This invention relates to games in general, and particularly to gaming machines allowing wagers to be placed on a game, and more particularly to an innovative casino-type gaming machine which allows wagers on a plurality of game levels.
There are many ways in which multiple wagers may be placed on different gaming machines. In one of the simplest forms, a player may make a variable wager on a specific bet. On a single line slot machine for example, as the player inputs additional coins into the machine (per play) the payouts for the single payline is multiplied by the number of coins bet. Often the higher awards increase beyond the given multiple, offering a bonus for betting more coins on this single payline. The same type of multiple coin bet is also well known in video poker, where a typical bet is one to five coins on each hand played. In such a video poker game, the paytable is multiplied by the number of coins bet with a substantial bonus being given for a Royal Flush when five coins are bet.
In other gaming machines, there are multiple bets that can be made on different outcomes. In a multiline slot machine for example, a wager can be made on each of a plurality of paylines. Typically, each payline is paid according to a paytable (also referred to as a “payout table”) that is similar for each payline. A single spin of the reels yields a result on each payline which is paid if it matches a winning combination on the paytable.
The above two techniques have been combined, providing multiple paylines and multiple coins per payline. The pay for each payline is multiplied by the number of coins bet on that payline with certain bonuses available when a higher number of coins per payline are wagered.
Additionally, there have been games such as Double-Down Stud poker which allow a player to place an additional bet on a game that is already in progress. There have been games such as Play-It-Again poker which allow a player to make a new bet on a re-play of a starting hand.
Thus, it can be appreciated that there have been poker games, for instance, which allow a player to bet on multiple hands where each of the plurality of hands is generated from a single initial deal, followed by independent draws or re-deals for each hand that received a bet. In each case, the bets that are made are considered to be made on a game of chance, and paid if there is a winning result.
In broad overview, the present invention in one aspect allows the placing of multiple bets on different stages of a game. The game is comprised of a plurality of stages. Each operation of the game begins with the operation of a first stage. Depending on the outcome of the first stage the game may be over, or there may be an operation of a second stage. The second stage operation may be totally independent of the first stage, or may have dependencies on first stage events or data, e.g., the achievement of a “winning” first stage. As will be understood throughout this invention disclosure, “winning” is just one form of possible advancement to the next level. For example, one aspect of the invention includes a “special card” (Free Ride) which permits advancement even if a “losing” condition is presented at a level.
Depending on the outcome of the second stage, the game may be over or there may be an operation of a third stage. This sequence continues until the game ends or until the final (nth) stage has been operated, at which time the game ends.
It should be appreciated that not every stage will operate in each game, and that the lowest stages will operate the most often while the highest stages will operate the least often.
As noted above, the present invention furthermore allows the player to place wagers on different stages of the multi-stage game. Each stage of the game may typically have its own paytable or payout scheme, and its own expected return. A bet made on a stage of the game which is not played is lost in one contemplated form of the invention. Thus, at the highest stages the bets made are lost very often, without even playing that stage of the game, because most games will end before getting to the highest stage bet. Due to this architecture, there is much greater opportunity for large wins in games which get to the highest stages. This makes for a more exciting gaming experience, because as the players watch the game successfully continue through the various stages, the expectation of what may be won at each stage usually increases.
Embodiments shown herein are generally constructed such that the player specifies at the outset of the game the number of stages or levels to bet on. For instance, bets are made on a first level, a second level, and up to the number of levels specified by the player. While this is one preferred embodiment which gives the player action at all levels up to the highest level bet, it is envisioned that the player could be allowed to arbitrarily choose which levels to bet without departing from the invention. So too, it is contemplated that the game could allow for a new bet as stages are achieved.
Certain contemplated embodiments also have a structure that any “Win” on a given stage advances the game to the next stage. Other contemplated embodiments have different game rules for continuing from stage to stage, and operate under those rules for a given stage.
In one aspect of the invention, it is a principal objective to provide a method of playing a game, where a player is initially provided with a first stage game of chance upon which a first wager is placed by the player, and a second stage game of chance upon which a second wager is placeable. As previously noted, the game stages can be the same type of game (e.g., slots), or different games (e.g., slots, cards, dice, roulette, etc.).
