As cellular phones have become more commonplace and powerful, the desire for certain applications to provide location-based functionality on these phones has increased. In order to provide such location-based functionality, the position of the phone needs to be known. Various calculations can be performed on the phone to determine the location of the phone, but performing such calculations can involve significant processing power. This can result in increased power consumption and battery drain on the phone, creating a frustrating user experience.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
In accordance with one or more aspects, data from one or more inertial sensors is collected at a device to determine a position of the device using dead reckoning. At the device, a first stage of the dead reckoning based on the data from the one or more inertial sensors is performed. A result of the first stage is provided to an additional device (e.g., of a crowd sourcing data service) to perform a second stage of the dead reckoning based on the result of the first stage.
In accordance with one or more aspects, a result from a first stage of dead reckoning is received from a first device, the result being based on data from one or more inertial sensors of the first device. At a second device that receives the result, a second stage of the dead reckoning is performed based on the result from the first stage.
The same numbers are used throughout the drawings to reference like features.
Multi-stage dead reckoning for crowd sourcing is discussed herein. A device identifies signals it receives at a particular point in time, such as Wi-Fi signals and cell tower signals. The device records data indicating these identified signals, as well as data used to determine the position of the device at that particular point in time. The position of the device can be determined using dead reckoning, which is separated into two stages. In the first stage, a distance and direction of movement is determined at the device based on data from various inertial sensors of the device. In the second stage, various filters, maps, and/or other techniques are used at another device (e.g., a server), thus alleviating the first device of the burden of performing the second stage.
Each device 102 can be a variety of different types of devices, with different devices 102 being the same or different types of devices. Device 102 is typically a mobile device, the position of which is expected to change frequently over time. For example, device 102 can be a cellular or other wireless phone, a laptop or netbook computer, a tablet or notepad computer, a mobile station, an entertainment appliance, a game console, an automotive computer, and so forth. Thus, device 102 may range from a full resource device with substantial memory and processor resources (e.g., personal computers, game consoles) to a low-resource device with limited memory and/or processing resources (e.g., traditional set-top boxes, hand-held game consoles).
Device 102 records data identifying signals that device 102 receives and movement data indicating changes in position of device 102 at various points in time, as discussed in more detail below. Device 102 can also optionally provide various additional functionality, such as phone functionality, automotive computer functionality, gaming functionality, and so forth. Alternatively, device 102 can be a dedicated position sensing device that supports little, if any, functionality other than recording the data identifying received signals and movement data at various points in time.
Each device 102 includes a crowd sourcing module 108 that supports dead reckoning. Dead reckoning refers to determining a position of device 102 based on the movement of device 102 (e.g., as opposed to receiving one or more signals indicating the position of device 102). The dead reckoning is separated generally into two stages. In the first stage movement data indicating a distance moved and a direction of movement (e.g., a number of steps taken and the direction of those steps) is determined based on data from various inertial sensors of the device 102. In the second stage, various filters, maps, and/or other techniques are used to determine a position of the device 102 based on the movement data. Crowd sourcing module 108 implements the first stage of dead reckoning, and can optionally implement the second stage of dead reckoning as well, as discussed in more detail below. Although illustrated as a single module, it should be noted that the functionality of module 108 can alternatively be separated into multiple modules.
Crowd sourcing as used herein refers to each of multiple (typically a large number, such as hundreds of thousands or more) devices providing data to a service, so the service obtains data from a crowd of devices rather than relying on data from a single device. Both the individual devices and the service play a part in the crowd sourcing.
Crowd sourcing data service 104 includes a dead reckoning based position determination module 110 that receives data identifying signals that device 102 receives and movement data indicating changes in position of device 102 at various points in time. Module 110 determines positions of devices 102 based on the received movement data, and can implement the second stage of dead reckoning as discussed in more detail below. Alternatively, if the second stage of dead reckoning is performed on the devices 102, then dead reckoning based position determination module 110 receives data identifying signals that device 102 receives and the position of device 102 at various points in time. Crowd sourcing data service 104 collects these positions (whether determined by module 110 or received from a device 102) and the data identifying signals that device 102 receives at various points in time for subsequent use. The data collected by crowd sourcing data service 104 can be used to provide various location-based or position-based functionality. As used herein, a location refers to a general or larger geographic area rather than a precise coordinate, such as one or more buildings (e.g., home or work), a business or store, a buffer zone around a building, and so forth. A position, however, refers to a geographic area that is more precise than a location, such as a coordinate in some coordinate system (e.g., a particular latitude and/or longitude), a particular elevation, and so forth. Thus, each location can include multiple positions.
The data collected by crowd sourcing data service 104 can be used to provide various location-based or position-based functionality to other devices. For example, a device (such as a device 102) may be running a program that desires to know the position of the device, such as a mapping or navigation program. The device can send to crowd sourcing data service 104 an indication of signals the device receives, and service 104 can determine, based on the crowd sourcing data that indicates positions of other devices when those other devices received those same signals, the position of the device. This position can be returned to the device for use by the program running on the device.
Crowd sourcing data service 104 is implemented using one or more devices. The one or more devices used to implement crowd sourcing data service 104 can be a variety of different types of devices, such as server computers, desktop computers, any of the various types of devices discussed above with reference to device 102, and so forth. Service 104 can be implemented using multiple ones of the same and/or different types of devices.
In one or more embodiments, various data is recorded and/or provided to crowd sourcing data service 104, and the data is recorded and/or provided only after receiving user consent to do so. This user consent can be an opt-in consent, where the user takes an affirmative action to request that the data be recorded and/or provided before crowd sourcing module 108 performs any recording of data for the device or providing of data to service 104. Alternatively, this user consent can be an opt-out consent, where the user takes an affirmative action to request that the data not be recorded and/or provided; if the user does not choose to opt out of this recording and/or providing of data, then it is an implied consent by the user to record the data and provide the data to service 104.
Furthermore, it should be noted that the multi-stage dead reckoning for crowd sourcing techniques discussed herein can allow devices 102 to provide data to crowd sourcing data service 104, but need not include any personal information identifying particular users of devices 102 and/or particular devices 102. For example, a device 102 can record movement data and provide the movement data to service 104, but no association between the device 102 and the movement data need be provided to and/or maintained by service 104. Similarly, no association between the user of the device 102 and the movement data need be provided to and/or maintained by service 104.
Additionally, the user is able to select a radio button 206 to opt-in to the movement recording, or a radio button 208 to opt-out of the movement recording. Once a radio button 206 or 208 is selected, the user can select an “OK” button 210 to have the selection saved. It is to be appreciated that radio buttons and an “OK” button are only examples of user interfaces that can be presented to a user to opt-in or opt-out of the position recording, and that a variety of other conventional user interface techniques can alternatively be used. The device then proceeds to record or not record and/or provide the data in accordance with the user's selection.
Wi-Fi module 302 implements wireless functionality for device 300, sending signals to and/or receiving signals from devices on various wireless (but non-cellular) networks, allowing transferring of data to and/or from various services (e.g., crowd sourcing data service 104 of
Wi-Fi module 302 can detect particular wireless access points and/or wireless networks from which signals are received, and the strength of those signals, at regular or irregular intervals. Wi-Fi module 302 can also detect particular wireless access points and/or wireless networks from which signals are received, and the strength of those signals, in response to various events, such as a request from another module of device 300.
Communications module 304 implements cell phone functionality for device 300, sending signals to and/or receiving signals from various cell transceivers (e.g., cell towers). Communications module 304 allows device 300 to access a cellular network, transferring data to and/or from various services (e.g., crowd sourcing data service 104 of
Communications module 304 can detect particular cell transceivers from which signals are received, and the strength of those signals, at regular or irregular intervals. Communications module 304 can also detect particular cell transceivers from which signals are received, and the strength of those signals, in response to various events, such as a request from another module of device 300.
It should be noted that although device 300 is illustrated as including both Wi-Fi module 302 and communications module 304, device 300 need not include both modules 302 and 304. For example, device 300 may not use or support non-cellular wireless networks, in which case Wi-Fi module 302 need not be included in device 300. By way of another example, device 300 may not use or support cell phone functionality, in which case communications module 304 need not be included in device 300.
Inertial sensor module 306 includes one or more inertial sensors that detect movement (e.g., rotation, motion, velocity, etc.), altitude, and/or direction. These inertial sensors can be MEMS (Microelectromechanical Systems or Microelectronicmechanical systems). These inertial sensors can include, for example, an accelerometer, a compass, a gyroscope, a baroaltimeter, and so forth. Inertial sensor module 306 collects data regarding the detected movement, position, and/or direction of device 300 from these inertial sensors, and provides or otherwise makes available this collected data to other modules of device 300. This data can be used to determine a position of device 300 using dead reckoning, as discussed in more detail below.
It should also be noted that although inertial sensor module 306 is illustrated as being part of device 300, one or more inertial sensors can be implemented as a separate component or device that is coupled to device 300. For example, inertial sensors can be implemented as part of a watch worn by a user, as part of a device attached to a user's shoe, as part of a heart rate monitor component, and so forth.
Inertial sensor module 306 can collect data at regular or irregular intervals. Inertial sensor module 306 can also collect data in response to various events, such as a request from another module of device 300. In one or more embodiments, inertial sensor module 306 (including the inertial sensors) can also be deactivated or powered down at various times (e.g., to conserve energy), and not provide or collect data until module 306 is activated or powered on. Inertial sensor module 306 can be configured to deactivate or power down itself in response to certain conditions (e.g., after a threshold amount of time), and/or in response to a deactivate or power down signal from another module of device 300. Inertial sensor module 306 (including the inertial sensors) can be activated or powered on in response to a signal from another module of device 300 and/or in response to certain conditions (e.g., being deactivated or powered down for a threshold amount of time).
Movement determination module 312 performs a first stage of dead reckoning based on data collected by inertial sensor module 306. The first stage of dead reckoning produces a result that is movement data, which indicates a distance and direction that device 300 has moved in a particular time interval. This distance can be identified in different manners, such as a number of steps taken by a user with device 300, a number of feet or meters moved, and so forth. This direction can also be identified in different manners, such as a compass direction, a change in direction (e.g., in degrees based on a 360-degree range of motion) since the last step taken, and so forth. This movement data can also optionally include elevation changes, such as a change in altitude of device 300. The movement data can include multiple distances and directions for device 300, such as device 300 having first moved in one direction for a particular distance, then moved in another direction for another particular distance, and so forth.
In one or more embodiments, movement determination module 312 generates movement data indicating a number of steps taken by the user of device 300, as well as the length and direction of each step. This movement data can be determined, based on the data from inertial sensor module 306, using a variety of different publicly available and/or proprietary techniques. For example, a direction of a step can be determined based on data from a compass, the data from the compass indicating the direction of movement at the time a step is made. A number of steps can be determined based on data from an accelerometer, such as peaks in the data from the accelerometer indicating that a step has been taken. A length of a step can be determined based on data from an accelerometer, such as a time between peaks in the data from the accelerometer indicating a speed at which the user is moving as well as a length of the steps of the user. The length of a step could be based on a typical or average step length of the user or a group of users (e.g., based on the speed at which the user is moving), or alternatively could be calculated based on the data from inertial sensor module 306 (e.g., based on the peak to peak acceleration data and time length delta for a step identified from the data from an accelerometer).
Data collection module 308 implements functionality to record data identifying signals that device 300 receives and corresponding movement data for device 300 at various points in time. Wi-Fi module 302 provides or otherwise makes available an indication of the identifiers of the particular wireless access point and/or wireless network from which signals are received, and optionally the strengths of those signals, as discussed above. Communications module 304 provides or otherwise makes available an indication of the identifiers of the particular cell transceivers from which signals are received, and optionally the strengths of those signals, as discussed above. The indication of the identifiers of the particular wireless access point and/or wireless network from which signals are received at a particular point in time (and optionally the strengths of those signals) and/or the indication of the identifiers of the particular cell transceivers from which signals are received at that particular point in time (and optionally the strengths of those signals) is also referred to as observation data at that particular point in time. Various additional information can be included as part of the observation data, such as a date and/or time of the particular point in time, data identifying a type (e.g., model and/or version) of device 300 and/or software (e.g., an operating system) or other instructions running or installed on device 300, and so forth. Data collection module 308 records, in data store 316, the observation data at that particular point in time. Movement data determined by movement determination module 312 at that particular point in time is also recorded in data store 316 and corresponds to the observation data.
