vol. 14, No. 1, Jan. 1999. |
P. Green, A Ballast that can be Dimmed from a Domestic (Phase-Cut) Dimmer, IRPLCFL3 rev. b, International Rectifier, http://www.irf.com/technical-info/refdesigns/cfl-3.pdf, printed Mar. 24, 2007. |
J. Qian et al., Charge Pump Power-Factor-Correction Technologies Part II: Ballast Applications, IEEE Transactions on Power Electronics, vol. 15, No. 1, Jan. 2000. |
Chromacity Shifts in High-Power White LED Systems due to Different Dimming Methods, Solid-State Lighting, http://www.lrc.rpi.edu/programs/solidstate/completedProjects.asp?ID=76, printed May 3, 2007. |
S. Chan et al., Design and Implementation of Dimmable Electronic Ballast Based on Integrated Inductor, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007. |
M. Madigan et al., Integrated High-Quality Rectifier-Regulators, IEEE Transactions on Industrial Electronics, vol. 46, No. 4, Aug. 1999. |
T. Wu et al., Single-Stage Electronic Ballast with Dimming Feature and Unity Power Factor, IEEE Transactions on Power Electronics, vol. 13, No. 3, May 1998. |
F. Tao et al., “Single-Stage Power-Factor-Correction Electronic Ballast with a Wide Continuous Dimming Control for Fluorescent Lamps,” IEEE Power Electronics Specialists Conference, vol. 2, 2001. |
Azoteq, IQS17 Family, IQ Switch®—ProxSense™ Series, Touch Sensor, Load Control and User Interface, IQS17 Datasheet V2.00.doc, Jan. 2007. |
C. Dilouie, Introducing the LED Driver, EC&M, Sep. 2004. |
S. Lee et al., TRIAC Dimmable Ballast with Power Equalization, IEEE Transactions on Power Electronics, vol. 20, No. 6, Nov. 2005. |
L. Gonthier et al., EN55015 Compliant 500W Dimmer with Low-Losses Symmetrical Switches, 2005 European Conference on Power Electronics and Applications, Sep. 2005. |
Why Different Dimming Ranges? The Difference Between Measured and Perceived Light, http://www.lutron.com/ballast/pdf/LutronBallastpg3.pdf. |
D. Hausman, Real-Time Illumination Stability Systems for Trailing-Edge (Reverse Phase Control) Dimmers, Technical White Paper, Lutron, version 1.0, Dec. 2004, http://www.lutron.com/technical—info/pdf/RTISS-TE.pdf. |
Light Dimmer Circuits, www.epanorama.net/documents/lights/lightdimmer.html, printed Mar. 26, 2007. |
Light Emitting Diode, http://en.wikipedia.org/wiki/Light-emitting—diode, printed Mar. 27, 2007. |
Color Temperature, www.sizes.com/units/color—temperature.htm, printed Mar. 27, 2007. |
S. Lee et al., A Novel Electrode Power Profiler for Dimmable Ballasts Using DC Link Voltage and Switching Frequency Controls, IEEE Transactions on Power Electronics, vol. 19, No. 3, May 2004. |
Y. Ji et al., Compatibility Testing of Fluorescent Lamp and Ballast Systems, IEEE Transactions on Industry Applications, vol. 35, No. 6, Nov./Dec. 1999. |
National Lighting Product Information Program, Specifier Reports, “Dimming Electronic Ballasts,” vol. 7, No. 3, Oct. 1999. |
Supertex Inc., Buck-based LED Drivers Using the HV9910B, Application Note AN-H48, Dec. 28, 2007. |
D. Rand et al., Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps, Power Electronics Specialists Conference, 2007. |
Supertex Inc., HV9931 Unity Power Factor LED Lamp Driver, Application Note AN-H52, Mar. 7, 2007. |
Supertex Inc., 56W Off-line LED Driver, 120VAC with PFC, 160V, 350mA Load, Dimmer Switch Compatible, DN-H05, Feb. 2007. |
ST Microelectronics, Power Factor Corrector L6561, Jun. 2004. |
Fairchild Semiconductor, Application Note 42047 Power Factor Correction (PFC) Basics, Rev. 0.9.0 Aug. 19, 2004. |
M. Radecker et al., Application of Single-Transistor Smart-Power IC for Fluorescent Lamp Ballast, Thirty-Fourth Annual Industry Applications Conference IEEE, vol. 1, Oct. 3, 1999-Oct. 7, 1999. |