Each stage has a “winning” condition and a “losing” condition. That is, there is an established criterion or criteria whereby the player may advance from one stage to the next, or may not. As used throughout this disclosure, and in the claims, “winning” and “losing” are to be considered synonymous with advancing or terminating, unless otherwise stated.
The first stage game is played, with a determination of whether a winning/advancement or losing/terminating condition is presented. If a winning condition is presented by the first stage game as played, then the player advances to the second stage game, assuming a bet has been previously placed for that stage. If a losing condition is presented by the first stage game as played, however, the game is over and any second wager (or higher) is lost. It will be understood that in some embodiments a loss condition could be presented by simply achieving a condition where only part of a wager placed on a given level may be returned, i.e., a player wagered 5 on a level but only achieved a return of 3. So too, all of the bet need not be lost as a terminating/losing condition.
In the event that the first stage presents a winning condition and there is a wager for the second stage, then the second stage game is played. There follows a determination as to which of the winning and losing conditions is presented by the second stage game as played. These steps are repeated for as many stages as are provided by the game if all have been bet upon, or as many stages as have actually been bet upon if fewer than all, again assuming a winning/advancement condition has been met for each preceding stage.
In a preferred form the foregoing method of playing a game includes the step of providing a payout for a winning condition at the second stage, or more preferably providing a payout for a winning condition at each stage. The payout can be based upon the amount of a respective wager at a respective stage, and advantageously includes an increase by a multiplier for a payout at a respective stage, with the multiplier increasing for each successive stage.
In another aspect of the invention, the foregoing method is adapted for operating a processor-controlled gaming machine. In this application of the invention, gameplay elements are provided in a manner that can be visualized by a player, such as on a video display screen, or in some three dimensional format where the gameplay elements can be tracked (such as on a board with an electronic interface), just to name two ways of such visualization. In this form of the invention, a mechanism for a wager input from the player is also provided, along with a mechanism for game operational input from the player, such as to start play.
There is a first stage game of chance upon which a first wager is placed by the player, and at least a second stage game of chance upon which a second wager is placeable. Each stage has a winning/advancement condition and a losing/terminating condition. In the preferred form of the invention, all wagers are placed before play begins at the first stage level.
This gaming machine displays at least the first stage game using at least some of the gameplay elements. For instance, using a video monitor as an example, a first slot machine may be displayed (or first display of cards, or dice, etc.). More than one stage may be displayed at a time (e.g., a plurality of slot machine representations stacked one on top of another on the display). The first stage game is then played, with the previously described determination of which of the winning and losing conditions is presented by the first stage game as played. Again, if a winning condition is presented, the player advances to the second stage game, but if a losing condition is presented by the first stage game as played, the game is over and at least some (and most preferably all) of the second (and any subsequent) wager is lost.
If not already displayed, and assuming there has been an advancing condition met at the first stage and a bet placed on the second stage, the second stage game of chance is displayed (or, for instance, activated if already displayed). This second stage is played, with a determination of which of the winning and losing conditions is presented by the second stage game as played. If there is a winning condition, this form of the invention provides a payout for the second stage, as well as for any subsequent consecutive stage for which there is a winning condition, and a wager placed thereon.
One embodiment of this method as applied to a gaming machine provides a set of differing gameplay element indicia, such as facets of a die. A subset of at least one match indicia against which a set of dice are to be matched in the course of play is established, such as a random selection of die faces (e.g., three die numbers against which tossed dice are to be matched. In a preferred form of this dice gaming machine, first, second, third and successive stages up to said nth stages are displayed together as discrete arrays on a visual display.
The dice are initially tossed in one embodiment, and beginning with at least the second stage game, a determination is made as to whether any match is made between the match indicia and the dice tossed. At least one match comprises a winning condition for a stage being played, in this embodiment. If a match is not made, then the unmatched indicium is removed from further play. The game ends when no matches are made at a given level, again assuming that a wager has been made up to and including that level.