It should be noted that, although the observation data is discussed with reference to being identifiers of the particular wireless access point, wireless network, and/or cell transceivers from which signals are received at a particular point in time (and optionally the strengths of those signals), the observation data can also (or alternatively) include identifiers of other signals. For example, the observation data can include identifiers of signals (and optionally the strengths of such signals) received from other beacons or transmitters, such as Bluetooth Low Energy (BLE) transmitters, radio frequency transmitters, Near Field Communication (NFC) transmitters, and so forth. A module of device 300 (e.g., module 302, module 304, or another module not illustrated) can receive identifiers of such signals and provide or otherwise make available an indication of the identifiers of such signals, as well as the strengths of those signals, to various other modules of device 300.
Data collection module 308 stores a record including the observation data and corresponding movement data at different points in time. These different points in time can be at regular intervals, irregular intervals, or can be determined based on other factors or events. For example, a point in time can be each point at which a user of device 300 takes a step. Over time, data collection module 308 stores multiple such records in data store 316.
Data transfer module 314 sends the recorded observation data and corresponding movement data to a data service (e.g., crowd sourcing data service 104 of
The record of movement data can take various forms. In one or more embodiments, for each step taken by the user of device 300 the movement data is included in a record having: a timestamp, a number of steps moved, a length of the most recent step, and a direction of the most recent step. The timestamp indicates a time (and optionally date) when the movement was made (when the data from which the movement data is determined is collected from one or more inertial sensors). The number of steps moved indicates how many steps the user of device 300 has taken since the movement data for the current dead reckoning began being collected. The number of steps moved is reset (e.g., to zero) each time dead reckoning begins. The length of the most recent step indicates the distance moved (e.g., a particular number of centimeters or feet) in the most recent step taken by the user. The direction of the most recent step indicates a compass direction of the most recent step or change in direction (e.g., in degrees based on a 360-degree range of motion) between the most recent step and the step previous to the most recent step. For each such record of movement data, corresponding observation data can be obtained.
In other embodiments, a linear run of a user of device 300 is determined (e.g., by data collection module 308 and/or movement determination module 312), and the record of movement data includes data for each linear run. A linear run refers to movement of any number of steps by a user of device 300 in approximately the same direction (e.g., with the change in direction between steps or since a first step in the linear run being less than a threshold amount). In such embodiments, the movement data is included in a record having: a timestamp, a distance moved in the linear run, and a direction of motion. The timestamp indicates a time (and optionally date) when the movement of the linear run was made (when the data from which the movement data for the linear run is determined began and/or stopped being collected from one or more inertial sensors). The distance moved in the linear run indicates the distance moved (e.g., a particular number of centimeters or feet) in the linear run. The direction of the most recent step indicates a compass direction of the linear run or change in direction (e.g., in degrees based on a 360-degree range of motion) between the linear run and a previous linear run.
In situations in which a record of movement data includes data for a linear run, each such record can have one or more corresponding observation data. For example, observation data can be obtained at multiple different points in time during the linear run. Each of these different observation data correspond to the linear run, and can be associated with a particular position in the linear run in different manners. For example, assume that a linear run extends 10 feet and that observation data is obtained at the beginning of the linear run, at the end of the linear run, and at one point during the linear run. The observation data obtained at the beginning of the linear run corresponds to the time or position at the beginning of the linear run, the observation data obtained at the end of the linear run corresponds to the time or position at the end of the linear run, and the observation data obtained during the linear run corresponds to a time or position at a point during the linear run. This point during the linear run can be determined in different manners. For example, the point during the linear run can be determined linearly based on distance, so that if the linear run is 10 feet then the point during the linear run is at the 5-foot point in the linear run. By way of another example, the point during the linear run can be determined linearly based on times (e.g., if the linear run is 10 feet and is 3 seconds from beginning to end, and the point during the run is obtained at 1 second into the linear run, then the point during the run can be estimated as at the 3.33-foot point in the linear run).
It should be noted, however, that these are examples of records of movement data, and that the record of movement data can take various other forms.
Data transfer module 314 sends the recorded observation data and corresponding movement data to a data service as indicated above. The movement data, in conjunction with a known starting position for the dead reckoning, can be used by the data service to obtain a position of device 300 corresponding to the recorded observation data. The known starting position can be determined by data collection module 308, movement determination module 312, or alternatively another module of device 300. The known starting position can be determined in different manners, such as by a Global Navigation Satellite System (GNSS) module, based on a position identified by a short range beacon (e.g., transmitting positions in different manners, such as using Bluetooth transmitters, BLE transmitters, radio frequency transmitters, NFC transmitters, and so forth), based on a position specified by a user of device 300 (e.g., by providing a user input of the position on a map), and so forth.
It should be noted that data transfer module 314 need not send data to the data service that includes any personal information identifying a particular user of device 300 and/or a particular device 300. Thus, although movement data for device 300 is sent to the data service, the data service need have no indication of which device and/or user that movement data is for. Furthermore, the data sent to the data service by data transfer module 314 can optionally be encrypted using various conventional encryption techniques, allowing the data to be decrypted by the data service but not by other services or devices.
Data transfer module 314 can also optionally compress data sent to the data service. Any of a variety of public and/or proprietary compression algorithms can be used to compress the data sent to the data service. For example, data transfer module 314 can use run-length encoding, LZW (Lempel-Ziv-Welch) compression, and so forth.
One or more modules of the data service (e.g., dead reckoning based position determination module 110 of
The data service can use a variety of conventional, public, and/or proprietary techniques to determine a position of the device 300 based on the movement data. For example, the known starting position can correspond to a map available to the data service (e.g., a map of the interior of a building or other area in which GNSS signals are not received by device 300), and this map can be used to determine a position of device 300 based on movement data. E.g., the data service can filter the movement data so that it corresponds to open areas or hallways, to reflect the fact that the user of device 300 is moving in an open area or hallway rather than through a wall. By way of another example, various conventional filters can be used to determine the position of device 300 based on the movement data, such as Kalman filters, particle filters, Bayesian estimation, and so forth.
It should be noted that the position of device 300 as determined by the data service using dead reckoning need not be returned to device 300. The position can be returned to device 300 if device 300 is running an application that desires, or some other module desires, the position of device 300 (e.g., a mapping or navigation application). However, as part of performing the dead reckoning the position of device 300 need not be returned to device 300 from the data service.
It should also be noted that the timing of when data transfer module 314 sends the data to the data service can vary based on a type of network that device 300 can communicate with at particular times, as well as the particular application being serviced through the determination of device position. Different networks can have different costs associated with transmitting data. For example, a cellular network accessed by communications module 304 may be more costly (e.g., in terms of a monetary cost or other fee associated with transferring data over the network) than a Wi-Fi wireless network accessed by Wi-Fi module 302. Accordingly, data transfer module 314 can wait to send data to the data service until device 300 can communicate with a network having a low cost (e.g., a cost or fee below a threshold amount), such as a Wi-Fi wireless network accessed by Wi-Fi module 302.
Device 300 optionally includes position determination module 310. Situations can arise in which an application or other module on device 300 desires the position of device 300 in near real-time (e.g., a mapping or navigation application). In such situations, position determination module 310 can determine the position of device 300 rather than sending the movement data and observation data to the data service and having the data service determine the position of device 300. Position determination module 310 can determine the position of device 300 in the same manner as the data service would determine the position of device 300 based on movement data as discussed above. Data transfer module 314 can communicate the determined position of device 300 and corresponding observation data to the data service, which can maintain the position and corresponding observation data as if the data service itself had determined the position.
Whether the second stage of dead reckoning is performed on device 300 or by a data service (e.g., crowd sourcing data service 104 of
In one or more embodiments, the criteria include power consumption at device 300, an amount of data transferred from device 300 to the data service, and/or an amount of time taken in transferring data between device 300 and the data service. One or more of these criteria can be used to determine whether the second stage of dead reckoning is performed on device 300 or by a data service.
The power consumption at device 300 refers to the amount of power that would be consumed by various components of device 300 in performing the second stage of dead reckoning and/or transferring the observation data and movement data to the data service. These components typically include one or more processors of device 300 that would be used to perform the second stage of dead reckoning and/or network components of device 300 that would be used to transfer the observation data and movement data to the data service, but can also include other components.
The amount of data transferred from device 300 to the data service refers to an amount of data (e.g., a number of bytes or kilobytes) that would be transferred to the data service as the observation data and movement data. Different networks (e.g., a cellular network accessed by communications module 304, a Wi-Fi wireless network accessed by Wi-Fi module 302, etc.) can have different costs associated with transmitting data, and this cost along with the amount of data to be transferred can be used in determining whether the second stage of dead reckoning is performed at device 300 or the data service.
The amount of time taken in transferring data between device 300 and the data service refers to the amount of time taken to transfer the observation data and movement data to the data service, have the data service determine a position based on the second stage of dead reckoning, and return an indication of the position to device 300. If a module of or application running on device 300 desires an indication of the position of device 300, then whether the second stage of dead reckoning is performed on device 300 can be determined based on whether the position could be determined by the data service and returned quickly enough (e.g., within a threshold amount of time) for the application or module that desires the indication of the position.
These criteria can be used in various manners to determine whether the second stage of dead reckoning is performed at device 300 or a data service. The use of the various criteria, as well as the ability to perform the second stage of dead reckoning at the device 300 or at the data service, allows various usage scenarios taking into account various different factors. For example, if the power consumed by a processor of device 300 in performing the second stage of dead reckoning is greater than the power consumed by a network component of device 300 in transferring the observation data and movement data to the data service, then the determination can be made to perform the second stage of dead reckoning at the data service. By way of another example, if device 300 can currently communicate with the data service via a cellular network but not via a Wi-Fi wireless network, then the determination can be made to perform the second stage of dead reckoning at the data service, but to wait until device 300 can communicate with the data service via a Wi-Fi wireless network to transfer the observation and movement data to the data service. By way of yet another example, if the position can be determined by the data service and returned within a threshold amount of time, then the determination is made that the second stage of dead reckoning is performed by the data service; however, if the position cannot be determined by the data service and returned within a threshold amount of time, then the determination is made that the second stage of dead reckoning is performed by device 300.
It should be noted that device 300 can also include various additional modules to assist in crowd sourcing. In one or more embodiments, device 300 includes a GNSS module that implements GNSS functionality for device 300, determining a position of device 300 based on one or more satellites from which the GNSS module can receive signals or otherwise communicate. This determined position is typically latitude and longitude coordinates, although the position can alternatively be specified in other manners. The GNSS module can implement the GNSS functionality using a variety of different technologies, such as the Global Positioning System (GPS), the Global Navigation Satellite System (GLONASS), the BeiDou (or Compass) navigation system, the Galileo positioning system, combinations thereof, and so forth. The GNSS module provides or otherwise makes available the determined position of device 300 to various other modules of device 300, allowing this position to be used in place of or in addition to positions determined based on dead reckoning.
It should also be noted that inertial sensor module 306 and the inertial sensors from which data is collected by module 306 can be deactivated or powered down when determining movement data is not desired. For example, in situations in which the position of device 300 is determined in manners other than dead reckoning (e.g., such as by using a GNSS module), module 306 and the inertial sensors need not be activated or powered on. When deactivated or powered down, inertial sensors and module 306 consume very little if any energy. Thus, by keeping inertial sensor module 306 deactivated or powered down until determining movement data for dead reckoning is desired, the energy usage of device 300 can be reduced. However, inertial module 306 and the inertial sensors can then be activated or powered on to provide data used to determine the movement data when determining movement data for dead reckoning is desired.
