Embodiments generally relate to medication delivery. More particularly, embodiments relate to drug delivery systems for delivering multiple different drugs.
Many patients may be required to receive dosages of different drugs. Conventional drug delivery systems, such as many conventional wearable drug delivery devices, typically only provide a dosage of a single drug. Therefore, a patient may be required to use multiple conventional drug delivery devices to receive the different drug dosages. With each additional device, the patient is required to insert a new needle to facilitate delivery of each drug. Accordingly, what is needed is a drug delivery system that can deliver multiple different drugs and dosages in a less burdensome manner while reducing patient discomfort.
This disclosure presents various systems, components, and methods related to a drug delivery system. Each of the systems, components, and methods disclosed herein provides one or more advantages over conventional systems, components, and methods.
Various embodiments provide a multiple stage (multi-stage) drug delivery system and method of use. The multi-stage drug delivery system can include two or more chambers for storing liquid drugs. The multi-stage drug delivery system can deliver each drug to a user in succession. The multi-stage drug delivery system can include the same drugs or different drugs. The multi-stage drug delivery system can store and dispense the same amount of each drug or different amounts of each drug. Each drug can be delivered at a desired rate over a desired amount of time. The multi-stage drug delivery system can interface with a variety of different fluid delivery mechanisms to pass the stored drugs to the user. The multi-stage drug delivery system provides a simplified architecture for storing and dispending multiple different drugs to the user within the same container, enabling the user to use a same needle insertion to deliver the drugs. The multi-stage drug delivery device can be implemented within an on-body or wearable drug delivery device. Other embodiments are disclosed and described.
Various embodiments include a multi-stage drug delivery system having a cartridge, a first plunger positioned in the cartridge, and a second plunger positioned in the cartridge with the second plunger spaced apart from the first cartridge. The first plunger can be accessible through a first end of the cartridge. The first plunger, the second plunger, and the cartridge can form a first chamber configured to store a first liquid drug. The second plunger and the cartridge can form a second chamber configured to store a second liquid drug. A cannula can pierce the first plunger to access the first liquid drug. As the first plunger is driven toward the second plunger, the first liquid drug can be expelled from the first chamber for delivery to a patient through the cannula. After expelling the first liquid drug, the cannula can pierce the second plunger to access the second liquid drug. As the first and second plungers are together driven toward a closed end of the cartridge, the second liquid drug can be expelled from the second chamber for delivery to the patient through the cannula. The multi-stage drug delivery system allows two or more drugs to be delivered to a patient at different predetermined times, in different amounts, and according to different rates.
As shown in
The first and second drugs 108 and 110 can be hermetically separated and sealed by the cartridge 102 and the first and second plungers 104 and 106 as shown in
The multi-stage drug delivery system 100 can be used in a drug delivery device that provides the first and second drugs 108 and 110 to a user. For example, the multi-stage drug delivery system 100 can be part of a bolus device and/or a wearable drug delivery device. The multi-stage drug delivery system 100 can include the same or different amounts of the first and second drugs 108 and 110 (e.g., the dosages of the first and second drugs 108 and 110 can be the same or different). The first drug 108 can be dispensed first over a first amount of time at a first rate of delivery with the second drug 110 dispensed over a second amount of time at a second rate of delivery, after the first drug 108 is dispensed. The multi-stage drug delivery system 100 enables the first and second drugs 108 and 110 to be provided to the user using the same fluid path to the user. Consequently, a single needle insertion can be used to deliver the first and second drugs 108 and 110.
The multi-stage drug delivery system 100 can dispense the second drug 110 immediately after the first drug 108 has been dispensed or can deliver the second drug 110 after a delay. Accordingly, the first and second drugs 108 and 110 can be delivered relatively close together in time or can be delivered at separate times after a desired delay. Further, the delivery of the first and second drugs 108 and 110 can be customized in terms of the rate at which each drug is delivered. For example, the first drug 108 can be delivered over a first amount of time while the second drug can be delivered over a second, different amount of time. The first and second amounts of time can be varied as desired to dispense the first and second drugs 108 and 110 at different desired rates of delivery, respectively. In this way, a customized delivery of the first and second drugs 108 and 110 can be provided with the dosages (e.g., how much drug to dispense in total), delivery times (e.g., when to dispense a drug), and delivery schedules (e.g., how quickly or slowly to dispense the dosage) for each drug being largely independent of each another.