Yet another aspect of the invention is providing a feature which is subject to random allocation to a stage in the course of play, with the feature if allocated enabling a next stage to be played regardless of whether a winning condition has otherwise been presented. The feature, referred to herein as a “Free Ride,” therefore constitutes or comprises a so-called winning/advancement condition. Of course, a wager still needs to have been placed on the next stage which is subject to being so enabled for play by the Free Ride feature.
A video card game comprises yet another form of the invention. Here, a video display device is driven by a cpu having a program. A wager input mechanism registers a wager placed by a player, with the wager including an ability to register bets upon successive stages of the game. A first deck of playing cards comprised of cards of suit and rank is generated by the program, with the program establishing a first array for display of a subset of the deck (i.e., a hand) of cards randomly selected from the deck.
A first stage hand of cards is dealt. The card game could be one in which the hand as so dealt is not subject to a draw, or the player can select cards to discard, with a new card taking the place of any discarded. In either event, the hand ultimately becomes set, and a determination is made as to whether the hand of cards presents a winning/advancement condition based upon a preset hierarchical ranking of card arrangements relating to suit and rank. As in the situations noted above, subsequent hands of cards are dealt if a winning condition is presented by the previous hand, provided a bet has been registered for each successive stage. If a losing condition is presented by a stage, or a stage is reached upon which no wager has been made, the game is over. Bets on any higher stage are lost if a losing condition is presented, as is the bet on the stage for which the losing condition is registered. A payout output based upon the wager and predetermined values for a stage is preferably provided according to a preset hierarchical ranking of card arrangements relating to suit and rank. The payout output can include payout tables which are different for at least some of the stages, and may further include a multiplier for at least some of the stages, with the multiplier increasing for successively higher stages.
In a video slot machine version of the invention, a plurality of rotatable reels is generated by the computer program, each of the reels being comprised of a plurality of different indicia. Each of the reels is caused by the program to appear to rotate and then randomly stop to thereby yield a display of certain indicia as a spin. If an advancement condition is presented on the first stage spin, a second stage spin occurs if a bet has been registered for that second stage spin, and so forth. The first stage spin can be visually displayed as a first set of reels in a first array, with the second stage spin likewise visually displayed as a second set of reels in a second array, and successive stage spins each so displayed as further sets of reels in successive respective arrays, with a plurality of arrays being displayed together on the visual display. Alternatively, one set of reels could be repeatedly spun for each stage. Payouts and multipliers can be provided in like manner to that described above for the card game embodiment, or as otherwise may be desired. One variant of the slot machine version of the invention has the multiplier for the games nth stage spin (the last possible level) randomly selected by the program from a predetermined table of multipliers, where at least most of the multipliers are greater than a multiplier for any previous stage. This random multiplier can advantageously be displayed, or physically embodied, as a wheel having segments with the multipliers displayed in respective segments of the wheel. The wheel is caused to rotate and come to a stop with the random multiplier at a designated stop point.
Of course, the foregoing invention as described in a video slot machine embodiment could be readily embodied in a standard mechanical slot machine. Likewise, the video dice game is readily adapted to a table-type game format, as is the video card game contemplated above.
In the same vein, a gaming machine coming within the scope of one aspect of the invention broadly comprises a gaming unit having at least first and second stages of play, each stage having an advancement condition and a non-advancement condition. Some kind of interface mechanism with the gaming unit allows gameplay input for a player, with the gameplay input including wagering input allowing the player to register a bet upon one or more stages of play.
An operational device operates the gaming unit, upon player input including an operational command. The operational device determines which of the conditions is presented by a first stage as played, and if an advancement condition is presented, then advancing the gaming unit to the second stage, but if a non-advancement condition is presented, the game is over and at least a portion, and preferably all, of any second stage bet registered is lost. Play continues for a successive stage up to a predetermined nth stage if an advancement condition is determined for that next stage to be reached, and a bet has been previously registered for that successive stage. Again, the stages of play can be games which are of the same type of game, or different types of games. These can also be games that have not yet been invented.