M. Rico-Secades et al., Low Cost Electronic Ballast for a 36-W Fluorescent Lamp Based on a Current-Mode-Controlled Boost Inverter for a 120-V DC Bus Power Distribution, IEEE Transactions on Power Electronics, vol. 21, No. 4, Jul. 2006. |
Fairchild Semiconductor, FAN4800, Low Start-up Current PFC/PWM Controller Combos, Nov. 2006. |
Fairchild Semiconductor, FAN4810, Power Factor Correction Controller, Sep. 24, 2003. |
Fairchild Semiconductor, FAN4822, ZVS Average Current PFC Controller, Aug. 10, 2001. |
Fairchild Semiconductor, FAN7527B, Power Factor Correction Controller, 2003. |
Fairchild Semiconductor, ML4821, Power Factor Controller, Jun. 19, 2001. |
Freescale Semiconductor, AN1965, Design of Indirect Power Factor Correction Using 56F800/E, Jul. 2005. |
International Search Report for PCT/US2008/051072, mailed Jun. 4, 2008. |
Infineon, CCM-PFC Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM), Version 2.1, Feb. 6, 2007. |
International Rectifier, IRAC1150-300W Demo Board, User's Guide, Rev 3.0, Aug. 2, 2005. |
International Rectifier, Application Note AN-1077,PFC Converter Design with IR1150 One Cycle Control IC, rev. 2.3, Jun. 2005. |
International Rectifier, Data Sheet PD60230 revC, Feb. 5, 2007. |
Lu et al., International Rectifier, Bridgeless PFC Implementation Using One Cycle Control Technique, 2005. |
Linear Technology, LT1248, Power Factor Controller, Apr. 20, 2007. |
ON Semiconductor, AND8123/D, Power Factor Correction Stages Operating in Critical Conduction Mode, Sep. 2003. |
ON Semiconductor, MC33260, GreenLine Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions, Sep. 2005. |
ON Semiconductor, NCP1605, Enhanced, High Voltage and Efficient Standby Mode, Power Factor Controller, Feb. 2007. |
ON Semconductor, NCP1606, Cost Effective Power Factor Controller, Mar. 2007. |
ON Semiconductor, NCP1654, Product Review, Power Factor Controller for Compact and Robust, Continuous Conduction Mode Pre-Converters, Mar. 2007. |
Philips, Application Note, 90W Resonant SMPS with TEA1610 SwingChip, AN99011, 1999. |
NXP, TEA1750, GreenChip III SMPS control IC Product Data Sheet, Apr. 6, 2007. |
Renesas, HA16174P/FP, Power Factor Correction Controller IC, Jan. 6, 2006. |
Renesas Technology Releases Industry's First Critical-Conduction-Mode Power Factor Correction Control IC Implementing Interleaved Operation, Dec. 18, 2006. |
Renesas, Application Note R2A20111 EVB, PFC Control IC R2A20111 Evaluation Board, Feb. 2007. |
STMicroelectronics, L6563, Advanced Transition-Mode PFC Controller, Mar. 2007. |
Texas Instruments, Application Note SLUA321, Startup Current Transient of the Leading Edge Triggered PFC Controllers, Jul. 2004. |
Texas Instruments, Application Report, SLUA309A, Avoiding Audible Noise at Light Loads when using Leading Edge Triggered PFC Converters, Sep. 2004. |
Texas Instruments, Application Report SLUA369B, 350-W, Two-Phase Interleaved PFC Pre-Regulator Design Review, Mar. 2007. |
Unitrode, High Power-Factor Preregulator, Oct. 1994. |
Texas Instruments, Transition Mode PFC Controller, SLUS515D, Jul. 2005. |
Unitrode Products From Texas Instruments, Programmable Output Power Factor Preregulator, Dec. 2004. |
Unitrode Products From Texas Instruments, High Performance Power Factor Preregulator, Oct. 2005. |
Texas Instruments, UCC3817 BiCMOS Power Factor Preregulator Evaluation Board User's Guide, Nov. 2002. |
Unitrode, L. Balogh, Design Note UC3854A/B and UC3855A/B Provide Power Limiting with Sinusoidal Input Current for PFC Front Ends, SLUA196A, Nov. 2001. |