As shown in
As shown in
Once the cannula 112 is inserted into the first stage of the multi-stage drug delivery system 100 at a desired depth, the first drug 108 can be introduced into the fluid delivery mechanism coupled to the cannula 112. As an example, the cannula 112 can be coupled to a fluid delivery mechanism that delivers the first drug 108 to a user or patient. A variety of fluid delivery mechanisms can be used. For example, the fluid delivery mechanism can include one or more components for coupling the cannula 112 to the patient. In various embodiments, the components can include tubing (e.g., plastic and/or stainless steel tubing) coupled to the cannula as well as a needle or cannula (e.g., coupled to the tubing) for accessing a site on the patient. Overall, the fluid delivery mechanism 198 can be or can provide a fluid path 178 from the cannula to the user of the multi-stage drug delivery system 100. Accordingly, when the cannula 112 is coupled to a liquid drug, then the fluid path can be used to deliver the liquid drug to the user. In various embodiments, the cannula 112 can be part of the fluid delivery mechanism 198 or can be coupled to it. In various embodiments, the cannula 112 can be coupled via the fluid path 178 to the patient.
The fluid delivery mechanism 198 can further be used to apply the force 202. As an example, the fluid delivery mechanism 198 can include a cannula insertion component 188 for driving the cannula 112 in a direction indicated by the applied force 202 to pierce the first plunger 104. The cannula insertion component 188 can be coupled to the cannula 112 and can be triggered to cause the cannula 112 to advance toward the first plunger 104 to pierce the first plunger 104. In various embodiments, the cannula insertion component 188 can comprise a mechanical system or an electromechanical system for manipulating the cannula 112. In various embodiments, the cannula insertion component 188 can include one or more springs such as, for example, an expansion spring, a compression spring, and/or a torsion spring. The cannula insertion component 188 can be triggered to pierce the cannula 112 through the first plunger 104 based on a user input or action that indicates a desire to activate delivery of the first drug 108 (e.g., by a user pressing a button on a wearable drug delivery device to activate the device).
Further, the fluid delivery mechanism 198 can include a drive component, such as 168, to apply a force 204 on the first plunger 104 to force the first drug 108 out of the first stage of the multi-stage drug delivery system 100. For example, after the cannula 112 pierces the first plunger 104 and is positioned at a desired depth within the first chamber 114, a second force can be applied to the first plunger 104 as indicated by indicators 204. The force 204 can be applied to any portion of the first surface 118 of the first plunger 104 (e.g., at one or more positions along the first surface 118). The force 204 can drive the first drug 108 out of the first chamber 114, through the fluid delivery mechanism 198 (e.g., the cannula 112 and any other components coupling the cannula to the patient), and on to the user. The force 204 can cause the first plunger 104 to move towards the stationary second plunger 106. The drive component 168 can be coupled to the first plunger 104. In various embodiments, the drive component 168 can comprise a mechanical system or an electromechanical system for driving the first plunger 104 toward the far end of the cartridge 102. In various embodiments, the drive component 168 can include one or more springs such as, for example, an expansion spring, a compression spring, and/or a torsion spring.
The applied force 204 can be constant or varied and can be used to deliver the first drug 108 to the user over a desired amount of time (e.g., at a desired rate of delivery). For example, a relatively strong force 204 can be applied to rapidly provide the first drug 108 to the user. Alternatively, a relatively weak force 204 can be applied to slowly provide the first drug 108 to the user. In general, any delivery schedule and rate of delivery of the first drug 108 can be provided by using and varying the force 204.