Additionally, although the multi-stage dead reckoning for crowd sourcing techniques are discussed herein with reference to two stages, it should be noted that the dead reckoning can have any number of stages. For example, the second stage could be separated into multiple stages, with one or more of these multiple stages being performed on device 300, and one or more of these multiple stages being performed by a data service (e.g., crowd sourcing data service 104 of
Furthermore, in the discussions above, the dead reckoning is discussed with reference to a user taking steps (e.g., walking) with device 300. However, it should be noted that the multi-stage dead reckoning for crowd sourcing techniques discussed herein can be used with other movements. For example, device 300 can be part of or located in a moving vehicle. In such situations, in the first stage movement data can indicate a distance moved and direction of movement in different manners, such as: a number of feet or meters moved and the direction of that movement; a speed of movement and duration of the movement at that speed, as well as the direction of that movement; and so forth. In the second stage, various filters, maps, and/or other techniques are used to determine a position of the device 102 based on the movement data, although the movement data is for movement of a vehicle rather than steps taken by a user.
In process 400, data from one or more inertial sensors is collected to determine a position of the device using dead reckoning (act 402). Data can be collected from various inertial sensors as discussed above.
A first stage of the dead reckoning is performed at the device (act 404). The first stage determines a distance moved and direction of movement of the device as discussed above.
A result of the first stage (the determined distance and direction of movement) is provided to an additional device (act 406). Additional data, such as observation data, is also provided to the additional device as discussed above. The additional device is a device of a crowd sourcing data service as discussed above. In the second stage, various filters, maps, and/or other techniques are used to determine the position of the device, as discussed above. In certain situations the second stage can be performed by the device implementing process 400 as discussed above, in which case the result of the first stage need not be provided to the additional device.
In process 500, a result from a first stage of data reckoning based on data from one or more inertial sensors is received from another device (act 502). The result from the first stage of dead reckoning refers to a distance and direction of movement determined by the other device as discussed above.
A second stage of the dead reckoning is performed based on the result of the first stage (act 504). In the second stage, various filters, maps, and/or other techniques are used to determine the position of the device, as discussed above.
Various actions such as communicating, receiving, sending, recording, storing, obtaining, and so forth performed by various modules are discussed herein. A particular module discussed herein as performing an action includes that particular module itself performing the action, or alternatively that particular module invoking or otherwise accessing another component or module that performs the action (or performs the action in conjunction with that particular module). Thus, a particular module performing an action includes that particular module itself performing the action and/or another module invoked or otherwise accessed by that particular module performing the action.
Computing device 600 includes one or more processors or processing units 602, one or more computer readable media 604 which can include one or more memory and/or storage components 606, one or more input/output (I/O) devices 608, one or more communication components 610, and a bus 612 that allows the various components and devices to communicate with one another. Computer readable media 604, one or more I/O devices 608, and/or one or more communication components 610 can be included as part of, or alternatively may be coupled to, computing device 600. Processor 602, computer readable media 604, one or more of devices 608, one or more communication components 610, and/or bus 612 can optionally be implemented as a single component or chip (e.g., a system on a chip). Bus 612 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor or local bus, and so forth using a variety of different bus architectures. Bus 612 can include wired and/or wireless buses.
Memory/storage component 606 represents one or more computer storage media. Component 606 can include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). Component 606 can include fixed media (e.g., RAM, ROM, a fixed hard drive, etc.) as well as removable media (e.g., a Flash memory drive, a removable hard drive, an optical disk, and so forth).
The techniques discussed herein can be implemented in software, with instructions being executed by one or more processing units 602. It is to be appreciated that different instructions can be stored in different components of computing device 600, such as in a processing unit 602, in various cache memories of a processing unit 602, in other cache memories of device 600 (not shown), on other computer readable media, and so forth. Additionally, it is to be appreciated that where instructions are stored in computing device 600 can change over time.
One or more input/output devices 608 allow a user to enter commands and information to computing device 600, and also allow information to be presented to the user and/or other components or devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, and so forth.
One or more communication components 610 allow data and/or instructions to be communicated to and/or from computing device 600. A communication component 610 can send and/or receive signals in various manners, such as via a cellular network, via a Wi-Fi network, via a wired network, via another wired and/or wireless connection, and so forth. A component 610 allows, for example, a result of a first stage to be transmitted or received by computing device 600.
Various techniques may be described herein in the general context of software or program modules. Generally, software includes routines, programs, applications, objects, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. An implementation of these modules and techniques may be stored on or transmitted across some form of computer readable media. Computer readable media can be any available medium or media that can be accessed by a computing device. By way of example, and not limitation, computer readable media may comprise “computer storage media” and “communication media.”
“Computer storage media” include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer. Computer storage media refer to media for storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer storage media refers to non-signal bearing media, and is not communication media.
“Communication media” typically embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier wave or other transport mechanism. Communication media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above are also included within the scope of communication media.
Generally, any of the functions or techniques described herein can be implemented using software, firmware, hardware (e.g., fixed logic circuitry), manual processing, or a combination of these implementations. The terms “module” and “component” as used herein generally represent software, firmware, hardware, or combinations thereof. In the case of a software implementation, the module or component represents program code that performs specified tasks when executed on a processor (e.g., CPU or CPUs). The program code can be stored in one or more computer readable memory devices, further description of which may be found with reference to
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Number | Name | Date | Kind |
---|---|---|---|
4357593 | von Tomkewitsch | Nov 1982 | A |
4796191 | Honey et al. | Jan 1989 | A |
4949268 | Nishikawa et al. | Aug 1990 | A |
5493692 | Theimer et al. | Feb 1996 | A |
5544321 | Theimer et al. | Aug 1996 | A |
5555376 | Theimer et al. | Aug 1996 | A |
5564079 | Olsson | Oct 1996 | A |
5592173 | Lau et al. | Jan 1997 | A |
5603054 | Theimer et al. | Feb 1997 | A |
5611050 | Theimer et al. | Mar 1997 | A |
5623184 | Boll et al. | Apr 1997 | A |
5623194 | Boll et al. | Apr 1997 | A |
5812865 | Theimer et al. | Sep 1998 | A |
5842130 | Oprescu-Surcobe | Nov 1998 | A |
5845227 | Peterson | Dec 1998 | A |
5943621 | Ho et al. | Aug 1999 | A |
5948040 | DeLorme et al. | Sep 1999 | A |
5978732 | Kakitani et al. | Nov 1999 | A |
6052598 | Rudrapatna et al. | Apr 2000 | A |
6116363 | Frank | Sep 2000 | A |
6122572 | Yavnai | Sep 2000 | A |
6175805 | Abe | Jan 2001 | B1 |
6292687 | Lowell et al. | Sep 2001 | B1 |
6313786 | Sheynblat et al. | Nov 2001 | B1 |
6314347 | Kuroda et al. | Nov 2001 | B1 |
6323807 | Golding et al. | Nov 2001 | B1 |
6353398 | Amin et al. | Mar 2002 | B1 |
6381522 | Watanabe et al. | Apr 2002 | B1 |
6418424 | Hoftberg et al. | Jul 2002 | B1 |
6466232 | Newell et al. | Oct 2002 | B1 |
6480783 | Myr | Nov 2002 | B1 |
6490519 | Lapidot et al. | Dec 2002 | B1 |
6513046 | Abbott, III et al. | Jan 2003 | B1 |
6522266 | Soehren et al. | Feb 2003 | B1 |
6549915 | Abbott, III et al. | Apr 2003 | B2 |
6574351 | Miyano | Jun 2003 | B1 |
6577946 | Myr | Jun 2003 | B2 |
6615130 | Myr | Sep 2003 | B2 |
6668227 | Hamada et al. | Dec 2003 | B2 |
6672506 | Swart et al. | Jan 2004 | B2 |
6678525 | Baranger et al. | Jan 2004 | B1 |
6721572 | Smith et al. | Apr 2004 | B1 |
6741188 | Miller et al. | May 2004 | B1 |
6747675 | Abbott et al. | Jun 2004 | B1 |
D494584 | Schlieffers et al. | Aug 2004 | S |
6791580 | Abbott et al. | Sep 2004 | B1 |
6796505 | Pellaumail et al. | Sep 2004 | B2 |
6801223 | Abbott et al. | Oct 2004 | B1 |
6807483 | Chao et al. | Oct 2004 | B1 |
6812937 | Abbott et al. | Nov 2004 | B1 |
6837436 | Swartz et al. | Jan 2005 | B2 |
6842877 | Robarts et al. | Jan 2005 | B2 |
