Multi-stage indexing cooler

Information

  • Patent Grant
  • 6298686
  • Patent Number
    6,298,686
  • Date Filed
    Wednesday, July 5, 2000
    24 years ago
  • Date Issued
    Tuesday, October 9, 2001
    23 years ago
Abstract
An apparatus for cooling an insulation product. The apparatus includes an in-line series of cooling stations, transport means, and cooling fluids supply means. The in-line series of cooling stations includes a first cooling station for receiving the insulation product into the in-line series of cooling stations, and a last cooling station for discharging the cooled insulation product from the in-line series of cooling stations. Each cooling station in the series of cooling stations except for the first cooling station has an associated previous cooling station. Each cooling station in the series of cooling stations except for the last cooling station has an associated next cooling station. The transfer means is for moving the insulation product through each station in the series of stations. For each cooling station in the series of cooling stations except for the first cooling station, the transport means is operable to move the insulation product into the cooling station from the associated previous cooling station. For each cooling station in the series of cooling stations except for the last cooling station, the transport means is operable to move the insulation product from the cooling station to the associated next cooling station. The cooling fluids supply means is operable to supply cooling fluid to each station in the series of stations to cool the insulation product.
Description




FIELD OF THE INVENTION




This invention relates in general to a cooling apparatus, and more particularly to a multi-stage indexing cooler for cooling pipe insulation.




BACKGROUND OF THE INVENTION




Fibrous insulation is composed of many fine fibres that give the fibrous insulation a very large surface area relative to the volume it occupies. Each fibre traps a boundary layer of air, thereby providing the insulation function of the fibrous insulation. Rigid fibre insulations are typically set or cured by applying heat to a thermoset resin that binds the fibres into a rigid matrix. Heat is applied using high velocity heated air. Once cured or set, the insulation must be cooled. This requires a cooling fluid flow to be directed through the insulation, and can take a considerable amount of time.




Prior art cooling units have been devised to cool fibrous insulation. Generally, such cooling units include a high power fan that blows cooling air through the fibrous insulation at a high velocity. This high velocity cooling air is subsequently filtered by a filter system and then discharged into the atmosphere. Filtering is required as the cooling process strips not only the entrapped air and heat from the insulation, but also the smokes and fumes and other pollutants produced as a result of the high temperature curing of the thermoset resin.




Prior cooling units are often energy inefficient, and may also constitute a significant source of environmental pollution. Specifically, a lot of energy is consumed in producing high velocity air. Much of the energy required to impart this velocity to the air is lost, as the high velocity air is eventually discharged into the atmosphere after being blown through the fibrous insulation. Discharging heated high velocity air into the atmosphere also wastes the heat energy that has been stripped from the insulation product, and is, in addition, environmentally problematic, as pollutants from the insulation product may be discharged into the atmosphere.




Accordingly, a cooling unit that reduces the velocity requirements of the cooling fluid used to cool the insulation product, and that recovers heat from the cooling fluid after cooling, is desirable from an energy conservation perspective. From an environmental perspective, an improved cooling unit that facilitates the removal of pollutants before the cooling fluid is discharged into the atmosphere is also desirable.




SUMMARY OF THE INVENTION




An object of an aspect of the present invention is to provide an improved cooling apparatus.




In accordance with an aspect of the present invention there is provided an apparatus for cooling an insulation product. The apparatus includes an in-line series of cooling stations, transport means, and cooling fluids supply means. The in-line series of cooling stations includes a first cooling station for receiving the insulation product into the in-line series of cooling stations, and a last cooling station for discharging the cooled insulation product from the in-line series of cooling stations. Each cooling station in the series of cooling stations except for the first cooling station has an associated previous cooling station. Each cooling station in the series of cooling stations except for the last cooling station has an associated next cooling station. The transfer means is for moving the insulation product through each station in the series of stations. For each cooling station in the series of cooling stations except for the first cooling station, the transport means is operable to move the insulation product into the cooling station from the associated previous cooling station. For each cooling station in the series of cooling stations except for the last cooling station, the transport means is operable to move the insulation product from the cooling station to the associated next cooling station. The cooling fluids supply means is operable to supply cooling fluid to each station in the series of stations to cool the insulation product.