These aspects of the invention, along with other aspects, advantages, objectives and accomplishments of the invention, will be further understood and appreciated upon consideration of the following detailed description of certain present embodiments of the invention, taken in conjunction with the accompanying drawings, in which:
a-10e present a flow chart of a method of operating a three stage video slot machine gaming machine of the type of embodiment of
a-12c present flow charts of a method of operating a video slot machine gaming machine embodiment of the present invention using the bonus multiplier wheel of
a-34d present flow charts for a method of operating a video dice gaming machine of the present invention.
Four different embodiments of the present invention are described herein, with some noted variations in certain cases. The first embodiment is a three stage, multi-line, multi-coin video slot machine. The same game format (slots) with the same paytable is operated on three stages, with increasing payout multipliers at each stage providing an increasing amount to win at the higher stages. The “spin” at each stage is independent of the previous stages.
The second embodiment is a multi-stage Five-Card Stud poker game. Each stage is again independent of the previous stage. However, a separate paytable is used for each stage in this embodiment. A variation of this game is also shown which uses the same paytable on each stage, but combined with a mechanism to increase the “hit” rate.
The third embodiment is a Draw poker game that combines the concepts shown in the Stud poker game with the decisions and optimal play analysis that are integral to Draw poker. The final embodiment is a dice game which has been adapted to provide a high dependency between the first stage and the next stages.
While each of these embodiments uses a single game format, or type, to play from stage to stage, as noted above, it is clearly anticipated that the invention may be used with a first game type as a first stage, with a subsequent stage or stages being of a different game type, e.g., a single line slot stage, then a multi-line slot stage, then a Stud poker stage, etc. Thus, it should be appreciated that similar or different games of chance may be staged together, and the invention is not limited to the types of games shown here, and would encompass any conceivable other game, such as roulette, craps, baccarat, keno, and so on. It will also be apparent to one of skill in the art how to use the invention in live games with dealers (i.e., table games), notwithstanding the particular embodiments described herein relating to gaming machines.
A first embodiment of this invention takes the form of a multi-stage slot machine. This may be done on a video screen with the presentation of a video slot machine, or may be accomplished with mechanical spinning reels, for instance. In a mechanical embodiment, the stages may be played sequentially on the same reels, or on physically separate reels. It is also adaptable for combinations of video slots and mechanical spinning reel slots, where some stages are played on the video slots and some stages are played on mechanical spinning reels.
In this first embodiment, there are three video slot machines (stages) vertically disposed on a video screen (although it will be apparent how to adapt this technique to any number of desired stages). In this embodiment, each machine has the same symbols, symbol frequency, hit rate and payout percentage. Of course, other embodiments may use different hit rates and frequencies, if not entirely different symbols and game themes from stage to stage.
In this first embodiment, the criterion for advancing from one stage to the next is any win on the current stage. It is envisioned that other criteria may be used in other embodiments, such as a special symbol, which while only paying in certain configurations, would advance a player to the next level anytime it appeared in the game.
Turning now to
Selecting from eleven to fifteen lines will activate the five lines on the first machine 18, the five lines on the second machine 19 and from one to five lines on the third machine 20. This will then allow a spin on the first machine 18, and if there is a winner on the first machine, then a spin on the second machine 19 (with 2× payout following). If there is any winner on the second machine 19, that will allow a spin on the third machine 20. All amounts won on the third machine 20 are multiplied by four (4×) in this version (see window 23).
In this particular embodiment, the “hit rate” (percentage of games that have any win) is carefully set just over 50%. This allows each stage (18, 19 and 20) to have a multiplier that is twice that of the previous stage, and result in a reasonable expected payout for the player and reasonable expected return for the operator (e.g., gaming establishment). More stages could be added in a manner described without departing from the invention. Also, vastly different hit rates and multipliers could be used, separate paytables for each stage that do not scale evenly may be used, and other variations thereon will be readily apparent to those of skill in this art.
It should be noted that bets on the second machine 19 (lines six through ten) and the third machine 20 (lines eleven through fifteen) will be lost if a machine at a stage (level) below it does not result in a win, in this embodiment. This is considered offset in the mind of the player by game multipliers (2× and 4× respectively) when these machines do get a chance to spin. This increased opportunity for winnings when these upper stage machines get to spin adds a great deal of excitement and anticipation for the player.