RE38724 | Peterson | Apr 2005 | E |
6889382 | Anderson | May 2005 | B1 |
6925378 | Tzamaloukas | Aug 2005 | B2 |
6992625 | Krumm et al. | Jan 2006 | B1 |
7010501 | Roslak et al. | Mar 2006 | B1 |
7040541 | Swartz et al. | May 2006 | B2 |
7054938 | Sundqvist et al. | May 2006 | B2 |
7058506 | Kawase et al. | Jun 2006 | B2 |
7063263 | Swartz et al. | Jun 2006 | B2 |
7084762 | Pedrazzini et al. | Aug 2006 | B2 |
7116987 | Spain, Jr. et al. | Oct 2006 | B2 |
7116988 | Dietrich et al. | Oct 2006 | B2 |
7127213 | Haymes et al. | Oct 2006 | B2 |
7130743 | Kudo et al. | Oct 2006 | B2 |
7162367 | Lin et al. | Jan 2007 | B2 |
7171378 | Petrovich et al. | Jan 2007 | B2 |
7188025 | Hudson, Jr. | Mar 2007 | B2 |
7195157 | Swartz et al. | Mar 2007 | B2 |
7200394 | Aoki et al. | Apr 2007 | B2 |
7215969 | Benco et al. | May 2007 | B2 |
7233861 | Van Buer et al. | Jun 2007 | B2 |
7250907 | Krumm et al. | Jul 2007 | B2 |
7385501 | Miller et al. | Jun 2008 | B2 |
7392134 | Tauchi et al. | Jun 2008 | B2 |
7433696 | Dietrich et al. | Oct 2008 | B2 |
7463890 | Herz et al. | Dec 2008 | B2 |
7512462 | Nichols et al. | Mar 2009 | B2 |
7590589 | Hoffberg | Sep 2009 | B2 |
7617042 | Horvitz et al. | Nov 2009 | B2 |
7630986 | Herz et al. | Dec 2009 | B1 |
7636707 | Chaudhuri et al. | Dec 2009 | B2 |
7698055 | Horvitz et al. | Apr 2010 | B2 |
7705728 | Mock et al. | Apr 2010 | B2 |
7706964 | Horvitz | Apr 2010 | B2 |
7739040 | Horvitz | Jun 2010 | B2 |
7778440 | Malone | Aug 2010 | B2 |
7796966 | Bhattacharya et al. | Sep 2010 | B2 |
7813870 | Downs et al. | Oct 2010 | B2 |
7856234 | Alizadeh-Shabdiz et al. | Dec 2010 | B2 |
7864048 | Cope et al. | Jan 2011 | B1 |
7873368 | Goren | Jan 2011 | B2 |
7899611 | Downs et al. | Mar 2011 | B2 |
7912628 | Chapman et al. | Mar 2011 | B2 |
7925426 | Koebler et al. | Apr 2011 | B2 |
7991718 | Horvitz et al. | Aug 2011 | B2 |
8024112 | Krumm et al. | Sep 2011 | B2 |
8090530 | Horvitz | Jan 2012 | B2 |
8126641 | Horvitz | Feb 2012 | B2 |
8155872 | Kjeldsen et al. | Apr 2012 | B2 |
8165773 | Chavez et al. | Apr 2012 | B1 |
8174447 | Loidl et al. | May 2012 | B2 |
8180366 | Ernst et al. | May 2012 | B2 |
8190362 | Barker et al. | May 2012 | B2 |
8255275 | Collopy et al. | Aug 2012 | B2 |
8260481 | Naik et al. | Sep 2012 | B2 |
8320939 | Vincent | Nov 2012 | B1 |
8433512 | Lopatenko et al. | Apr 2013 | B1 |
8443662 | Lane et al. | May 2013 | B2 |
8463545 | Boore et al. | Jun 2013 | B2 |
8484113 | Collopy et al. | Jul 2013 | B2 |
8519860 | Johnson et al. | Aug 2013 | B2 |
8532670 | Kim et al. | Sep 2013 | B2 |
8538686 | Gruen et al. | Sep 2013 | B2 |
8560218 | Kahn et al. | Oct 2013 | B1 |
8566029 | Lopatenko et al. | Oct 2013 | B1 |
8566783 | Yang et al. | Oct 2013 | B2 |
8589065 | Scofield et al. | Nov 2013 | B2 |
8620692 | Collopy et al. | Dec 2013 | B2 |
8712931 | Wahlen | Apr 2014 | B1 |
8751146 | Shrivathsan et al. | Jun 2014 | B2 |
8762053 | Lehman | Jun 2014 | B1 |
8788606 | Johnson et al. | Jul 2014 | B2 |
8825381 | Tang | Sep 2014 | B2 |
8898002 | Barrett | Nov 2014 | B2 |
8981995 | Schlesinger et al. | Mar 2015 | B2 |
8990333 | Johnson et al. | Mar 2015 | B2 |
9134137 | Brush et al. | Sep 2015 | B2 |
9310462 | Chintalapudi et al. | Apr 2016 | B2 |
20010029425 | Myr | Oct 2001 | A1 |
20010030664 | Shulman et al. | Oct 2001 | A1 |
20010040590 | Abbott et al. | Nov 2001 | A1 |
20010040591 | Abbott et al. | Nov 2001 | A1 |
20010043231 | Abbott et al. | Nov 2001 | A1 |
20010043232 | Abbott et al. | Nov 2001 | A1 |
20020032689 | Abbott, III et al. | Mar 2002 | A1 |
20020044152 | Abbott, III et al. | Apr 2002 | A1 |
20020050944 | Sheynblat et al. | May 2002 | A1 |
20020052930 | Abbott et al. | May 2002 | A1 |
20020052963 | Abbott et al. | May 2002 | A1 |
20020054130 | Abbott, III et al. | May 2002 | A1 |
20020054174 | Abbott et al. | May 2002 | A1 |
20020078204 | Newell et al. | Jun 2002 | A1 |
20020080155 | Abbott et al. | Jun 2002 | A1 |
20020080156 | Abbott et al. | Jun 2002 | A1 |
20020083025 | Robarts et al. | Jun 2002 | A1 |
20020083158 | Abbott et al. | Jun 2002 | A1 |
20020087525 | Abbott et al. | Jul 2002 | A1 |
20020099817 | Abbott et al. | Jul 2002 | A1 |
20020107618 | Deguchi et al. | Aug 2002 | A1 |
20030036842 | Hancock | Feb 2003 | A1 |
20030042051 | Kriger | Mar 2003 | A1 |
20030046401 | Abbott et al. | Mar 2003 | A1 |
20030069683 | Lapidot et al. | Apr 2003 | A1 |
20030135304 | Sroub et al. | Jul 2003 | A1 |
20030139863 | Toda et al. | Jul 2003 | A1 |
20030140088 | Robinson et al. | Jul 2003 | A1 |
20030153338 | Herz et al. | Aug 2003 | A1 |
20030154009 | Basir et al. | Aug 2003 | A1 |
20030154476 | Abbott, III et al. | Aug 2003 | A1 |
20030195700 | Hamada et al. | Oct 2003 | A1 |
20030229471 | Guralnik et al. | Dec 2003 | A1 |
20030229895 | Jasinschi et al. | Dec 2003 | A1 |
20040019603 | Haigh et al. | Jan 2004 | A1 |
20040068364 | Zhao et al. | Apr 2004 | A1 |
20040090121 | Simonds et al. | May 2004 | A1 |
20040090346 | Simonds et al. | May 2004 | A1 |
20040092253 | Simonds et al. | May 2004 | A1 |
20040093154 | Simonds et al. | May 2004 | A1 |
20040093155 | Simonds et al. | May 2004 | A1 |
20040128066 | Kudo et al. | Jul 2004 | A1 |
20040153445 | Horvitz et al. | Aug 2004 | A1 |
20040167667 | Goncalves | Aug 2004 | A1 |
20040176211 | Kitajima et al. | Sep 2004 | A1 |
20040189475 | Cooper et al. | Sep 2004 | A1 |
20040201500 | Miller et al. | Oct 2004 | A1 |
20040230374 | Tzamaloukas | Nov 2004 | A1 |
20040260457 | Kawase et al. | Dec 2004 | A1 |
20040268403 | Krieger et al. | Dec 2004 | A1 |
20050021417 | Kassan | Jan 2005 | A1 |
20050034078 | Abbott et al. | Feb 2005 | A1 |
20050046584 | Breed | Mar 2005 | A1 |
20050048946 | Holland | Mar 2005 | A1 |
20050049900 | Hirose et al. | Mar 2005 | A1 |
20050062643 | Pande et al. | Mar 2005 | A1 |
20050068946 | Holland | Mar 2005 | A1 |
20050107946 | Shimizu et al. | May 2005 | A1 |
20050125148 | Van Buer et al. | Jun 2005 | A1 |
20050131607 | Breed | Jun 2005 | A1 |
20050144318 | Chang | Jun 2005 | A1 |
20050149253 | Nambata | Jul 2005 | A1 |
20050219120 | Chang | Oct 2005 | A1 |
20050228553 | Tyron | Oct 2005 | A1 |
20050261004 | Dietrich et al. | Nov 2005 | A1 |
20050266858 | Miller et al. | Dec 2005 | A1 |
20050272442 | Miller et al. | Dec 2005 | A1 |
20050283503 | Hancock et al. | Dec 2005 | A1 |
20050285793 | Sugar et al. | Dec 2005 | A1 |
20060019676 | Miller et al. | Jan 2006 | A1 |
20060022048 | Johnson | Feb 2006 | A1 |
20060167784 | Hoffberg | Jul 2006 | A1 |
20060200310 | Kim et al. | Sep 2006 | A1 |
20060241862 | Ichihara et al. | Oct 2006 | A1 |
20060264211 | Kalhan et al. | Nov 2006 | A1 |
20060284765 | Bemhardt et al. | Dec 2006 | A1 |
20060286988 | Blume et al. | Dec 2006 | A1 |
20060287813 | Quigley | Dec 2006 | A1 |
20070008927 | Herz et al. | Jan 2007 | A1 |
20070073477 | Krumm et al. | Mar 2007 | A1 |
20070106465 | Adam et al. | May 2007 | A1 |
20070115174 | Herrick | May 2007 | A1 |
20070179792 | Kramer | Aug 2007 | A1 |
20070208495 | Chapman et al. | Sep 2007 | A1 |
20080005172 | Gutmann | Jan 2008 | A1 |
20080018529 | Yoshioka | Jan 2008 | A1 |
20080180637 | Kjeldsen et al. | Jan 2008 | A1 |
20080070593 | Altman et al. | Mar 2008 | A1 |
20080077326 | Funk | Mar 2008 | A1 |
20080090591 | Miller et al. | Apr 2008 | A1 |
20080091537 | Miller et al. | Apr 2008 | A1 |
20080129598 | Godefroy et al. | Jun 2008 | A1 |
20080161018 | Miller et al. | Jul 2008 | A1 |
20080191941 | Saban et al. | Aug 2008 | A1 |
20080234935 | Wolf et al. | Sep 2008 | A1 |
20080248815 | Busch | Oct 2008 | A1 |
20080249667 | Horvitz et al. | Oct 2008 | A1 |
20080319658 | Horvitz et al. | Dec 2008 | A1 |
20080319660 | Horvitz et al. | Dec 2008 | A1 |
20090009397 | Taylor | Jan 2009 | A1 |
20090043504 | Bandyopadhyay et al. | Feb 2009 | A1 |
20090051566 | Olsen et al. | Feb 2009 | A1 |
20090063038 | Shrivathsan et al. | Mar 2009 | A1 |
20090149155 | Grossman | Jun 2009 | A1 |
20090177437 | Roumeliotis | Jul 2009 | A1 |
20090184849 | Nasiri et al. | Jul 2009 | A1 |
20090191892 | Kelley | Jul 2009 | A1 |
20090192709 | Yonker | Jul 2009 | A1 |
20090248301 | Judd et al. | Oct 2009 | A1 |
20090312032 | Bornstein | Dec 2009 | A1 |
20100039929 | Cho et al. | Feb 2010 | A1 |
20100079332 | Garen | Apr 2010 | A1 |
20100079334 | Roh et al. | Apr 2010 | A1 |
20100087230 | Peh et al. | Apr 2010 | A1 |
20100090899 | Ahao et al. | Apr 2010 | A1 |
20100097269 | Loidl et al. | Apr 2010 | A1 |
20100127926 | Wang | May 2010 | A1 |
20100131308 | Collopy et al. | May 2010 | A1 |
20100153007 | Crowley | Jun 2010 | A1 |
20100156708 | Chen | Jun 2010 | A1 |
20100161179 | McClure et al. | Jun 2010 | A1 |
20100174479 | Golding et al. | Jul 2010 | A1 |
20100176992 | T'siobbel | Jul 2010 | A1 |
20100185388 | Horvitz | Jul 2010 | A1 |
20100250133 | Buros | Sep 2010 | A1 |
20100255856 | Kansal et al. | Oct 2010 | A1 |
20100255858 | Juhasz | Oct 2010 | A1 |
20100310071 | Malone et al. | Dec 2010 | A1 |
20100324813 | Sundararajan et al. | Dec 2010 | A1 |
20100324815 | Hiruta et al. | Dec 2010 | A1 |
20100332125 | Tan et al. | Dec 2010 | A1 |
20110035142 | Tang | Feb 2011 | A1 |
20110039573 | Hardie | Feb 2011 | A1 |
20110050493 | Torimoto et al. | Mar 2011 | A1 |
20110071759 | Pande et al. | Mar 2011 | A1 |
20110148623 | Bishop et al. | Jun 2011 | A1 |
20110151898 | Chandra et al. | Jun 2011 | A1 |
20110163914 | Seymour | Jul 2011 | A1 |
20110169632 | Walker et al. | Jul 2011 | A1 |
20110171024 | DeLuca | Jul 2011 | A1 |
20110178708 | Zhang et al. | Jul 2011 | A1 |
20110182238 | Marshall et al. | Jul 2011 | A1 |
20110184644 | McBurney | Jul 2011 | A1 |
20110191024 | DeLuca | Aug 2011 | A1 |
20110191052 | Lin et al. | Aug 2011 | A1 |
20110197200 | Huang et al. | Aug 2011 | A1 |
20110207471 | Murray et al. | Aug 2011 | A1 |
20110208430 | Tun et al. | Aug 2011 | A1 |
20110212732 | Garrett et al. | Sep 2011 | A1 |
20110238289 | Lehmann et al. | Sep 2011 | A1 |
20110238308 | Miller et al. | Sep 2011 | A1 |
20110246059 | Tokashiki | Oct 2011 | A1 |
20110270940 | Johnson | Nov 2011 | A1 |
20110282571 | Krumm et al. | Nov 2011 | A1 |
20110291886 | Krieter | Dec 2011 | A1 |
20110306323 | Do et al. | Dec 2011 | A1 |
20120052873 | Wong | Mar 2012 | A1 |
20120089322 | Horvitz | Apr 2012 | A1 |
20120121161 | Eade et al. | May 2012 | A1 |
20120129546 | Yang et al. | May 2012 | A1 |