Conveniently, the apparatus further comprises station connection control means for selectably connecting and disconnecting different station in the series of stations.




Preferably, the fluid supply means comprises fluid connection means for directing fluid through the series of cooling stations. The fluid connection means is operable to direct cooling fluid into the last cooling station, and then from each cooling station, except for the first cooling station, into the associated previous cooling station, and into each station, except for the last cooling station, from the associated next cooling station, and finally, from the first cooling station into a hot fluid receiving means.




In accordance with a second aspect of the present invention there is provided an apparatus for cooling an insulation product and for heating a fluid supplied to the insulation product. The apparatus includes a first end, a second end opposite to the first end, a transport means for moving the insulation product through the apparatus in a first direction from the first end to the second end, a fluid supply means for supplying fluid to the insulation product and for moving the fluid in a second direction through the apparatus from the second end to the first end; and a fluid receiving means for receiving heated fluid from the first end of the apparatus.











A BRIEF DESCRIPTION OF THE DRAWINGS




A detailed description of the preferred embodiments of the invention is provided herein below with reference to the following drawings, in which:





FIG. 1

, in a plan view, illustrates a cooling apparatus in accordance with a preferred embodiment of the present invention;





FIG. 2

, in a side view, illustrates the cooling apparatus of

FIG. 1

;





FIG. 3

, in a side view in the direction of the arrows marked A—A in FIG.


1


and within the limits defined by those arrows, illustrates the cooling apparatus of

FIG. 1

;





FIG. 4

, in a cut-away side view in the direction of the arrows marked B—B of FIG.


2


and within the limits defined by those arrows, illustrates an individual cooling station of the cooling apparatus of

FIG. 1

; and,





FIG. 5

, in a side view in the direction of the arrows marked C—C in

FIG. 2

, illustrates a sealing door of the cooling apparatus of FIG.


1


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION




Referring to

FIG. 1

, there is illustrated in a plan view, a cooling apparatus in accordance with the preferred embodiment of the present invention. The cooling apparatus


100


includes five individual in-line cooling stations


102


. In operation, insulation product


24


is cut at an end-cut station


108


to a pre-determined length. The cut insulation product


24


can then be weighed at a weighing station


110


before being transported by indexing conveyor


104


, which carries the insulation product


24


in the direction designated


106


in

FIG. 1

, into the in-line cooling station


102




a.


The weight of the insulation product


24


can then be used to provide feedback regarding the product. Weighing the insulation product prior to cooling permits any adjustments suggested by the weight measured to be made sooner, as the delay necessitated by waiting for the insulation product to proceed through the 5 cooling stations


102


is avoided. If, for example, the insulation product is heavier than expected, then more cooling will be required and the fan speed may be increased or the cooling time extended accordingly.




Once within in-line cooling stations


102


, the insulation product


24


is progressively cooled in each of the cooling stations


102


moving in direction


106


, and is ultimately discharged at discharge end


112


. Specifically, cooling air is first supplied to the cooling station


102




e,


via a cold air inlet


140


. The cold air inlet


140


supplies the cooling air to a fan


120




e


that blows the cooling air against the insulation product within the cooling station


102




e.


Afterwards, having passed through the wall of the insulation product


24


in a radial direction, the slightly heated cooling air exits cooling station


102




e


via station outlet


132




e.


From there the cooling air passes through an interstation conduit


138


to a station inlet


130


for the cooling station


102




d


adjacent to the cooling station


102




e.


The cooling air passes through each of the in-line cooling stations


102


of

FIG. 1

, moving from left to right in

FIG. 1

, while the insulation product


24


moves in the opposite direction, from right to left in

FIG. 1

, through each of the cooling stations


102


. At the cooling station


102




a,


the cooling air has passed through, and has been heated in, all of the other cooling stations


102


. After being applied to the insulation product


24


in cooling station


102




a,


the cooling air is discharged from the cooler unit


100


via a hot air outlet conduit


142


.