As shown in
The force 204 applied to the first plunger 104 can drive the first plunger 104 to the position shown in
When the cannula 112 is inserted through the second plunger 106 and into the second chamber 116 of the multi-stage drug delivery system 100, the second drug 110 can be introduced into the fluid path coupled to the user (e.g., a fluid path coupled to the cannula 112). Specifically, the second drug 110 can be provided to the delivery mechanism coupled to the cannula 112 so that the second drug 110 may be passed on to the user. As shown, the force 204 can be applied to the first plunger 104 to move both the first plunger 104 and the second plunger 106 toward the end of the cartridge 102. That is, by applying the force 204 to the first plunger 104, the second plunger 106 is forced to move toward an end of the cartridge 102. In turn, the volume or size of the second chamber 116 is reduced which forces the second drug 110 through the cannula 112 and on to the fluid delivery mechanism.
As shown in
A reduction in stroke 604 is also shown for reference in
In various embodiments, the force 502 can generally be applied to drive the cannula 112 through the plungers 104 and 106. The force 502 can then be removed or stopped and the force 204 can be applied or reapplied to drive the first plunger 104 (and the second plunger 106 when appropriate) towards the end (e.g., a closed end) of the cartridge 102. That is, the force 502 may not be used to drive the plungers 104 and 106 to the end of the cartridge 102. The force 204 can be applied along any portion of the first plunger 104 (e.g., including one or more positions along any portion of the first plunger 104).
As shown in
At 802, a container configured to store a first drug in a first chamber and configured to store a second drug in a second, different chamber can be provided. The first and second drugs can be liquid drugs. The first and second drugs can be any type of liquid drugs. The first and second liquid drugs can be the same or different drugs. The first and second chambers can be of the same size or can be configured to store different amounts of the first and second drugs, respectively.
The first and second drugs can be sealed and separated from each other. A first plunger positioned in the container, a second plunger positioned in the container and spaced apart from the first plunger, and the container can form the first chamber. The second plunger and the container can form the second chamber.
At 804, a cannula can pierce the first plunger. The cannula can be positioned at a center of the first plunger. The cannula can extend through the first plunger and into the first chamber. The cannula can extend into the first chamber by a desired amount or depth and can be coupled to the first drug.
The cannula can be coupled to the patient. Accordingly, when the cannula accesses the first drug stored in the first chamber the cannula can couple the first drug to the patient.
At 806, the first plunger is driven toward an end of the container. The first plunger is advanced further into the container toward the second plunger. The cannula can remain positioned in the first plunger as the first plunger is advanced. The second plunger can remain stationary. As a result of the first plunger moving further into the container, the first drug is expelled from the first chamber (e.g., as the size or volume of the first chamber is reduced). The expelled first drug can flow into and through the cannula and on to the patient.
The first plunger can be advanced to expel substantially all of the first drug. When substantially all of the first drug is expelled, the first plunger can be positioned against the second plunger.
At 808, the second plunger can be pierced by the cannula. The cannula can extend through the second plunger (and through the first plunger) and into the second chamber. The cannula can extend into the second chamber by a desired amount or depth and can be coupled to the second drug. Accordingly, when the cannula accesses the second drug stored in the second chamber the cannula can couple the second drug to the patient.
At 810, the first plunger and second plungers are driven toward the end of the container. The first and second plungers are advanced further into the container toward a closed end of the container. The cannula can remain positioned in the first and second plungers as the first and second plungers are advanced. As a result of the first and second plungers moving further into the container, the second drug is expelled from the second chamber (e.g., as the size or volume of the second chamber is reduced). The expelled second drug can flow into and through the cannula and on to the patient.
The first and second plungers can be advanced to expel substantially all of the second drug. When substantially all of the second drug is expelled, the second plunger can be positioned against the closed end of the container with the first plunger positioned against the second plunger.
The following examples pertain to additional further embodiments:
Example 1 is a multiple stage drug delivery system, comprising a cartridge, a first plunger positioned in the cartridge, and a second plunger positioned in the cartridge, wherein the first plunger, the second plunger, and the cartridge form a first chamber configured to store a first liquid drug, and the second plunger and the cartridge form a second chamber configured to store a second liquid drug.
Example 2 is an extension of Example 1 or any other example disclosed herein, further comprising a cannula configured to pierce the first plunger to access the first liquid drug stored in the first chamber.