20120143495 | Dantu | Jun 2012 | A1 |
20120173139 | Judd et al. | Jul 2012 | A1 |
20120176491 | Garin et al. | Jul 2012 | A1 |
20120188124 | Reidevall et al. | Jul 2012 | A1 |
20120203453 | Lundquist et al. | Aug 2012 | A1 |
20120209507 | Serbanescu | Aug 2012 | A1 |
20120218142 | Leclercq | Aug 2012 | A1 |
20120221244 | Georgy et al. | Aug 2012 | A1 |
20120238293 | Pan | Sep 2012 | A9 |
20120259541 | Downey et al. | Oct 2012 | A1 |
20120259666 | Collopy et al. | Oct 2012 | A1 |
20120290615 | Lamb et al. | Nov 2012 | A1 |
20120299724 | Kuper et al. | Nov 2012 | A1 |
20130002857 | Kulik | Jan 2013 | A1 |
20130018581 | Sidhu | Jan 2013 | A1 |
20130018629 | Sidhu | Jan 2013 | A1 |
20130030690 | Witmer | Jan 2013 | A1 |
20130035111 | Moeglein et al. | Feb 2013 | A1 |
20130095848 | Gold et al. | Apr 2013 | A1 |
20130114687 | Kim et al. | May 2013 | A1 |
20130115971 | Marti et al. | May 2013 | A1 |
20130116921 | Kasargod | May 2013 | A1 |
20130138314 | Vittala | May 2013 | A1 |
20130158867 | Sidhu et al. | Jun 2013 | A1 |
20130211711 | Kelly et al. | Aug 2013 | A1 |
20130252628 | Kuehnel | Sep 2013 | A1 |
20130285849 | Ben-Moshe | Oct 2013 | A1 |
20130297204 | Bartels | Nov 2013 | A1 |
20130332064 | Funk et al. | Dec 2013 | A1 |
20140024354 | Haik et al. | Jan 2014 | A1 |
20140070991 | Liu et al. | Mar 2014 | A1 |
20140121960 | Park | May 2014 | A1 |
20140327547 | Johnson | Nov 2014 | A1 |
20150018008 | Schlesinger et al. | Jan 2015 | A1 |
20150073697 | Barrett et al. | Mar 2015 | A1 |
20150198694 | Waters | Jul 2015 | A1 |
20160353383 | Haik et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
1375999 | Oct 2002 | CN |
1488955 | Apr 2004 | CN |
101109808 | Jan 2008 | CN |
101675597 | Mar 2010 | CN |
10042983 | Mar 2002 | DE |
2293016 | Mar 2011 | EP |
2431261 | Apr 2007 | GB |
04364491 | Dec 1992 | JP |
2007-083678 | Mar 1995 | JP |
2008-271277 | Oct 1996 | JP |
10132593 | May 1998 | JP |
2011-153446 | Aug 1999 | JP |
2002-328035 | Nov 2002 | JP |
2004-317160 | Nov 2004 | JP |
19970071404 | Nov 1997 | KR |
20040033141 | Apr 2004 | KR |
20040050550 | Jun 2004 | KR |
8141 | Oct 1998 | RU |
WO 9800787 | Jan 1998 | WO |
2009039161 | Mar 2009 | WO |
2012085876 | Jun 2012 | WO |
Entry |
---|
Arvind Thiagarajan, et al (Cooperative Transit Tracking using Smart-phones, Nov. 3-5, 2010). |
Lachapelle, Gerard, “GNSS Indoor Location Technologies”, Retrieved at «http://www.gmat.unsw.edu.au/wang/jgps/v3n12/v3n12p01.pdf», Journal of Global Positioning Systems, vol. 3, No. 1-2, Nov. 15, 2004, pp. 2-11. |
Toledo-Moreo, et al., “Performance Aspects of Navigation Systems for GNSS-Based Road User Charging”, Retrieved at «http://ants.inf.um.es/˜josesanta/doc/ION_GNSS10.pdf», Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS), Sep. 21-24, 2010, pp. 1157-1165. |
Collin, et al., “Indoor positioning system using accelerometry and high accuracy heading sensors”, Retrieved at «http://plan.geomatics.ucalgary.ca/papers/gps03jussic.pdf», Proceedings of the 16th International Technical Meeting of The Satellite Division of the Institute of Navigation, ION GPS/GNSS Conference (Session C3), Sep. 9-12, 2003, pp. 1-7. |
Wendlandt, et al., “Continuous location and direction estimation with multiple sensors using particle filtering”, Retrieved at «http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04042026», IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Sep. 2006, pp. 92-97. |
Toledo-Moreo, et al., “Lane-Level Integrity Provision for Navigation and Map Matching With GNSS, Dead Reckoning, and Enhanced Maps”, Retrieved at «http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5286855», IEEE Transactions on Intelligent Transportation Systems, vol. 11, No. 1, Mar. 2010, pp. 100-112 |
Chun, et al., “CloneCloud: Elastic Execution between Mobile Device and Cloud”, Retrieved at «http://eurosys2011.cs.uni-salzburg.at/pdf/eurosys2011-chun.pdf», Proceedings of the sixth conference on Computer systems (EuroSys '11 ), Apr. 10-13, 2011, pp. 301-314. |
Sidhu, Gursharan S., “Activating and Deactivating Sensors for Dead Reckoning”, Filed Date: Jul. 14, 2011, pp. 4. |
Sidhu, Gursharan S., “Crowd Sourcing Based on Dead Reckoning”, Filed Date: Jul. 14, 2011, pp. 48. |
Sidhu, Gursharan S., “Path Progression Matching for Indoor Positioning Systems”, Filed Date: Nov. 24, 2010, pp. 43. |
Cabero, Jose M., et al., “Indoor People Tracking Based on Dynamic Weighted MultiDimensional Scaling”, MSWIM '07, Oct. 22-26, 2007, Chania, Crete Island, Greece, available at <http://www.ri.cmu.edu/pub_files/pub4/maria_cabero_jose_2007_1/maria_cabero_jose_2007_1.pdf>,(Oct. 22, 2007), 8 pages. |
De Moraes, Luis F., et al., “Calibration-Free WLAN Location System Based on Dynamic Mapping of Signal Strength”, 9th Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, Oct. 2-6, 2006, MobiWac '06, Torremolinos, Malaga, Spain, available at <http//:www.ravel.ufrj.br/arquivosPublicacoes/WAC11-demoraes.pdfs>,(Oct. 2, 2006), 8 pages. |
Goyal, Vishal “MEMS Based Motion Sensing Design”, Retrieved from: <http://www.eeherald.com/section/design-guide/mems_application.html> on Mar. 30, 2011,(2006), 2 pages. |
Jimenez, A. R., et al., “A Comparison of Pedestrian Dead-Reckoning Algorithms using a Low-Cost MEMS IMU”, WISP 2009, 6th IEEE International Symposium on Intelligent Signal Processing, Aug. 26-28, 2009, Budapest, Hungary, available at <http://www.iai.csic.es/users/fseco/papers/WISP2009Jimenez.pdf>,(Aug. 26, 2009),pp. 37-42. |
Jin, Yunye et al., “A Robust Dead-Reckoning Pedestrian Tracking System with Low Cost Sensors”, 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom), Seattle, WA, Mar. 21-25, 2011, available at <http://www.ami-lab.org/uploads/Publications/Conference/WP2/Robust%20Dead-Reckoning%20Pedestrian%20Tracking%20System%20with%20Low%20Cost%20Sensors.pdf>,(Mar. 21, 2011), pp. 222-230. |
Koyuncu, Hakan et al., “A Survey of Indoor Positioning and Object Locating Systems”, IJCSNS International Journal of Computer Science and Network Security, vol. 10, No. 5, May 2010, available at <http://paper.ijcsns.org/07_book/201005/20100518.pdf>,(May 2010), pp. 121-128. |
Paul, Anindya S., et al., “Wi-Fi Based Indoor Localization and Tracking Using Sigma-Point Kalman Filtering Methods”, IEEE/ION Position, Location and Navigation Symposium, May 5-8, 2008, available at <http//:www.cse.ogi.edu/˜anindya/Paul_Wan_Plans08.pdf>,(May 5, 2008), 14 pages. |
Rogoleva, Luba “Crowdsourcing Location Information to Improve Indoor Localization”, Master Thesis, available at <http://e-collection.ethbib.ethz.ch/eserv/eth:1224/eth-1224-01.pdf>,(Apr. 30, 2010), 91 pages. |
Shin, Seung H., et al., “Sit-Down & Stand-Up Awareness Algorithm for the Pedestrian Dead Reckoning”, GNSS '09, May 3-6, 2009, available at <http://s-space.snu.ac.kr/bitstream/10371/27736/1/Sit-Down%20&%20Stand-Up%20Awareness%20Algorithm%20for%20the%20Pedestrian%20Dead%20Reckoning.pdf>,(May 3, 2009), 6 pages. |
Xuan, Yiguang et al., “Crowd Sourcing Indoor Maps with Mobile Sensors”, MUS '10, Dec. 6-9, 2010, available at <http://www.ocf.berkeley.edu/˜xuanyg/IndoorMap_Mobiquitous2010_ver2.pdf>,(Dec. 6, 2010), 12 pages. |
Yang, Zongxiang “Path Progression Matching for Indoor Positioning Systems”, U.S. Appl. No. 12/954,545, filed Nov. 24, 2010, 43 pages. |
Zhu, et al., “Indoor/Outdoor Location of Cellular Handsets Based on Received Signal Strength”, Electronics Letters, vol. 41, No. 1, available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?amumber=01543256>,(Jan. 6, 2005), 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 12/954,545, (dated Jun. 15, 2012),9 pages. |
Beard, K., et al., “Estimating positions and paths of moving objects”, Temporal Representation and Reasoning, 2000. TIME 2000. Proceedings. Seventh International Workshop on; Digital Object Identifier: 10.1109/TIME.2000.856597 Publication Year: 2000, pp. 155-162. |
Billinghurst, Mark, et al., “An Evaluation of Wearable Information Spaces”, Proceedings of the Virtual Reality Annual International Symposium, 1998, 8 pages. |
Billinghurst, Mark, et al., “Research Directions in Wearable Computing”, University of Washington, May 1998, 48 pages. |
Billinghurst, Mark, et al., “Wearable Devices: New Ways to Manage Information”, IEEE Computer Society, Jan. 1999, pp. 57-64. |
Chen, Guanling, et al., “A Survey of Context-Aware Mobile Computing Research,” Dartmouth Computer Science Technical Report, 2000, 16 pages. |
Choi, Jae-Hyeong,et al., “Performance evaluation of traffic control based on geographical information”, Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on; vol. 3; Publication Year: 2009, pp. 85-89. |
Gusenbauer, et al., “Self-Contained Indoor Positioning on Off-The-Shelf Mobile Devices”, retrieved at «http:// ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=05646681», International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sep. 2010, 9 pages. |
Harter, Andy, et al., “A Distributed Location System for the Active Office,” IEEE Network, 1994, pp. 62-70. |
Horvitz, Eric, et al., “Attention-Sensitive Alerting in Computing Systems”, Microsoft Research, Aug. 1999. |
Horvitz, Eric, et al., “In Pursuit of Effective Handsfree Decision Support: Coupling Bayesian Inference”, Speech Understanding, and User Models,1995, 8 pages. |
Joachims, T., “Text categorization with support vector machines: learning with many relevant features”, Machine Learning, European Conference on Machine Learning, Apr. 21, 1998, pp. 137-142. |
Kostov, V., et al., “Travel destination prediction using frequent crossing pattern from driving history”, Intelligent transportation Systems, 2005. Proceedings. 2005 IEEE; Digital Object Identifier: 10.1109/ITSC.2005.1520182 Publication Year: 2005, pp. 343-350. |
Krumm, “Predestination: Where Do You Want to Go Today?”; Computer; vol. 40, Issue 4; Apr. 2007; pp. 105-107. |
Lee, Junghoon, et al., “Design and implementation of a movement history analysis frame-work for the Taxi telematics system”, Communications, 2008. APCC 2008. 14th Asia-Pacific Conference on; Publication Year: 2008, pp. 1-4. |
Liu, Feng, et al., “Remaining Delivery Time Estimation Based Routing for Intermittently Connected Mobile Networks”, Distributed Computing Systems Workshops, 2008. ICDCS '08. 28th International Conference, Publication Year: 2008, pp. 222-227. |