Preferably, the heated cooling air from hot air outlet conduit


142


is directed to an incinerator for further heating and to incinerate smokes and particulates, before being used to cure the insulation product


24


upstream of the cooler unit


100


. Effectively, the cooler unit


100


with the in-line cooling stations


102


provide a reverse flow heat transfer process in which the insulation product


24


acts as a media for heating the cooling air.




Referring to

FIG. 2

, there is illustrated a side view of the cooler unit


100


of FIG.


1


. As shown in

FIG. 1

, the cooler unit


100


comprises an in-line series of cooling stations


102


. Cooling air is supplied to the end cooling station marked “5” by the cold air inlet


140


. The cooling air is blown into the cooling station


102




e


and against the insulation product


24


through station inlet


130




e


by the fan


120




e.


Then, the cooling air exits the cooling station


102




e


via station outlet


132




e


and proceeds to fan


120




d


of cooling station


102




d


adjacent to cooling station


102




e


via interstation conduit


138


. As shown in

FIG. 2

, the insulation product


24


is supported on “V” supports


116


. The “V” supports


116


are themselves supported on an indexing conveyor


104


that moves the insulation product


24


in direction


106


through the cooler unit


100


. The indexing conveyor


104


can be started and stopped to transport the insulation product


24


to each cooling station


102


, and to stop the insulation product


24


in each cooling station


102


. Referring to

FIG. 3

, there is shown a side view of the in-line sequential cooling stations in the direction of the arrows marked A—A in FIG.


1


and within the limits defined by those arrows. This side view is opposite to the side view of FIG.


2


. Accordingly, in this side view, the insulation product


24


proceeds through the cooling stations


102


from left to right.




Referring to

FIG. 4

, there is illustrated, in a sectional view in the direction of the arrows marked B—B in

FIG. 2

, an in-line cooling station


102


. The insulation product


24


is supported by “V” supports


116


mounted on the indexing conveyor


104


. It is this “V” support


116


that supports the insulation product from the end-cut station


108


to the weighing station


110


and from thence through the in-line cooling stations


102


to the discharge end


112


. In

FIG. 4

, the insulation product


24


is shown being gripped between a seal plate


128


and an opposing plate


136


. The seal plate


128


is mounted on parallel links


134


that are pivotable to pivot the seal plate


128


into sealing engagement with the insulation product


24


, and out of sealing engagement to release the insulation product


24


so that it can be moved by the indexing conveyor


104


.




The cooling air is blown by the fan


120


into a top plenum


122


. From there the pressure generated in the top plenum


122


by the fan


120


forces the cooling air down to valve


124


through which the cooling air is forced into the interior of the insulation product


24


. The positive air pressure generated within the insulation product


24


by the fan


120


forces cooling air through the insulation product


24


to cool the insulation product


24


. From there, the cooling air is forced through the station outlet


132


for the cooling station


102


. Further detail regarding the valve is shown in FIG.


3


.




Referring back to

FIG. 3

, the cooling zone


102




d


is shown with the seal plate


128


closed (a rear access door has been removed to reveal the seal plate


128


and support frame). The sealed front access doors


126


(not shown in FIG.


3


), one for each of the cooling stations


102


, permits access to the cooling station for maintenance. When a front access door


126


for a cooling station


102


is closed, the front access door


126


forms a duct through which cooling air can flow from the top plenum


122


to the valve


124


. In cooling zone


102




c


of

FIG. 3

, the insulation product


24


is shown on a “V” support


116


and the inlet valve


124




c


for cooling station


102




c


is shown in relation to a typical large piece of insulation product


24


. As shown, the valve


124


has an oval slot, which may be closed off completely to interrupt the airflow through the valve


124


when the insulation product


24


is being indexed from one cooling station to another. As shown in cooling station


102




b


of

FIG. 3

, the valve


124




b


is opened and closed by a suitable valve plate


144


. The valve plate


144


, in addition to closing the valve


124


completely, can also be varied in stroke to ensure that the circular opening of the valve


124


is always located within the hollow defined by the insulation product


24


. Usually, the centre of a small diameter insulation product will sit lower on the “V” support


116


on the indexing conveyor. Accordingly, to ensure that an adequate supply of cooling air is provided to the interior of a small insulation product


24


, the valve


124


should be opened further. In contrast, when the insulation product is relatively large, the valve stroke of the valve plate


144


should be reduced to keep the cooling airflow inside the insulation product


24


.