Example 3 is an extension of Example 2 or any other example disclosed herein, further comprising a cannula insertion component coupled to the cannula.
Example 4 is an extension of Example 3 or any other example disclosed herein, wherein the cannula insertion component comprises one or more springs.
Example 5 is an extension of Example 3 or any other example disclosed herein, wherein the cannula is coupled to a patient, wherein the cannula couples the first liquid drug stored in the first chamber to the patient when the cannula accesses the first chamber.
Example 6 is an extension of Example 5 or any other example disclosed herein, further comprising a drive component configured to advance the first plunger toward the second plunger, thereby extracting the first liquid drug from the first chamber for delivery to the patient through the cannula.
Example 7 is an extension of Example 6 or any other example disclosed herein, wherein the drive component comprises one or more springs.
Example 8 is an extension of Example 6 or any other example disclosed herein, wherein the drive component comprises an electromechanical system.
Example 9 is an extension of Example 6 or any other example disclosed herein, wherein the cannula is configured to pierce the second plunger to access the second liquid drug stored in the second chamber after the first liquid drug is extracted from the first chamber.
Example 10 is an extension of Example 9 or any other example disclosed herein, wherein the cannula couples the second liquid drug stored in the second chamber to the patient when the cannula accesses the second chamber.
Example 11 is an extension of Example 9 or any other example disclosed herein, wherein the first plunger is positioned adjacent to the second plunger after the first drug is extracted from the first chamber.
Example 12 is an extension of Example 11 or any other example disclosed herein, wherein the drive component is configured to advance the first plunger and the second plunger toward an end of the cartridge, thereby extracting the second liquid drug from the second chamber for delivery to the user through the cannula.
Example 13 is an extension of Example 12 or any other example disclosed herein, wherein the first drug is dispensed over a first amount of time at a first rate and the second drug is dispensed over a second amount of time at a second rate.
Example 14 is an extension of Example 13 or any other example disclosed herein, wherein the first amount of time and the second amount of time are non-overlapping.
Example 15 is an extension of Example 13 or any other example disclosed herein, wherein the first and second rates are different.
Example 16 is an extension of Example 1 or any other example disclosed herein, wherein the first and second plungers are elastomeric plungers.
Example 17 is an extension of Example 1 or any other example disclosed herein, wherein the first and second liquid drugs are different drugs.
Example 18 is an extension of Example 1 or any other example disclosed herein, wherein the first chamber and the second chamber have different volumes.
Example 19 is an extension of Example 1 or any other example disclosed herein, wherein the cartridge comprises glass.
Example 20 is a method, comprising providing a container configured to store a first liquid drug in a first chamber and a second liquid drug in a second chamber, piercing a first plunger with a cannula to couple the cannula to the first liquid drug, driving the first plunger toward an end of the container to extract the first liquid drug from the first chamber through the cannula, piercing a second plunger with the cannula to couple the cannula to the second liquid drug, and driving the first and second plungers toward the end of the container to extract the second liquid drug from the second chamber through the cannula.
Example 21 is an extension of Example 21 or any other example disclosed herein, further comprising piercing the second plunger after substantially all of the first liquid drug is extracted from the first chamber.
Example 22 is an extension of Example 21 or any other example disclosed herein, further comprising piercing the second plunger after a predetermined delay.
Example 23 is an extension of Example 22 or any other example disclosed herein, further comprising extracting the first liquid drug from the first chamber at a first rate and extracting the second liquid drug from the second chamber at a second, different rate.
Example 24 is an extension of Example 23 or any other example disclosed herein, wherein the first and second liquid drugs are different liquid drugs.
Example 25 is an extension of Example 20 or any other example disclosed herein, further comprising sealing the first chamber with the container and the first and second plungers and sealing the second chamber with the container and the second plunger.
Certain embodiments of the present invention were described above. It is, however, expressly noted that the present invention is not limited to those embodiments, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the invention. Moreover, it is to be understood that the features of the various embodiments described herein were not mutually exclusive and can exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the invention. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention. As such, the invention is not to be defined only by the preceding illustrative description.