Losee, Robert M. Jr., “Minimizing information overload: the ranking of electronic messages”, Journal of Information Science 15, Elsevier Science Publishers B.V., 1989, pp. 179-189. |
Miyashita, K. et al., “A Map Matching Algorithm for Car Navigation Systems that Predict User Destination”, Advanced Information Networking and Applications—Workshops, 2008. AINAW 2008. 22nd International Conference, Publication Year: 2008, pp. 1551-1556. |
Rhodes, Bradley J., “Remembrance Agent: A continuously running automated information retrieval system”, The Proceedings of The First International Conference on The Practical Application of Intelligent Agents and Multi Agent Technology,1996, pp. 487-495. |
Rhodes, Bradley J., “The Wearable Remembrance Agent: A System for Augmented Memory”, Personal Technologies Journal Special Issue on Wearable Computing, 1997, 12 pages. |
Rhodes, Bradley J., “The Wearable Remembrance Agent: A System for Augmented Theory”, The Proceedings of the First International Symposium on Wearable Computers, Oct. 1997, pp. 123-128. |
Sananmongkhonchai, S. et al., “Cell-based traffic estimation from multiple GPS-equipped cars”, 2009 IEEE Region 10 Conference Publication Year: 2009, pp. 1-6. |
Schilit, Bill, et al., “Context-Aware Computing Applications”, In Proceedings of the Workshop on Mobile Computing Systems and Applications, Dec. 1994, pp. 85-90. |
Schilit, Bill, et al., “Customizing Mobile Applications”, Proceedings USENIX Symposium on Mobile and Location Independent Computing, Aug. 1993, 9 pages. |
Schilit, Bill, et al., “Disseminating Active Map Information to Mobile Hosts”, IEEE Network, 1994 pp. 22-32, vol. 8—No. 5. |
Schilit, Bill, et al., “The ParcTab Mobile Computing System”, IEEE WWOS-IV, 1993, 4 pages. |
Schilit, William Noah, “A System Architecture for Context-Aware Mobile Computing”, Columbia University, 1995, 153 pages. |
Sidhu, et al., “Multi-Stage Dead Reckoning for Crowd Sourcing,” U.S. Appl. No. 13/284,128, filed Oct. 28, 2011, 42 pages. |
Simmons, R, et al, “Learning to Predict Driver Route and Destination Intent”, Intelligent Transportation Systems Conference, 2006. ITSC '06. IEEE; Digital Object Identifier: 10.1109/ITSC.2006.1706730 Publication Year: 2006, pp. 127-132. |
Spreitzer, Mike, et al., “Providing Location Information in a Ubiquitous Computing Environment”, SIGOPS '93, 1993, pp. 270-283. |
Spreitzer, Mike, et al., “Architectural Considerations for Scalable, Secure, Mobile Computing with Location Information”, In The 14th International Conference on Distributed Computing Systems, Jun. 1994, pp. 29-38. |
Spreitzer, Mike, et al., “Scalable, Secure, Mobile Computing with Location Information”, Communications of the ACM, Jul. 1993, 1 page, vol. 36—No. 7. |
Starner, Thad Eugene, “Wearable Computing and Contextual Awareness”, Massachusetts Institue of Technology, Jun. 1999, 248 pages. |
Terada, T, et al., “Design of a Car Navigation System that Predicts User Destination”, Mobile Data Management, 2006. MDM 2006. 7th International Conference on; Publication Year: 2006, pp. 145-150. |
Theimer, Marvin, et al., “Operating System Issues for PDA's”, in Fourth Workshop on Workstation Operating Systems, 1993, 7 pages. |
Vaughan-Nichols, S.J., “Will Mobile Computing's Future Be Location, Location, Location?”, Computer; vol. 42, Issue: 2 Digital Object Identifier: 10.1109/MC.2009.65; Publication Year: 2009, pp. 14-17. |
Want, Roy, “Active Badges and Personal Interactive Computing Objects”, IEEE Transactions on Consumer Electronics, 1992, 11 pages, vol. 38—No. 1. |
Want, Roy, et al., “The Active Badge Location System”, ACM Transactions on Information Systems, Jan. 1992, pp. 91-102, vol. 10—No. 1. |
Wei, Chien-Hung, et al., “Development of Freeway Travel Time Forecasting Models by Integrating Different Sources of Traffic Data”, IEEE Transactions on Vehicular Technology; vol. 56, Issue: 6, Part: 2; Nov. 2007, pp. 3682-3694. |
Weiser, Mark, “Some Computer Science Issues in Ubiquitous Computing”, Communications of the ACM, Jul. 1993, pp. 75-84, vol. 36—No. 7. |
Weiser, Mark, “The Computer for the 21st Century”, Scientific American, Sep. 1991, 8 pages. |
Workshop on Wearable Computing Systems, Aug. 19-21, 1996. |
Wu, Yan-Jing, et al., “A dynamic navigation scheme for vehicular ad hoc networks”, Networked Computing and Advanced Information Management (NCM), 2010 Sixth International Conference on; Publication Year: 2010, pp. 231-235. |
Xie, M. et al., “Development of Navigation System for Autonomous Vehicle to Meet the DARPA Urban Grand Challenge”, Intelligent Transportation Systems Conference, 2007. ITSC 2007. IEEE; Sep. 30-Oct. 3, 2007, Seattle, WA, pp. 767-772. |
Ye, Qian, et al, “Predict Personal Continuous Route”, 2008. 11th International IEEE Conference on Intelligent Transportation Systems; Oct. 12-15, 2008, Beijing, China; pp. 587-592. |
PCT Application Serial No. PCT/US2008/067808, International Search Report and Written Opinion dated Dec. 12, 2008; 8 pages. |
PCT Application Serial No. PCT/US2006/034608, International Search Report dated Jan. 15, 2007; 2 pages. |
PCT Application Serial No. PCT/US00/20685; International Search Report dated Sep. 29, 2003; 3 pages. |
Russian Patent Appln. 2008112196/11; Office Action dated Jun. 8, 2010. |
Biegel et al., “A Framework for Developing Mobile, Context-Aware Applications”, Proceedings of the 2nd IEEE Conference on Pervasive Computing and Communication, pp. 361-365, 2004. |
Bisdikian et al., “Intelligent Pervasive Middleware for Context-Based and Localized Telematics Services”, ACM MobiCommerce 2002, Sep. 2002, Atlanta, USA. |
Kargl et al., “Smart Reminder—Personal Assistance in a Mobile Computing Environment”, Pervasive 2002, Zurich, Switzerland, Aug. 26-28, 2002. |
“MEMS Based Motion Sensing Design”, Retrieved at «http://www.eeherald.com/section/design-guide/mems_application.html», Retrieved Mar. 30, 2011, 2 pages. |
Ashbrook et al., “Using GPS to Learn Significant Locations and Predict Movement Across Multiple Users”, Personal and Ubiquitous Computing,7(5), 2003, pp. 275-286, 15 pages. |
Chen et al., “HarpiaGrid: A Reliable Grid-based Rounding Protocol for Vehicular Ad Hoc Networks”, Intelligent Transportation Systems, ITSC 2008, 11th International IEEE Conference, pp. 383-388, 6 pages. |
Coyne et al., “Comparison of Differentially Corrected GPS Sources for Support of Site-Specific Management in Agriculture”, Jul. 2003, Kansas State University Agricultural Experiment Station and Cooperative Extension Service, 35 pages. |
Hu et al., “Simulation-Assignment-Based Travel Time Prediction Model for Traffic Corridors,” Intelligent Transportation Systems, IEEE Transactions, vol. PP, Issue 99, 2012, pp. 1277-1286, 10 pages. |
Hu et al., “Summary of Travel Trends”, 2001 National Household Survey, Dec. 2004, U.S. Department of Transportation, U.S. Federal Highway Administration, 135 pages. |
Kanoh et al., “Evaluation of GA-based Dynamic Rout Guidance for Car Navigation using Cellular Automata,” Intelligent Vehicle Symposium, 2002, IEEE, vol. 1, pp. 178-183, 6 pages. |
Kanoh et al., “Route Guidance with Unspecific Staging Posts using Genetic Algorithm for Car Navigation Systems,” Intelligent Transportation Systems, 2000, IEEE, pp. 119-124, 6 pages. |
Kanoh et al., “Knowledge Based Genetic Algorithm for Dynamic Route Selection,” Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000, Proceedings Fourth International Conference on vol. 2, pp. 616-619, 4 pages. |
Krumm et al., “The Microsoft Multiperson Location Survey”, Aug. 2005, Microsoft Research, 4 pages. |
Lai et al., “Hierarchical Incremental Pat Planning and Situation-Dependent Optimized Dynamic Motion Planning Considering Accelerations,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on vol. 37, Issue 6, 2007, pp. 1541-1554, 14 pages. |
Marmasse et al., “A User-Centered Location Model”, Personal and Ubiquitos Computing, 2002(6), pp. 318-321, 4 pages. |
Patterson et al., “Opportunity Knocks: A System to Provide Dobnitive Assistance with Transportation Services”, in UbiComp 2004: Ubiquitous Computing, 2004, Nottingham, UK; Springer, 18 pages. |
Rish, “An Empirical Study of the Naïve Bayes Classifier”, IJCAI-01 Workshop on Empirical Methods in AI, Nov. 2, 2001, 7 pages. |
Vanajakshi et al., “Support Vector Machine Technique for the Short Term Prediction of Travel Time,” Intelligent Vehicles Symposium, 2007 IEEE, pp. 600-605, 6 pages. |
Cheng, et al., “Location Prediction Algorithms for Mobile Wireless Systems,” Wireless Internet Handbook: Technologies, Standards, and Applications, 2003, CRC Press, Boca Raton, FL, pp. 245-263, 17 pages. |
Hariharan, et al., “Project Lachesis: Parsing and Modeling Location Histories,” Geographic Information Science: Third International Conference, GI Science 2004, Adelphi, MD, Springer-Verlag GmbH, 19 pages. |
Liao, et al., “Learning and Inferring Transportation Route ins,” Proceedings of the 19th National Conference on Artificial Intelligence (AAAI), 2004, San Jose, CA, 6 pages. |
Gogate, et al., “Modeling Transportation Routines using Hybrid Dynamic Mixed Networks,” Uncertainty in Artificial Intelligence (UAI), 2005, 8 pages. |
Angermann, et al., “Software Represenation for Heterogeneous Location Data Sources Using Probability Density Functions,” International Symposium on Location Based Services for Cellular Users (LOCELLUS), 2001, Munich, Germany, 10 pages. |
Elfes et al., “Using Occupancy Grids for Mobile Robot Perception and Navigation,” IEEE Computer, 1989, 22(6), pp. 46-57, 12 pages. |
Krumm, “Predestination: Predicting Driving Destinations from Map Data,” UbiComp 2006: Ubiquitous Computing 8th International Conference, 18 pages. |
Krumm, John, “Real Time Destination Prediction Based on Efficient Routes,” SAE Technical Paper, Paper No. 2006-01-0811, Apr. 3, 2006, 6 pages. |
Karbassi et al., “Vehicle Route Prediction and Time of Arrival Estimation Techniques for Improved Transportation System Management,” Proceedings of the Intelligent Vehicles Symposium, 2003, pp. 511-516, 6 pages. |
Ghasemzahdeh et al., “Action Coverage Formulation for Power Optimization in Body Sensor Networks,” in Proceedings of the 2008 Asia and South Pacific Design Automation Conference, Jan. 2008, IEEE Computer Society Press, pp. 446-451, 6 pages. |