Referring to

FIG. 5

, there is illustrated in a side view, a station door


146


that is operable to close and thereby seal an individual cooling station


102


from other cooling stations


102


and from the external environment, and is also operable to open to permit indexing of the insulation product


24


between cooling stations


102


. These six cooling station doors


146


are opened and closed by a fast-acting air cylinder


148


, and are guided by door-guide wheels


150


. Before the indexing conveyor


104


indexes the insulation


24


, the station doors


146


are raised. As soon as indexing is complete, the station doors are lowered. In this way, the cooling air in each cooling station


102


is discharged into the previous cooling station


102


only, and is neither allowed to migrate through the in-line cooling stations in the opposite direction nor released into other areas of the factory.




The present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Certain adaptations and modifications of the invention will be obvious to those skilled in the art. Therefore, the presently discussed embodiments are considered to be illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.



Claims
  • 1. An apparatus for cooling an insulation product and for heating a fluid supplied to the insulation product, the apparatus comprising:a first end; a second end opposite to the first end; a transport means for moving the insulation product through the apparatus in a first direction from the first end to the second end; fluid supply means for supplying fluid to the insulation product and for moving the fluid in a second direction through the apparatus from the second end to the first end; and, fluid receiving means for receiving heated fluid from the first end of the apparatus, said fluid receiving means comprising an incinerator for further heating the fluid and for incinerating pollutants discharged from the insulation product.
  • 2. The apparatus as defined in claim 1 comprising fluid flow control means for impeding movement of the fluid in the first direction.
  • 3. The apparatus as defined in claim 2 wherein the fluid flow control means comprises a series of doors spaced from the first end to the second end, the doors being openable to move the insulation product in the first direction, and closeable to impede fluid flow in the first direction.
  • 4. An apparatus for cooling an insulation product, the apparatus comprising:(a) an in-line series of cooling stations for cooling the insulation product, the series of cooling stations having a first cooling station for receiving the insulation product into the in-line series of cooling stations and a last cooling station for discharging the cooled insulation product from the in-line series of cooling stations; (i) each cooling station in the series of cooling stations except for the first cooling station having an associated previous cooling station, and (ii) each cooling station in the series of cooling stations except for the last cooling station having an associated next cooling station; (b) transport means for moving the insulation product through each station in the series of cooling stations, the transport means being operable to, (i) for each cooling station in the series of cooling stations except for the first cooling station, to move the insulation product into the cooling station from the associated previous cooling station, and (ii) for each cooling station in the series of cooling stations except for the last cooling station, to move the insulation product from the cooling station to the associated next cooling station; (c) cooling fluid supply means for supplying cooling fluid to each station in the series of stations to cool the insulation product; and (d) a weigh section for weighing the insulation product before cooling.
  • 5. The apparatus as defined in claim 4, further comprising:station connection control means for connecting stations in the series of stations, wherein the station connection control means is operable to for each cooling station in the series of cooling stations except for the first cooling station, to connect the cooling station with the associated previous cooling station, and for each cooling station in the series of cooling stations except for the last cooling station, to connect the cooling station to the associated next cooling station.
  • 6. The apparatus as defined in claim 5, wherein:the in-line series of cooling stations comprises an external housing for containing each station in the in-line series of stations, and the transport means is operable to move the insulation product through each station in the in-line series of stations without removing the insulation product from the housing.
  • 7. The apparatus as defined in claim 6, wherein:each cooling station in the series of cooling stations having an associated previous cooling station is adjacent to the associated previous cooling station, each cooling station in the series of cooling stations having an associated next cooling station is adjacent to the associated next cooling station, and for each cooling station in the series of stations except for the last station, the station connection control means comprises an associated exit door for controllably separating the station from the associated next cooling station, and associated door control means for opening the associated exit door to connect the station with the associated next cooling station, and for closing the associated exit door to substantially seal the station from the associated next cooling station.
  • 8. The apparatus as defined in claim 7, further comprising:an external entrance door for the first cooling station, an external exit door for the last cooling station, and external door control means for opening and closing the external entrance door and the external exit door.