This application claims the benefit of U.S. Provisional Application No. 62/405,489, filed Oct. 7, 2016, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1441508 | Marius et al. | Jan 1923 | A |
2198666 | Gruskin | Apr 1940 | A |
3176712 | Ramsden | Apr 1965 | A |
3297260 | Barlow | Jan 1967 | A |
3885662 | Schaefer | May 1975 | A |
3946732 | Hurscham | Mar 1976 | A |
3993061 | O'Leary | Nov 1976 | A |
4108177 | Pistor | Aug 1978 | A |
4152098 | Moody et al. | May 1979 | A |
4210173 | Choksi et al. | Jul 1980 | A |
4221219 | Tucker | Sep 1980 | A |
4257324 | Stefansson et al. | Mar 1981 | A |
4268150 | Chen | May 1981 | A |
4313439 | Babb et al. | Feb 1982 | A |
4417889 | Choi | Nov 1983 | A |
4424720 | Bucchianeri | Jan 1984 | A |
4435173 | Siposs et al. | Mar 1984 | A |
4498843 | Schneider et al. | Feb 1985 | A |
4507115 | Kambara et al. | Mar 1985 | A |
4551134 | Slavik et al. | Nov 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4567549 | Lemme | Jan 1986 | A |
4585439 | Michel | Apr 1986 | A |
4601707 | Albisser et al. | Jul 1986 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4671429 | Spaanderman et al. | Jun 1987 | A |
4678408 | Nason et al. | Jul 1987 | A |
4684368 | Kenyon | Aug 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4755169 | Sarnoff et al. | Jul 1988 | A |
4766889 | Trick et al. | Aug 1988 | A |
4808161 | Kamen | Feb 1989 | A |
4846797 | Howson et al. | Jul 1989 | A |
4858619 | Toth | Aug 1989 | A |
4898579 | Groshong et al. | Feb 1990 | A |
4908017 | Howson et al. | Mar 1990 | A |
4944659 | Labbe et al. | Jul 1990 | A |
4969874 | Michel et al. | Nov 1990 | A |
5007458 | Marcus et al. | Apr 1991 | A |
5020325 | Henault | Jun 1991 | A |
5062841 | Siegel | Nov 1991 | A |
5178609 | Ishikawa | Jan 1993 | A |
5205819 | Ross et al. | Apr 1993 | A |
5213483 | Flaherty et al. | May 1993 | A |
5222362 | Maus et al. | Jun 1993 | A |
5236416 | McDaniel et al. | Aug 1993 | A |
5261882 | Sealfon | Nov 1993 | A |
5261884 | Stern et al. | Nov 1993 | A |
5277338 | Divall | Jan 1994 | A |
5281202 | Weber et al. | Jan 1994 | A |
5346476 | Elson | Sep 1994 | A |
5364342 | Beuchat et al. | Nov 1994 | A |
5388615 | Edlund et al. | Feb 1995 | A |
5433710 | VanAntwerp et al. | Jul 1995 | A |
5503628 | Fetters et al. | Apr 1996 | A |
5520661 | Lal et al. | May 1996 | A |
5533389 | Kamen et al. | Jul 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5618269 | Jacobsen et al. | Apr 1997 | A |
5637095 | Nason et al. | Jun 1997 | A |
5665070 | McPhee | Sep 1997 | A |
5713875 | Tanner, II | Feb 1998 | A |
5747350 | Sattler | May 1998 | A |
5748827 | Holl et al. | May 1998 | A |
5776103 | Kriesel et al. | Jul 1998 | A |
5779676 | Kriesel et al. | Jul 1998 | A |
5785688 | Joshi et al. | Jul 1998 | A |
5797881 | Gadot | Aug 1998 | A |
5800397 | Wilson et al. | Sep 1998 | A |
5807075 | Jacobsen et al. | Sep 1998 | A |
5839467 | Saaski et al. | Nov 1998 | A |
5891097 | Saito et al. | Apr 1999 | A |
5897530 | Jackson | Apr 1999 | A |
5906597 | McPhee | May 1999 | A |
5911716 | Rake et al. | Jun 1999 | A |
5919167 | Mulhauser et al. | Jul 1999 | A |
5957890 | Mann et al. | Sep 1999 | A |
5961492 | Kriesel et al. | Oct 1999 | A |
5971963 | Choi | Oct 1999 | A |