Notice of Allowance dated Jun. 5, 2015 from U.S. Appl. No. 13/325,065, 6 pages. |
Notice of Allowance dated Dec. 31, 2014 from U.S. Appl. No. 13/325,065, 5 pages. |
Notice of Allowance dated Sep. 19, 2014 from U.S. Appl. No. 13/325,065, 7 pages. |
Notice of Allowance dated Jun. 4, 2014 from U.S. Appl. No. 13/325,065, 12 pages. |
Response filed Jan. 23, 2014 from U.S. Appl. No. 13/325,065, 20 pages. |
Non-Final Office Action dated Oct. 24, 2013 from U.S. Appl. No. 13/325,065, 31 pages. |
Non-Final Office Action dated Sep. 3, 2009 from U.S. Appl. No. 11/426,540, 8 pages. |
Response filed Nov. 24, 2009 to the Non-Final Office Action dated Jun. 26, 2009 from U.S. Appl. No. 11/426,540, 9 pages. |
Non-Final Office Action dated Apr. 6, 2010 from U.S. Appl. No. 11/426,540, 9 pages. |
Response filed Jul. 6, 2010 to the Non-Final Office Action dated Apr. 6, 2010 from U.S. Appl. No. 11/426,540, 11 pages. |
Non-Final Office Action dated Oct. 14, 2010 from U.S. Appl. No. 11/426,540, 16 pages. |
Response filed Jan. 25, 2011 to Action dated Oct. 14, 2010 from U.S. Appl. No. 11/426,540, 12 pages. |
Notice of Allowance dated Apr. 15, 2011 from U.S. Appl. No. 11/426,540, 10 pages. |
Request for Examination and Voluntary Amendment filed Sep. 2, 2011 in the Canadian Patent Application No. 2,620,587, 51 pages. |
Office Action dated Mar. 20, 2009 from Chinese Patent Application No. 200680036290.9, 10 pages. |
Response filed Jul. 22, 2009 to the Office Action dated Mar. 20, 2009 from Chinese Patent Application No. 200680036290.9, 71 pages. |
Second Office Action dated Sep. 4, 2009 from Chinese Patent Application No. 200680036290.9, 7 pages. |
Response to Second Office Action filed Nov. 4, 2009 from Chinese Patent Application No. 200680036290.9, 12 pages. |
Notice of Allowance dated Jan. 22, 2010 from Chinese Patent Application No. 200680036290.9, 4 pages. |
Extended European Search Report dated Jun. 14, 2012 from European Patent Application No. 06802991.7, 6 pages. |
Notice of Rejection and translation dated May 31, 2011 from Japanese Patent Application No. 2008-533377, 3 pages. |
Examination Report dated May 18, 2010 from New Zealand Patent Application No. 566701, 1 page. |
Response filed Aug. 25, 2011 from Japanese Patent Application No. 2008-533377, 2 pages. |
Notice of Allowance dated Dec. 16, 2011 from Japanese Patent Application No. 2008-533377, 6 pages. |
Request for Examination and Amendment filed Aug. 26, 2011 from Korean Patent Application No. 10-2008-7007693, 22 pages. |
Response filed Sep. 26, 2012 to the Office Action dated Jul. 31, 2012 from Malaysian Patent Application No. PI 20080636, 7 pages. |
Notice of Allowance dated Aug. 30, 2013 from Malaysian Patent Application No. PI 20080636, 3 pages. |
Response filed Apr. 29, 2010 to the Examination Report dated Oct. 12, 2009 from New Zealand Patent Application No. 566701, 17 pages. |
Examination Report dated Oct. 12, 2009 from New Zealand Patent Application No. 566701, 2 pages. |
Response filed May 24, 2010 to the Examination Report dated May 18, 2010 from New Zealand Patent Application No. 566701, 4 pages. |
Notice of Acceptance dated Jun. 11, 2010 from New Zealand Patent Application No. 566701, 1 page. |
Office Action dated Sep. 9, 2011 from Philippine Patent Application No. 1-2008-500513, 1 page. |
Office Action dated Mar. 30, 2010 and English comments from Russian Patent Application No. 20081121996, 5 pages. |
Response filed May 13, 2010 from Russian Patent Application No. 20081121996, 8 pages. |
Amendment filed Apr. 9, 2009 from South African Patent Application No. 2008102681, 3 pages. |
Notice of Panel Decision from Pre-Appeal Brief Review dated May 19, 2015 from U.S. Appl. No. 13/190,121, 2 pages. |
Pre-Appeal Brief Request and Notice of Appeal filed Apr. 28, 2015 from U.S. Appl. No. 13/190,121, 8 pages. |
Final Office Action dated Jan. 28, 2015 from U.S. Appl. No. 13/190,121, 12 pages. |
Response/Amendment and Reply filed Sep. 30, 2014 from U.S. Appl. No. 13/190,121, 15 pages. |
Non-Final Office Action dated Jul. 1, 2014 from U.S. Appl. No. 13/190,121, 11 pages. |
Response/Amendment and Reply filed Apr. 15, 2014 from U.S. Appl. No. 13/190,121, 14 pages. |
Non-Final Office Action dated Jan. 15, 2014 from U.S. Appl. No. 13/190,121, 9 pages. |
Response/Amendment and Reply filed Sep. 25, 2013 from U.S. Appl. No. 13/190,121, 11 pages. |
Non-Final Office Action dated Jun. 27, 2013 from U.S. Appl. No. 13/190,121, 10 pages. |
Response/Amendment and Reply filed Mar. 11, 2013 from U.S. Appl. No. 13/190,121, 11 pages. |
Non-Final Office Action dated Dec. 12, 2012 from U.S. Appl. No. 13/190,121, 8 pages. |
Notice of Allowance dated Sep. 4, 2012 from U.S. Appl. No. 13/190,121, 8 pages. |
Response/Amendment and Reply filed Apr. 19, 2012 from U.S. Appl. No. 13/190,121, 9 pages. |
Non-Final Office Action dated Jan. 19, 2012 from U.S. Appl. No. 13/190,121, 8 pages. |
Restriction Requirement dated Feb. 26, 2009 from U.S. Appl. No. 11/733,701, 9 pages. |
Response to Restriction Requirement filed Mar. 5, 2009 from U.S. Appl. No. 11/733,701, 2 pages. |
Non-Final Office Action dated Mar. 26, 2009 from U.S. Appl. No. 11/733,701, 11 pages. |
Response filed Jun. 26, 2009 to the Non-Final Office Action dated Mar. 26, 2009 from U.S. Appl. No. 11/733,701, 11 pages. |
Final Office Action dated Oct. 21, 2009 from U.S. Appl. No. 11/733,701, 14 pages. |
Response filed Dec. 2, 2009 to the Final Office Action dated Oct. 21, 2009 from U.S. Appl. No. 11/733,701, 10 pages. |
Non-Final Office Action dated Dec. 23, 2011 from U.S. Appl. No. 11/733,701, 13 pages. |
Response filed Mar. 27, 2012 to the Non-Final Office Action dated Dec. 23, 2011 from U.S. Appl. No. 11/733,701, 12 pages. |
Notice of Non-Compliant Amendment dated May 23, 2012 from U.S. Appl. No. 11/733,701, 2 pages. |
Response filed Sep. 24, 2012 to the Non-Final Office Action dated Jun. 15, 2012 from U.S. Appl. No. 12/954,545, 13 pages. |
Applicant Summary of Interview with Examiner filed Oct. 5, 2012 from U.S. Appl. No. 12/954,545, 2 pages. |
Applicant Initiated Interview Summary dated Oct. 16, 2012 from U.S. Appl. No. 12/954,545, 3 pages. |
Notice of Allowance dated Nov. 26, 2012 from U.S. Appl. No. 12/954,545, 9 pages. |
Supplemental Amendment filed Feb. 13, 2013 from U.S. Appl. No. 12/954,545, 11 pages. |
Non-Final Office Action dated Mar. 1, 2013 from U.S. Appl. No. 12/954,545, 8 pages. |
Response filed Jun. 24, 2013 to the Non-Final Office Action dated Mar. 1, 2013 from U.S. Appl. No. 12/954,545, 12 pages |
Notice of Allowance dated Jul. 11, 2013 from U.S. Appl. No. 12/954,545, 10 pages. |
Applicant Initiated Interview Summary dated Aug. 26, 2013 from U.S. Appl. No. 12/954,545, 3 pages. |
Non-Final Office Action dated May 28, 2014 from U.S. Appl. No. 13/183,124, 21 pages. |
Response filed Sep. 29, 2014 to the Non-Final Office Action dated May 28, 2014 from U.S. Appl. No. 13/184,124, 13 pages. |
Non-Final Office Action dated Feb. 3, 2015 from U.S. Appl. No. 13/183,124, 29 pages. |
Response filed May 4, 2015 to the Non-Final Office Action dated Feb. 3, 2015 from U.S. Appl. No. 13/183,124, 16 pages. |
Non-Final Rejection dated Jun. 18, 2015 from U.S. Appl. No. 13/184,050, 24 pages. |
Response to Final Office Action filed Feb. 25, 2015 from U.S. Appl. No. 13/184,050, 17 pages. |
Final Office Action dated Nov. 26, 2014 from U.S. Appl. No. 13/184,050, 22 pages. |
Response filed Oct. 10, 2014 to the Non-Final Office Action dated Jun. 11, 2014 from U.S. Appl. No. 13/184,050, 11 pages. |
Non-Final Office Action dated Jun. 11, 2014 from U.S. Appl. No. 13/183,050, 19 pages. |
Official Action dated Mar. 25, 2014 Withdrawing/Vacating previous Office Action from U.S. Appl. No. 13/184,050, 2 pages. |
Applicant Initiated Interview Summary dated Dec. 26, 2013 from U.S. Appl. No. 13/184,050, 3 pages. |
Non-Final Office Action dated Sep. 24, 2013 from U.S. Appl. No. 13/184,050, 11 pages. |
Notice of Allowance and Examiner Initiated Interview Summary dated Jul. 22, 2015 from U.S. Appl. No. 13/183,124, 17 pages. |
Supplemental Notice of Allowability dated Aug. 4, 2015 from from U.S. Appl. No. 13/183,124, 2 pages. |
Notice of Allowance, Office Action Appendix and Applicant-Initiated Interview Summary dated Oct. 20, 2015 from U.S. Appl. No. 13/183,050, 20 pages. |
Corrected Notice of Allowability dated Oct. 22, 2015 from U.S. Appl. No. 13/325,065, 2 pages. |
First Office Action dated Mar. 3, 2016 from China Patent Application No. 201380046819.5, 13 pages. |
Notice of Allowance dated Mar. 14, 2016 from U.S. Appl. No. 13/183,050, 49 pages. |
Notice of Allowance dated Feb. 29, 2016 from U.S. Appl. No. 13/183,124, 24 pages. |
Non-Final Office Action dated Apr. 4, 2016 from U.S. Appl. No. 13/606,029, 15 pages. |
Response to the Final Office Action dated Dec. 4, 2015 and After Final Consideration Pilot Program 2.0 Request filed Feb. 11, 2016 from U.S. Appl. No. 13/606,029, 11 pages. |
Notice of Allowance dated Mar. 28, 2016 from U.S. Appl. No. 13/325,065, 11 pages. |
Advisory Action and AFCP 2.0 Decision dated Feb. 23, 2016 from U.S. Appl. No. 13/606,029, 4 pages. |
Supplemental Notice of Allowability dated Aug. 27, 2015 from from U.S. Appl. No. 13/183,124, 2 pages. |
Response filed Feb. 25, 2015 to Final Office Action dated Nov. 26, 2014 from U.S. Appl. No. 13/183,050, 17 pages. |
Non-Final Ofice Action dated Jun. 18, 2015 from U.S. Appl. No. 13/183,050, 24 pages. |
Goldstone et al., “Group Path Formation,” IEEE Transaction on Systems, Man and Cybernetics, Part A: Systems Humans, 2006, vol. 36, Issue 3, pp. 611-620, 10 pages. |
Samaan et al., “A User Centric Mobility Prediction Approach Based on Spatial Conceptual Maps,” 2005 IEEE International Conference on Communications, vol. 2, pp. 1413-1417, 5 pages. |
Notice of Allowance dated Sep. 10, 2015 from U.S. Appl. No. 13/325,065, 6 pages. |
Non-Final Office Action dated Sep. 8, 2015 from U.S. Appl. No. 13/190,121, 12 pages. |
Notice of Allowability dated Jun. 14, 2016 from U.S. Appl. No. 13/183,124, 10 pages. |
Notice of Allowability dated Jun. 10, 2016 from U.S. Appl. No. 13/183,050, 19 pages. |
Preliminary Amendment filed Jun. 15, 2016 to U.S. Appl. No. 15/181,091, 8 pages. |
Notice of Allowability dated Jun. 7, 2016 from U.S. Appl. No. 13/325,065, 18 pages. |