  • 9. The apparatus as defined in claim 5, wherein the cooling fluid supply means comprises:(a) fluid connection means for directing fluid through the series of cooling stations, the fluid connections means being operable to direct cooling fluid (i) into the last cooling station, and then (ii) from each cooling station, except for the first cooling station, into the associated previous cooling station, (iii) into each cooling station, except for the last cooling station, from the associated next cooling station, and finally (iv) from the first cooling station into a hot fluid receiving means.
  • 10. The apparatus as defined in claim 9, wherein the fluid connection means comprises an associated valve for each station in the in-line series of cooling stations for directing the cooling fluid at the insulation product within the cooling station.
  • 11. The apparatus as defined in claim 9, wherein the fluid connection means includes a valve control means for opening and closing the associated valve for each cooling station in the in-line series of cooling stations.
  • 12. The apparatus as defined in claim 10, wherein:the insulation product is hollow and has two open ends; each cooling station in the in-line series of cooling stations comprises a pair of sealing plates for sealing each open end of the insulation product; and, the associated valve for each cooling station in the in-line series of cooling stations is operable to direct cooling fluid into a hollow interior of the insulation product.
  • 13. The apparatus as defined in claim 12, wherein the fluid connection means comprises, for each station in the in-line series of cooling stations, an associated fluid outlet for receiving the cooling fluid from outside the insulation product and from within the cooling station.
  • 14. The apparatus as defined in claim 13, wherein:the cooling fluid is released into the last cooling station by the associated valve for the last cooling station; for each cooling station in the series of cooling stations except for the last cooling station, the associated valve receives the cooling fluid from the associated fluid outlet for the associated next cooling station, and for the first cooling station, the heated cooling fluid received into the associated fluid outlet is directed to the hot fluid receiving means.
  • 15. The apparatus as defined in claim 10, wherein each valve has an associated fan for blowing cooling fluid through the valve.
  • 16. The apparatus as defined in claim 15, wherein a speed of the fan is adjustable to control at least one of a cooling rate and a hot fluid exhaust temperature.
  • 17. The apparatus as defined in claim 10, wherein each valve is adjustable to accommodate insulation product of different dimensions.
  • 18. The apparatus as defined in claim 9, wherein the hot fluid receiving means includes an incinerator for further heating the cooling fluid and for incinerating pollutants discharged from the insulation product during cooling.
  • 19. The apparatus as defined in claim 4, wherein the transport means is a conveyor belt.
  • 20. The apparatus as defined in claim 4, further comprising a cutting section for cutting the insulation product before cooling.
  • 21. An apparatus for cooling an insulation product, the apparatus comprising:(a) an in-line series of cooling stations for cooling the insulation product, the series of cooling stations having a first cooling station for receiving the insulation product into the in-line series of cooling stations and a last cooling station for discharging the cooled insulation product from the in-line series of cooling stations; (i) each cooling station in the series of cooling stations except for the first cooling station having an associated previous cooling station, and (ii) each cooling station in the series of cooling stations except for the last cooling station having an associated next cooling station; (b) transport means for moving the insulation product through each station in the series of cooling stations, the transport means being operable to, (i) for each cooling station in the series of cooling stations except for the first cooling station, to move the insulation product into the cooling station from the associated previous cooling station, and (ii) for each cooling station in the series of cooling stations except for the last cooling station, to move the insulation product from the cooling station to the associated next cooling station; (c) cooling fluid supply means for supplying cooling fluid to each station in the series of stations to cool the insulation product; and (d) a cutting section for cutting the insulation product before cooling.
  • 22. An apparatus for cooling an insulation product, the apparatus comprising:(a) an in-line series of cooling stations for cooling the insulation product, the series of cooling stations having a first cooling station for receiving the insulation product into the in-line series of cooling stations and a last cooling station for discharging the cooled insulation product from the in-line series of cooling stations; (i) each cooling station in the series of cooling stations except for the first cooling station having an associated previous cooling station, and (ii) each cooling station in the series of cooling stations except for the last cooling station having an associated next cooling station; (b) transport means for moving the insulation product through each station in the series of cooling stations, the transport means being operable to, (i) for each cooling station in the series of cooling stations except for the first cooling station, to move the insulation product into the cooling