6019747 | McPhee | Feb 2000 | A |
6050457 | Arnold et al. | Apr 2000 | A |
6159188 | Laibovitz et al. | Dec 2000 | A |
6174300 | Kriesel et al. | Jan 2001 | B1 |
6190359 | Heruth | Feb 2001 | B1 |
6200293 | Kriesel et al. | Mar 2001 | B1 |
6363609 | Pickren | Apr 2002 | B1 |
6375638 | Nason et al. | Apr 2002 | B2 |
6474219 | Klitmose et al. | Nov 2002 | B2 |
6485461 | Mason et al. | Nov 2002 | B1 |
6485462 | Kriesel | Nov 2002 | B1 |
6488652 | Weijand et al. | Dec 2002 | B1 |
6520936 | Mann | Feb 2003 | B1 |
6527744 | Kriesel et al. | Mar 2003 | B1 |
6537249 | Kriesel et al. | Mar 2003 | B2 |
6569115 | Barker et al. | May 2003 | B1 |
6595956 | Gross et al. | Jul 2003 | B1 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6723072 | Flaherty et al. | Apr 2004 | B2 |
6749407 | Xie et al. | Jun 2004 | B2 |
6851260 | Mernoe | Feb 2005 | B2 |
6883778 | Newton et al. | Apr 2005 | B1 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7160272 | Eyal et al. | Jan 2007 | B1 |
7771392 | De Polo et al. | Aug 2010 | B2 |
7914499 | Gonnelli et al. | Mar 2011 | B2 |
8382703 | Abdelaal | Feb 2013 | B1 |
8499913 | Gunter | Aug 2013 | B2 |
8939935 | O'Connor et al. | Jan 2015 | B2 |
9180244 | Anderson et al. | Nov 2015 | B2 |
9192716 | Jugl et al. | Nov 2015 | B2 |
9402950 | Dilanni et al. | Aug 2016 | B2 |
20010016710 | Nason et al. | Aug 2001 | A1 |
20010056258 | Evans | Dec 2001 | A1 |
20020029018 | Jeffrey | Mar 2002 | A1 |
20020032374 | Holker et al. | Mar 2002 | A1 |
20020037221 | Mastrangelo et al. | Mar 2002 | A1 |
20020173769 | Gray et al. | Nov 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20030040715 | D'Antonio et al. | Feb 2003 | A1 |
20030097092 | Flaherty | May 2003 | A1 |
20030109827 | Lavi | Jun 2003 | A1 |
20030163097 | Fleury et al. | Aug 2003 | A1 |
20030199825 | Flaherty | Oct 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040064088 | Gorman et al. | Apr 2004 | A1 |
20040068224 | Couvillon, Jr. et al. | Apr 2004 | A1 |
20040069044 | Lavi et al. | Apr 2004 | A1 |
20040092865 | Flaherty et al. | May 2004 | A1 |
20040094733 | Hower et al. | May 2004 | A1 |
20040153032 | Garribotto et al. | Aug 2004 | A1 |
20050020980 | Inoue et al. | Jan 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20050273059 | Mernoe et al. | Dec 2005 | A1 |
20060041229 | Garibotto et al. | Feb 2006 | A1 |
20060079765 | Neer | Apr 2006 | A1 |
20060155210 | Beckman et al. | Jul 2006 | A1 |
20060173439 | Thorne, Jr. | Aug 2006 | A1 |
20060178633 | Garibotto et al. | Aug 2006 | A1 |
20060253085 | Geismar et al. | Nov 2006 | A1 |
20060282290 | Flaherty et al. | Dec 2006 | A1 |
20070005018 | Tekbuchava | Jan 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20080004515 | Jennewine | Jan 2008 | A1 |
20080051738 | Griffin | Feb 2008 | A1 |
20080114304 | Nalesso et al. | May 2008 | A1 |
20080172028 | Blomquist | Jul 2008 | A1 |
20090024083 | Kriesel et al. | Jan 2009 | A1 |
20090062767 | Van Antwerp et al. | Mar 2009 | A1 |
20090198215 | Chong et al. | Aug 2009 | A1 |
20100036326 | Matusch | Feb 2010 | A1 |
20100152658 | Hanson et al. | Jun 2010 | A1 |
20100241066 | Hansen et al. | Sep 2010 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