A. Silva De Morais et al., A High Power Factor Ballast Using a Single Switch with Both Power Stages Integrated, IEEE Transactions on Power Electronics, vol. 21, No. 2, Mar. 2006. |
M. Ponce et al., High-Efficient Integrated Electronic Ballast for Compact Fluorescent Lamps, IEEE Transactions on Power Electronics, vol. 21, No. 2, Mar. 2006. |
A. R. Seidel et al., A Practical Comparison Among High-Power-Factor Electronic Ballasts with Similar Ideas, IEEE Transactions on Industry Applications, vol. 41, No. 6, Nov.-Dec. 2005. |
F. T. Wakabayashi et al., An Improved Design Procedure for LCC Resonant Filter of Dimmable Electronic Ballasts for Fluorescent Lamps, Based on Lamp Model, IEEE Transactions on Power Electronics, vol. 20, No. 2, Sep. 2005. |
J. A. Vilela Jr. et al., An Electronic Ballast with High Power Factor and Low Voltage Stress, IEEE Transactions on Industry Applications, vol. 41, No. 4, Jul./Aug. 2005. |
S. T.S. Lee et al., Use of Saturable Inductor to Improve the Dimming Characteristics of Frequency-Controlled Dimmable Electronic Ballasts, IEEE Transactions on Power Electronics, vol. 19, No. 6, Nov. 2004. |
M. K. Kazimierczuk et al., Electronic Ballast for Fluorescent Lamps, IEEETransactions on Power Electronics, vol. 8, No. 4, Oct. 1993. |
S. Ben-Yaakov et al., Statics and Dynamics of Fluorescent Lamps Operating at High Frequency: Modeling and Simulation, IEEE Transactions on Industry Applications, vol. 38, No. 6, Nov.-Dec. 2002. |
H. L. Cheng et al., A Novel Single-Stage High-Power-Factor Electronic Ballast with Symmetrical Topology, IEEE Transactions on Power Electronics, vol. 50, No. 4, Aug. 2003. |
J.W.F. Dorleijn et al., Standardisation of the Static Resistances of Fluorescent Lamp Cathodes and New Data for Preheating, Industry Applications Conference, vol. 1, Oct. 13, 2002-Oct. 18, 2002. |
Q. Li et al., An Analysis of the ZVS Two-Inductor Boost Converter under Variable Frequency Operation, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007. |
H. Peng et al., Modeling of Quantization Effects in Digitally Controlled DC-DC Converters, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007. |
G. Yao et al., Soft Switching Circuit for Interleaved Boost Converters, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007. |
C. M. De Oliviera Stein et al., A ZCT Auxiliary Communication Circuit for Interleaved Boost Converters Operating in Critical Conduction Mode, IEEE Transactions on Power Electronics, vol. 17, No. 6, Nov. 2002. |
W. Zhang et al., A New Duty Cycle Control Strategy for Power Factor Correction and FPGA Implementation, IEEE Transactions on Power Electronics, vol. 21, No. 6, Nov. 2006. |
H. Wu et al., Single Phase Three-Level Power Factor Correction Circuit with Passive Lossless Snubber, IEEE Transactions on Power Electronics, vol. 17, No. 2, Mar. 2006. |
O. Garcia et al., High Efficiency PFC Converter to Meet EN61000-3-2 and A14, Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, vol. 3, 2002. |
P. Lee et al., Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors, IEEE Transactions on Industrial Electronics, vol. 47, No. 4, Aug. 2000. |
D.K.W. Cheng et al., A New Improved Boost Converter with Ripple Free Input Current Using Coupled Inductors, Power Electronics and Variable Speed Drives, Sep. 21-23, 1998. |
B.A. Miwa et al., High Efficiency Power Factor Correction Using Interleaved Techniques, Applied Power Electronics Conference and Exposition, Seventh Annual Conference Proceedings, Feb. 23-27, 1992. |
Z. Lai et al., A Family of Power-Factor-Correction Controllers, Twelfth Annual Applied Power Electronics Conference and Exposition, vol. 1, Feb. 23, 1997-Feb. 27, 1997. |