station from the associated previous cooling station, and (ii) for each cooling station in the series of cooling stations except for the last cooling station, to move the insulation product from the cooling station to the associated next cooling station; (c) cooling fluid supply means for supplying cooling fluid to each station in the series of stations to cool the insulation product; (d) station connection control means for connecting stations in the series of stations, wherein the station connection control means is operable to for each cooling station in the series of cooling stations except for the first cooling station, to connect the cooling station with the associated previous cooling station, and for each cooling station in the series of cooling stations except for the last cooling station, to connect the cooling station to the associated next cooling station; (e) an external entrance door for the first cooling station; (f) an external exit door for the last cooling station; and (g) external door control means for opening and closing the external entrance door and the external exit door; wherein the in-line series of cooling stations comprises an external housing for containing each station in the in-line series of stations, and the transport means is operable to move the insulation product through each station in the in-line series of stations without removing the insulation product from the housing; and wherein each cooling station in the series of cooling stations having an associated previous cooling station is adjacent to the associated previous cooling station, each cooling station in the series of cooling stations having an associated next cooling station is adjacent to the associated next cooling station, and for each cooling station in the series of stations except for the last station, the station connection control means comprises an associated exit door for controllably separating the station from the associated next cooling station, and associated door control means for opening the associated exit door to connect the station with the associated next cooling station, and for closing the associated exit door to substantially seal the station from the associated next cooling station.
  • 23. An apparatus for cooling an insulation product, the apparatus comprising:(a) an in-line series of cooling stations for cooling the insulation product, the series of cooling stations having a first cooling station for receiving the insulation product into the in-line series of cooling stations and a last cooling station for discharging the cooled insulation product from the in-line series of cooling stations; (i) each cooling station in the series of cooling stations except for the first cooling station having an associated previous cooling station, and (ii) each cooling station in the series of cooling stations except for the last cooling station having an associated next cooling station; (b) transport means for moving the insulation product through each station in the series of cooling stations, the transport means being operable to, (i) for each cooling station in the series of cooling stations except for the first cooling station, to move the insulation product into the cooling station from the associated previous cooling station, and (ii) for each cooling station in the series of cooling stations except for the last cooling station, to move the insulation product from the cooling station to the associated next cooling station; and, (c) cooling fluid supply means for supplying cooling fluid to each station in the series of stations to cool the insulation product; (d) station connection control means for connecting stations in the series of stations; wherein the cooling fluid supply means comprises (A) fluid connection means for directing fluid through the series of cooling stations, the fluid connections means being operable to direct cooling fluid (i) into the last cooling station, and then (ii) from each cooling station, except for the first cooling station, into the associated previous cooling station, (iii) into each cooling station, except for the last cooling station, from the associated next cooling station, and finally (iv) from the first cooling station into a hot fluid receiving means; wherein the fluid connection means comprises an associated valve for each station in the in-line series of cooling stations for directing the cooling fluid at the insulation product within the cooling station; and wherein the insulation product is hollow and has two open ends; each cooling station in the in-line series of cooling stations comprises a pair of sealing plates for sealing each open end of the insulation product; and the associated valve for each cooling station in the in-line series of cooling stations is operable to direct cooling fluid into a hollow interior of the insulation product.
  • 24. The apparatus as defined in claim 23, wherein the station connection control means is operable tofor each cooling station in the series of cooling stations except for the first cooling station, to connect the cooling station with the associated previous cooling station, and for each cooling station in the series of cooling stations except for the last cooling station, to connect the cooling station to the associated next cooling station.
  • 25. The apparatus as defined in claim 24, wherein:the in-line series of cooling stations comprises an external housing for containing each station in the in-line series of stations, and the transport means is operable to move the insulation product through each station in the in-line series of stations without removing the insulation product from the housing.