20110144586 | Michaud et al. | Jun 2011 | A1 |
20110230833 | Landman et al. | Sep 2011 | A1 |
20120078161 | Masterson et al. | Mar 2012 | A1 |
20130006213 | Arnitz | Jan 2013 | A1 |
20130017099 | Genoud et al. | Jan 2013 | A1 |
20130064701 | Konishi | Mar 2013 | A1 |
20130245545 | Arnold et al. | Sep 2013 | A1 |
20130267932 | Franke | Oct 2013 | A1 |
20140018730 | Muller-Pathle | Jan 2014 | A1 |
20140127048 | Dilanni et al. | May 2014 | A1 |
20140128839 | Dilanni et al. | May 2014 | A1 |
20140142508 | Dilanni et al. | May 2014 | A1 |
20140148784 | Anderson | May 2014 | A1 |
20140171901 | Langsdorf et al. | Jun 2014 | A1 |
20150041498 | Kakiuchi et al. | Feb 2015 | A1 |
20150057613 | Clemente | Feb 2015 | A1 |
20150081337 | Luce | Mar 2015 | A1 |
20150202386 | Brady et al. | Jul 2015 | A1 |
20150290389 | Nessel | Oct 2015 | A1 |
20150297825 | Focht et al. | Oct 2015 | A1 |
20160025544 | Kamen et al. | Jan 2016 | A1 |
20160193423 | Bilton | Jul 2016 | A1 |
20170021096 | Cole et al. | Jan 2017 | A1 |
20170021137 | Cole | Jan 2017 | A1 |
20170216516 | Dale et al. | Aug 2017 | A1 |
20170239415 | Hwang et al. | Aug 2017 | A1 |
20180313346 | Oakes et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
606281 | Oct 1960 | CA |
1375338 | Oct 2002 | CN |
4200595 | Jul 1993 | DE |
19723648 | Aug 1998 | DE |
0454331 | Oct 1991 | EP |
0789146 | Aug 1997 | EP |
867196 | Sep 1998 | EP |
1065378 | Jan 2001 | EP |
1177802 | Feb 2002 | EP |
1403519 | Mar 2004 | EP |
2397181 | Dec 2011 | EP |
2468338 | Jun 2012 | EP |
2703024 | Mar 2014 | EP |
2830499 | Feb 2015 | EP |
2096275 | Feb 1972 | FR |
2455269 | Nov 1980 | FR |
2507637 | Dec 1982 | FR |
2731475 | Sep 1996 | FR |
357139 | Sep 1931 | GB |
810488 | Mar 1959 | GB |
875034 | Aug 1961 | GB |
1204836 | Sep 1970 | GB |
2008806 | Jun 1979 | GB |
2077367 | Dec 1981 | GB |
2456681 | Jul 2009 | GB |
2549750 | Nov 2017 | GB |
46017 | Nov 1977 | IL |
06063133 | Mar 1994 | JP |
6098988 | Apr 1994 | JP |
H08238324 | Sep 1996 | JP |
2004247271 | Sep 2004 | JP |
2004274719 | Sep 2004 | JP |
2005188355 | Jul 2005 | JP |
2006159228 | Jun 2006 | JP |
2006249130 | Sep 2006 | JP |
1019126 | Apr 2003 | NL |
8101658 | Jun 1981 | WO |
8606796 | Nov 1986 | WO |
9415660 | Jul 1994 | WO |
9855073 | Dec 1998 | WO |
9856293 | Dec 1998 | WO |
9910040 | Mar 1999 | WO |
9910049 | Mar 1999 | WO |
9962576 | Dec 1999 | WO |
0029047 | May 2000 | WO |
0178812 | Oct 2001 | WO |
0220073 | Mar 2002 | WO |
0226282 | Apr 2002 | WO |
02068823 | Sep 2002 | WO |
02076535 | Oct 2002 | WO |
2003097133 | Nov 2003 | WO |
2004056412 | Jul 2004 | WO |
2004110526 | Dec 2004 | WO |
2007066152 | Jun 2007 | WO |
2008133702 | Nov 2008 | WO |
2009039203 | Mar 2009 | WO |
2010139793 | Dec 2010 | WO |
2011075042 | Jun 2011 | WO |
2011133823 | Oct 2011 | WO |
2012073032 | Jun 2012 | WO |
2013050535 | Apr 2013 | WO |
2013137893 | Sep 2013 | WO |
2013149186 | Oct 2013 | WO |
2014149357 | Sep 2014 | WO |
2015032772 | Mar 2015 | WO |
2015117854 | Aug 2015 | WO |
2015167201 | Nov 2015 | WO |
2015177082 | Nov 2015 | WO |
2017187177 | Nov 2017 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2018/014351, dated Jun. 4, 2018, 11 pages. |