L. Balogh et al., Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode, Eighth Annual Applied Power Electronics Conference and Exposition, 1993. APEC '93. Conference Proceedings, Mar. 7, 1993-Mar. 11, 1993. |
Fairchild Semiconductor, Application Note 42030, Theory and Application of the ML4821 Average Current Mode PFC Controller, Oct. 25, 2000. |
Unitrode Products From Texas Instruments, BiCMOS Power Factor Preregulator, Feb. 2006. |
D. Hausman, Lutron, RTISS-TE Operation, Real-Time Illumination Stability Systems for Trailing-Edge (Reverse Phase Control) Dimmers, v. 1.0 Dec. 2004. |
International Rectifier, Data Sheet No. PD60230 revC, IR1150(S)(PbF), uPFC One Cycle Control PFC IC Feb. 5, 2007. |
Texas Instruments, Application Report SLUA308, UCC3817 Current Sense Transformer Evaluation, Feb. 2004. |
Texas Instruments, Application Report SPRA902A, Average Current Mode Controlled Power Factor Correctiom Converter using TMS320LF2407A, Jul. 2005. |
Unitrode, Design Note DN-39E, Optimizing Performance in UC3854 Power Factor Correction Applications, Nov. 1994. |
Fairchild Semiconductor, Application Note 42030, Theory and Application of the ML4821 Average Currrent Mode PFC Controller, Aug. 1997. |
Fairchild Semiconductor, Application Note AN4121, Design of Power Factor Correction Circuit Using FAN7527B, Rev.1.0.1, May 30, 2002. |
Fairchild Semiconductor, Application Note 6004, 500W Power-Factor-Corrected (PFC) Converter Design with FAN4810, Rev. 1.0.1, Oct. 31, 2003. |
Fairchild Semiconductor, FAN4822, ZVA Average Current PFC Controller, Rev. 1.0.1 Aug. 10, 2001. |
Fairchild Semiconductor, ML4821, Power Factor Controller, Rev. 1.0.2, Jun. 19, 2001. |
Fairchild Semiconductor, ML4812, Power Factor Controller, Rev. 1.0.4, May 31, 2001. |
Linear Technology, 100 Watt LED Driver, undated. |
Fairchild Semiconductor, FAN7544, Simple Ballast Controller, Rev. 1.0.0. |
Fairchild Semiconductor, FAN7532, Ballast Controller, Rev. 1.0.2. |
Fairchild Semiconductor, FAN7711, Ballast Control IC, Rev. 1.0.2. |
Fairchild Semiconductor, KA7541, Simple Ballast Controller, Rev. 1.0.3. |
ST Microelectronics, L6574, CFL/TL Ballast Driver Preheat and Dimming, Sep. 2003. |
ST Microelectronics, AN993, Application Note, Electronic Ballast with PFC Using L6574 and L6561, May 2004. |
International Search Report and Written Opinion for PCT/US2008/062384 dated Jan. 14, 2008. |
S. Dunlap et al., Design of Delta-Sigma Modulated Switching Power Supply, Circuits & Systems, Proceedings of the 1998 IEEE International Symposium, 1998. |
Response to Examination Report mailed on Feb. 25, 2011 in the corresponding UK Patent Application No. 0912435.5, as filed on Jun. 27, 2011. |
Response to Examination Report mailed on Sep. 13, 2011 in the corresponding UK Patent Application No. 0912435.5, as filed on Jan. 16, 2012. |
Examination Report mailed on Jan. 25, 2012 in the corresponding UK Patent Application No. 0912435.5. |
An English translation of the Second Office Action mailed on Mar. 30, 2012 in the corresponding Chinese Patent Application No. 200880002403.2. |
Response to Examination Report mailed on Jan. 25, 2012 in the corresponding UK Patent Application No. 0912435.5, as filed on Apr. 17, 2012. |
Examination Report mailed on Sep. 13, 2011 in the corresponding UK Patent Application No. 0912435.5. |
First Office Action mailed on May 20, 2011 in the corresponding Chinese Patent Application No. 200880002403.2. |
Examination Report mailed on Feb. 25, 2011 in the corresponding UK Patent Application No. 0912435.5. |
Number | Date | Country | |
---|---|---|---|
20080174372 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60885673 | Jan 2007 | US |