  • 26. The apparatus as defined in claim 25, wherein:each cooling station in the series of cooling stations having an associated previous cooling station is adjacent to the associated previous cooling station, each cooling station in the series of cooling stations having an associated next cooling station is adjacent to the associated next cooling station, and for each cooling station in the series of stations except for the last station, the station connection control means comprises an associated exit door for controllably separating the station from the associated next cooling station, and associated door control means for opening the associated exit door to connect the station with the associated next cooling station, and for closing the associated exit door to substantially seal the station from the associated next cooling station.
  • 27. The apparatus as defined in claim 26, further comprising:an external entrance door for the first cooling station, an external exit door for the last cooling station, and external door control means for opening and closing the external entrance door and the external exit door.
  • 28. The apparatus as defined in claim 23, wherein the fluid connection means includes a valve control means for opening and closing the associated valve for each cooling station in the in-line series of cooling stations.
  • 29. The apparatus as defined in claim 24, wherein the fluid connection means comprises, for each station in the in-line series of cooling stations, an associated fluid outlet for receiving the cooling fluid from outside the insulation product and from within the cooling station.
  • 30. The apparatus as defined in claim 29, wherein:the cooling fluid is released into the last cooling station by the associated valve for the last cooling station; for each cooling station in the series of cooling stations except for the last cooling station, the associated valve receives the cooling fluid from the associated fluid outlet for the associated next cooling station, and for the first cooling station, the heated cooling fluid received into the associated fluid outlet is directed to the hot fluid receiving means.
  • 31. The apparatus as defined in claim 23, wherein each valve has an associated fan for blowing cooling fluid through the valve.
  • 32. The apparatus as defined in claim 31, wherein a speed of the fan is adjustable to control at least one of a cooling rate and a hot fluid exhaust temperature.
  • 33. The apparatus as defined in claim 23, wherein each valve is adjustable to accommodate insulation product of different dimensions.
  • 34. An apparatus for cooling an insulation product, the apparatus comprising:(a) an in-line series of cooling stations for cooling the insulation product, the series of cooling stations having a first cooling station for receiving the insulation product into the in-line series of cooling stations and a last cooling station for discharging the cooled insulation product from the in-line series of cooling stations; (i) each cooling station in the series of cooling stations except for the first cooling station having an associated previous cooling station, and (ii) each cooling station in the series of cooling stations except for the last cooling station having an associated next cooling station; (b) transport means for moving the insulation product through each station in the series of cooling stations, the transport means being operable to, (i) for each cooling station in the series of cooling stations except for the first cooling station, to move the insulation product into the cooling station from the associated previous cooling station, and (ii) for each cooling station in the series of cooling stations except for the last cooling station, to move the insulation product from the cooling station to the associated next cooling station; and, (c) cooling fluid supply means for supplying cooling fluid to each station in the series of stations to cool the insulation product; (d) station connection control means for connecting stations in the series of stations; wherein the cooling fluid supply means comprises: (A) fluid connection means for directing fluid through the series of cooling stations, the fluid connections means being operable to direct cooling fluid (i) into the last cooling station, and then (ii) from each cooling station, except for the first cooling station, into the associated previous cooling station, (iii) into each cooling station, except for the last cooling station, from the associated next cooling station, and finally (iv) from the first cooling station into a hot fluid receiving means; and wherein the hot fluid receiving means includes an incinerator for further heating the cooling fluid and for incinerating pollutants discharged from the insulation product during cooling.
  • 35. The apparatus as defined in claim 34, wherein the station connection control means is operable tofor each cooling station in the series of cooling stations except for the first cooling station, to connect the cooling station with the associated previous cooling station, and for each cooling station in the series of cooling stations except for the last cooling station, to connect the cooling station to the associated next cooling station.
  • 36. The apparatus as defined in claim 35, wherein:the in-line series of cooling stations comprises an external housing for containing each station in the in-line series of stations, and the transport means is operable to move the insulation product through each station in the in-line series of stations without removing the insulation product from the housing.