Lind, et al.,“Linear Motion Miniature Actuators.” Paper presented at the 2nd Tampere International Conference on Machine Automation, Tampere, Finland (Sep. 1998). |
Author unknown, “The Animas R-1000 Insulin Pump—Animas Corporation intends to exit the insulin pump business and discontinue the manufacturing and sale of Animas® Vibe® and OneTouch Ping® insulin pumps.” [online], Dec. 1999 [retrieved on Jan. 8, 2019]. Retrieved from the Internet URL: http://www.animaspatientsupport.com/. |
Author unknown, CeramTec “Discover the Electro Ceramic Products CeramTec acquired from Morgan Advanced Materials” [online], Mar. 1, 2001 [retrieved on Jan. 8, 2019. Retrieved from the Internet URL: http://www.morgantechnicalceramics.com/. |
Vaughan, M.E., “The Design, Fabrication, and Modeling of a Piezoelectric Linear Motor.” Master's thesis, Virginia Polytechnic Institute and State University, VA. (2001). |
Galante, et al., “Design, Modeling, and Performance of a High Force Piezoelectric Inchworm Motor,” Journal of Intelligent Material Systems and Structures, vol. 10, 962-972 (1999). |
International Search Report and Written Opinion for Interantional application No. PCT/US2017/055054, dated Jan. 25, 2018, 16 pages. |
International Search Report and Written Opinion for International application No. PCT/US2018/045155, dated Oct. 15, 2018, 15 pages. |
International Preliminary Report on Patentability for International application No. PCT/US2017/034811 dated Nov. 27, 2018 10 pages. |
International Search Report and Written Opinion for International application No. PCT/US2017/046508, dated Jan. 17, 2018, 16 pages. |
International Search Report and Written Opinion for International application No. PCT/US2017/046777, dated Dec. 13, 2017, 16 pages. |
International Search Report and Written Opinion for International application No. PCT/US2017/046737, dated Dec. 14, 2017, 13 pages. |
International Search Report and Written Opinion for application No. PCT/US2017/34814, dated Oct. 11, 2017, 16 pages. |
International Preliminary Report on Patentability for the International Patent Application PCT/US2018/045155, dated Feb. 13, 2020, 10 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/GB2007/004073, dated Jan. 31, 2008, 8 pages. |
European Search Report and Written Opinion for the European Patent Application No. EP19177571, dated Oct. 30, 2019, 10 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/035756, dated Jul. 31, 2019, 11 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US18/14351, dated Aug. 1, 2019, 6 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046777, dated Feb. 28, 2019, 8 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046737, dated Feb. 28, 2019, 8 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046508, dated Feb. 21, 2019, 10 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/055054, dated Apr. 18, 2019, 8 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US13/34674, dated Aug. 6, 2013, 19 pages. |
EPO Search Report for Application No. 13768938.6, dated Nov. 11, 2015, 7 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/063615, dated May 3, 2020, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20180099100 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62405489 | Oct 2016 | US |