Response filed Jul. 19, 2016 to the Non-Final Office Action dated Apr. 4, 2016 from U.S. Appl. No. 13/606,029, 17 pages. |
Response filed Jul. 18, 2016 to the First Office Action dated Mar. 3, 2016 from China Patent Application No. 201380046819.5, 10 pages. |
Supplemental Notice of Allowability dated Aug. 10, 2016 from U.S. Appl. No. 13/183,124, 7 pages. |
U.S. Appl. No. 60/721,879 titled “Predestination” filed Sep. 29, 2005 by Inventors Eric J. Horvitz and John C. Krumm, 31 pages. |
International Preliminary Report on Patentability dated Apr. 10, 2008 from PCT Patent Application No. PCT/US2006/034608, 6 pages. |
U.S. Appl. No. 60/910,799 titled “Learning and Reasoning to Enhance Energy Efficiency in Trasportation Systems” filed Apr. 9, 2009 by Inventors Eric J. Horvitz and John C. Krumm, 61 pages. |
International Preliminary Report on Patentability dated Mar. 19, 2015 from PCT Patent Application No. PCT/US2013/058350, 7 pages. |
Supplemental Notice of Allowability dated Sep. 13, 2016 from U.S. Appl. No. 13/183,124, 6 pages. |
Supplemental Notice of Allowability dated Sep. 13, 2016 from U.S. Appl. No. 13/183,050, 6 pages. |
Final Office Action dated Oct. 4, 2016 from U.S. Appl. No. 13/606,029, 138 pages. |
Notice of Allowance dated Jan. 13, 2017 from U.S. Appl. No. 13/606,029, 23 pages. |
Groves, Paul D., “Shadow Matching: A New GNSS Positioning Thecnique for Urban Canyons”, The Journal of Navigation, 2011, vol. 64, pp. 417-430, 14 pages. |
Youssef et al., “The Horus WLAN Location Determination System”, 3rd International Conference on Mobile Systems, Applications and Services, Jun. 6, 2005, pp. 205-218, 14 pages. |
Zheng et al., “HIPS: A Calibration-less Hybrid Indoor Positioning System Using Heterogeneous Sensors”, PerCom 2009, IEEE International Conference on Pervasive Computing and Communications, Mar. 9, 2009, pp. 1-6, 6 pages. |
Request for Examination and Voluntary Amendment filed Sep. 6, 2016 from Japanese Patent Application No. 2015-531214, 11 pages. |
Non-Final Office Action dated May 11, 2015 from U.S. Appl. No. 13/606,008, 24 pages. |
Response filed Nov. 11, 2015 to the Non-Final Office Action dated May 11, 2015 from U.S. Appl. No. 13/606,008, 13 pages. |
Notice of Allowance and Examiner-Initiated Interview Summary dated Dec. 9, 2015 from U.S. Appl. No. 13/606,008, 19 pages. |
Second Office Action dated Nov. 3, 2016 from Chinese Patent Application No. 201380046819.5, 10 pages. |
Response filed Jan. 17, 2017 to the Second Office Action dated Nov. 3, 2016 from Chinese Patent Application No. 201380046819.5, 12 pages. |
“Time Domain”, captured by the Internet archive at «http://web.archive.org/web/20111026011954/http://www.timedomain.com/» on Oct. 26, 2011, 2 pages. |
Alzantot et al., “IPS: Ubiquitous Indoor Positioning System”, retrieved at «http://wrc.ejust.edu.eg/IPS.html» on Apr. 17, 2012, pp. 1-3, 3 pages. |
Bahl et al., “RADAR: An In-Building RF-based User Location and Tracking System”, IEEE Infocom 2000 Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, Mar. 2000, pp. 775-784, 10 pages. |
Balas, Ciprian-Mihai, “Indoor Localization of Mobile Devices for a Wireless Monitoring System Based on Crowdsourcing”, Master of Science, Computer Science, School of Informatics, University of Edinburgh, 2011, 78 pages. |
Bauer et al., “Using Wireless Physical Layer Information to Construct Implicit Identifiers”, Hot Topics in Privacy Enhancing Technologies, Jul. 2008, pp. 1-15, 15 pages. |
Beauregard et al., “Pedestrian Dead Reckoning: A Basis for Personal Positioning”, 3rd Workshop on Positioning, Navigation and Communication, Mar. 16, 2006, pp. 27-36, 10 pages. |
Brik et al., “Wireless Device Identification with Radiometric Signatures”, 14th ACM International Conference on Mobile Computing and networking, Sep. 14-19, 2008, pp. 1-13, 13 pages. |
Bulusu et al., “GPS-less Low Cost Outdoor Localization for Very Small Devices”, IEEE Personal Communications, vol. 7, Issue 5, Oct. 2000, pp. 28-34, 7 pages. |
Chintalapudi et al., “Indoor Localization Without the Pain”, Sixteenth Annual International Conference on Mobile Computing and Networking, Sep. 20-24, 2010, pp. 173-184, 12 pages. |
Fox et al., “Monte Carlo Localization: Efficient Position Estimation for Mobile Robots”, Sixteenth National Conference on Artificial Intelligence, Jul. 1999, pp. 343-349, 7 pages. |
Goswami et al., “WiGEM: A Learning-Based Approach for Indoor Localization”, Seventh Conference on Emerging Networking Experiments and Technologies, Dec. 6-9, 2011, pp. 1-12, 12 pages. |
Kim et al., “A Step, Stride and Heading Determination for the Pedestrian Navigation System”, Journal of Global Positioning Systems, vol. 3, Issue 1-2, Dec. 6, 2004, pp. 273-279, 7 pages. |
Krumm et al., “Minimizing Calibration Effort for an Indoor 802.11 Device Location Measurement System”, retrieved at «http://research.microsoft.com/pubs/68919/tr-2003-82.pdf», Microsoft Research, Tech. Report. MSR-TR-2003-82, Nov. 13, 2003, pp. 1-9, 9 pages. |
Lee et al., “Crowdsourced Radiomap for Room-Level Place Recognition in Urban Environment”, 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Mar. 29, 2010, pp. 648-653, 6 pages. |
Leonard et al., “Simultaneous Map Building and Localization for an Autonomous Mobile Robot”, International Workshop on Intelligent Robots and Systems, Nov. 3-5, 1991, pp. 1442-1447, 6 pages. |
Padmanabhan, Venkat, “The Quest for Zero-Effort Indoor Localization”, retrieved at «http://www.pdl.cmu.edu/SDI/2012/043012.html» on Apr. 17, 2012, 1 page. |
Robertson et al., “Simultaneous Localization and Mapping for Pedestrians using only Foot-Mounted Inertial Sensors”, 11th International Conference on Ubiquitous Computing, Sep. 30-Oct. 3, 2009, pp. 93-96, 4 pages. |
Sen et al., “Precise Indoor Localization using PHY Layer Information”, 9th International Conference on Mobile Systems, Applications and Services, Nov. 14-15, 2011, pp. 1-6, 6 pages. |
Sen et al., “SpinLoc: Spin Once to Know Your Location”, 13th Workshop on Mobile Computing Systems & Applications, Feb. 28-29, 2012, pp. 1-6, 6 pages. |
Smith et al., “On the Representation and Estimation of Spatial Uncertainty”, International Journal of Robotics Research, vol. 5, No. 4, May 1986, pp. 56-68, 13 pages. |
Xiong et al., “ArrayTrack: A Fine-Grained Indoor Location System”, 13th International Workshop on Mobile Computing System and Applications, Feb. 28, 2012, pp. 1-6, 6 pages. |
Corrected Notice of Allowability dated Feb. 14, 2017 from U.S. Appl. No. 13/606,029, 6 pages. |
Search Report dated Jan. 15, 2007 from PCT Patent Application No. PCT/US2006/034608, 2 pages. |
Applicant-Initiated Interview Summary dated Dec. 7, 2016 from U.S. Appl. No. 13/606,029, 4 pages. |
Response filed Dec. 12, 2016 to the Final Office Action dated Oct. 4, 2016 from U.S. Appl. No. 13/606,029, 12 pages. |
Corrected Notice of Allowability dated Mar. 14, 2017 from U.S. Appl. No. 13/606,029, 6 pages. |
Supplemental Notice of Allowability dated Apr. 17, 2017 from U.S. Appl. No. 13/606,029, 6 pages. |
Third Office Action dated May 2, 2017 from Chinese Patent Application No. 201380046819.5, 9 pages. |
Preliminary Amendment filed Mar. 24, 2017 from U.S. Appl. No. 15/233,699, 8 pages. |
Chang et al., “Progressive Lane Analysis in the Digital Map using Fuzzy Method,” Department of Computer Science and Engineering Tatung University, 2006, 4 pages. |
Chen et al., “Modeling Route Choice Behavior from Smart-phone GPS Data,” Transport and Mobility Laboratory, Ecole Polytechnique Federale de Lausanne, Nov. 5, 2009, pp. 1-12, 12 pages. |
Jeong et al., “TBD: Trajectory-Based Data Forwarding for Light-Traffic Vehicular Networks,” 29th IEEE International Conference on Distributed Computing Systems, Jun. 22-26, 2009, pp. 231-238, 8 pages. |
Martin et al., “Dynamic GPS-Position Correction for Mobile Pedestrian Navigation and Orientation,” Proceedings of the 3rd Workshop on Positioning, Navigation and Communication, 2006, pp. 199-208, 10 pages. |
Renso et al., “Wireless Network Data Sources: Tracking and Synthesizing Trajectories,” retrieved at «http://www.dsc.ufcg.edu.br/˜sampaio/Livros/mobility-data-mining-and-privacy-geographic-knowledge-discover.pdf190 page=84», 2008, pp. 73-99, 28 pages. |
Scott et al., “Increased Accuracy of Motor Vehicle Position Estimation by Utilising Map Data, Vehicle Dynamics, and Other Information Sources,” IEEE Vehicle Navigation and Information Systems Conference Proceedings, 1994, pp. 585-590, 6 pages. |
Skog et al., “In-Car Positioning and Navigation Technologies—a Survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 10, No. 1, Mar. 2009, pp. 4-21, 18 pages. |
Subramanian et al., “Drive-by Localization of Roadside WiFi Networks,” IEEE Infocom Conference, Apr. 13-18, 2008, pp. 718-725, 9 pages. |
Response filed Dec. 8, 2015 to the Non-Final Office Action dated Sep. 8, 2015 from U.S. Appl. No. 13/190,121, 15 pages. |
Notice of Allowance dated Nov. 16, 2015 from U.S. Appl. No. 13/183,124, 8 pages. |
Notice of Allowance dated Dec. 17, 2015 from U.S. Appl. No. 13/325,065, 18 pages. |
Preliminary Amendment filed Aug. 23, 2013 from U.S. Appl. No. 13/606,029, 8 pages. |
Restriction Requirement dated Jun. 25, 2015 from U.S. Appl. No. 13/606,029, 6 pages. |
Response filed Jul. 21, 2015 to Restriction Requirement dated Jun. 25, 2015 from U.S. Appl. No. 13/606,029, 8 pages. |
Non-Final Office Action dated Aug. 7, 2015 from U.S. Appl. No. 13/606,029, 16 pages. |
Applicant-Initiated Interview Summary dated Nov. 17, 2015 from U.S. Appl. No. 13/606,029, 3 pages. |
Response filed Nov. 17, 2015 to Non-Final Office Action dated Aug. 7, 2015 from U.S. Appl. No. 13/606,029, 14 pages. |
Final Office Action dated Dec. 4, 2015 from U.S. Appl. No. 13/606,029, 6 pages. |
International Search Report and Written Opinion dated Dec. 20, 2013 from PCt Patent Application No. PCT/US2013/058350, 10 pages. |
Non-Final Office Action dated Jun. 6, 2013 from U.S. Appl. No. 13/117,171, 16 pages. |
Response filed Oct. 28, 2013 to Non-Final Office Action dated Jun. 6, 2013 from U.S. Appl. No. 13/117,171, 8 pages. |
Final Office Action dated Dec. 6, 2013 from U.S. Appl. No. 13/117,171, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20130110454 A1 | May 2013 | US |