  • 37. The apparatus as defined in claim 36, wherein:each cooling station in the series of cooling stations having an associated previous cooling station is adjacent to the associated previous cooling station, each cooling station in the series of cooling stations having an associated next cooling station is adjacent to the associated next cooling station, and for each cooling station in the series of stations except for the last station, the station connection control means comprises an associated exit door for controllably separating the station from the associated next cooling station, and associated door control means for opening the associated exit door to connect the station with the associated next cooling station, and for closing the associated exit door to substantially seal the station from the associated next cooling station.
  • 38. The apparatus as defined in claim 37, further comprising:an external entrance door for the first cooling station, an external exit door for the last cooling station, and external door control means for opening and closing the external entrance door and the external exit door.
  • 39. The apparatus as defined in claim 34, wherein the fluid connection means comprises an associated valve for each station in the in-line series of cooling stations for directing the cooling fluid at the insulation product within the cooling station.
  • 40. The apparatus as defined in claim 39, wherein the fluid connection means includes a valve control means for opening and closing the associated valve for each cooling station in the in-line series of cooling stations.
  • 41. The apparatus as defined in claim 39, wherein:the insulation product is hollow and has two open ends; each cooling station in the in-line series of cooling stations comprises a pair of sealing plates for sealing each open end of the insulation product; and, the associated valve for each cooling station in the in-line series of cooling stations is operable to direct cooling fluid into a hollow interior of the insulation product.
  • 42. The apparatus as defined in claim 41, wherein the fluid connection means comprises, for each station in the in-line series of cooling stations, an associated fluid outlet for receiving the cooling fluid from outside the insulation product and from within the cooling station.
  • 43. The apparatus as defined in claim 42, wherein:the cooling fluid is released into the last cooling station by the associated valve for the last cooling station; for each cooling station in the series of cooling stations except for the last cooling station, the associated valve receives the cooling fluid from the associated fluid outlet for the associated next cooling station, and for the first cooling station, the heated cooling fluid received into the associated fluid outlet is directed to the hot fluid receiving means.
  • 44. The apparatus as defined in claim 39, wherein each valve has an associated fan for blowing cooling fluid through the valve.
  • 45. The apparatus as defined in claim 44, wherein a speed of the fan is adjustable to control at least one of a cooling rate and a hot fluid exhaust temperature.
  • 46. The apparatus as defined in claim 39, wherein each valve is adjustable to accommodate insulation product of different dimensions.
  • 47. An apparatus for cooling an insulation product, the apparatus comprising:(a) an in-line series of cooling stations for cooling the insulation product, the series of cooling stations having a first cooling station for receiving the insulation product into the in-line series of cooling stations and a last cooling station for discharging the cooled insulation product from the in-line series of cooling stations; (i) each cooling station in the series of cooling stations except for the first cooling station having an associated previous cooling station, and (ii) each cooling station in the series of cooling stations except for the last cooling station having an associated next cooling station; (b) transport means for moving the insulation product through each station in the series of cooling stations, the transport means being operable to, (i) for each cooling station in the series of cooling stations except for the first cooling station, to move the insulation product into the cooling station from the associated previous cooling station, and (ii) for each cooling station in the series of cooling stations except for the last cooling station, to move the insulation product from the cooling station to the associated next cooling station; and, (c) cooling fluid supply means for supplying cooling fluid to each station in the series of stations to cool the insulation product; (d) station connection control means for connecting stations in the series of stations; wherein the cooling fluid supply means comprises (A) fluid connection means for directing fluid through the series of cooling stations, the fluid connections means being operable to direct cooling fluid (i) into the last cooling station, and then (ii) from each cooling station, except for the first cooling station, into the associated previous cooling station, (iii) into each cooling station, except for the last cooling station, from the associated next cooling station, and finally (iv) from the first cooling station into a hot fluid receiving means; wherein the fluid connection means comprises an associated valve for each station in the in-line series of cooling stations for directing the cooling fluid at the insulation product within the cooling station; and wherein each valve has an associated fan for blowing cooling fluid through the valve.
US Referenced Citations (14)
Number Name Date Kind
1513881 Ayres Nov 1924
2157131 Hothersall et al. May 1939
2275588 Greene Mar 1942
2901891 Morrison Sep 1959
3267585 Futer Aug 1966
3442029 Adair May 1969
3455120 Schlemmer Jul 1969
4173079 Cruff et al. Nov 1979
4345443 Yamashita Aug 1982
4414758 Peter et al. Nov 1983
4663860 Beall May 1987
4697354 Gottschalk Oct 1987
5070624 Vero et al. Dec 1991
5816067 Cloarec Oct 1998