Once the player has selected the number of lines, he or she specifies how many coins are to be wagered for each of the selected lines. As is well known in the art, all payouts are multiplied by the number of coins bet per payline. The player may repeatedly press the “Coins Per Line” button 25 (
Once the specifics of the bet are selected as described above, the player presses the “Spin Reels” button 30, which will initially spin the reels on the first slot machine 18. If there is no winning combination on any active (bet) payline then the game is over and the entire bet is lost, including any amount bet on the other machines 19, 20. If there is any winning combination on an active payline of the first machine 18, then the machine display will first show all winning paylines followed by a pattern of cycling through the individual winning combinations.
For both
This results in a “Total” of seven coins for the lower machine. The “Total Won” meter 36 on the right edge of the screen shows this seven coin figure in
As a result of winning on machine 18, the player is now allowed to spin the reels of the second machine 19, provided that a bet was placed on at least one of lines six through ten. The reels on the second machine 19 are spun by again pressing the “Spin Reels” button 30. If there is no winning combination on the reels of the second machine 19, then the game is over. In that case, any bet made on the third machine 20 (lines eleven through fifteen) is lost, and the winnings from the first machine 18 are paid to the player. The game pays the awarded credits from first machine 18 then restarts, becoming ready to take another bet.
In the case of a winning combination on the second machine 19, then it may have an overall display similar to
Once again, the reels on the third machine are spun by pressing the “Spin Reels” button 30. If there is no winning combination on the reels of the third machine 20, then the game is over. In that case, the winnings from the two other machines are paid to the player, and the game recycles for a new bet.
A winning combination is shown on the third machine 20 in
The “Max Bet Spin” button 39 (shown in
The above-described embodiment of a gaming slot machine is operationally summarized in the flow charts of
At this stage, the player enters a set-up loop where the player may choose to add more credits or proceed with play at step 156. If credits are added, these are registered (on the meter display 37) at step 158, and the program loops back to step 156 (via 155).
The “Coins Per Line” button 25 can alternatively be engaged from step 156, causing the coins-per-line setting to be modified (as indicated at meter 40,
Back at step 156, the player then can choose the lines upon which to bet through operation of general “Select Lines” button 12. This causes the graphics program to highlight the lines being designated at step 160. Alternatively, the special “Select Lines” buttons 14 through 16 could be used out of step 156, also resulting in a registration of the line group selected (at step 161), then an update of the graphics at step 160.
From step 160, the number of lines bet is registered on lines-bet meter 41 (e.g.,
Once the player has input the parameters of the wager, then the “Spin Reels” button 30 is engaged. It should be noted that the foregoing selection sequence as to coins and lines to bet need not follow the order indicated.
The player has the option of skipping all of the line and coins-per-line selections, through resort to the “Max Bet Spin” button 39. A subroutine will then execute at step 165 to assess the total credits the player has provided, and determine the maximum number of coins per line and the maximum number of lines (per an embedded look-up table) which can be played for the credit quantity shown in total credits meter 37, up to a fixed maximum for the game. The graphics are updated accordingly at step 166 to show the lines being bet (as at step 160), with a similar update of the coins-per-line meter 40, lines-bet meter 41 and “Total Bet” meter 26, all as indicated at step 167.
From either the actuation of the “Spin Reels” button 30 or the “Max Bet Spin” button 39, the selection buttons for player input are then deactivated and the amount bet is subtracted at step 168, with the remaining credits updated on the “Total Credits” meter 37. The display graphics then shows the reels spinning at the first stage/level/machine 18 (step 169). The reel stop positions are selected in a random manner (step 170), with the graphics displaying the final symbols coming into view for each reel in sequence (steps 171a through 171e).
Turning now to
An assessment is then made as to whether the player has bet on any lines of the second stage/level/machine 19, as noted at step 182. If not, then the game goes to the “Game Over” sequence (step 176b). If a stage-two bet has been registered, then the player “Spin Reels” button 30 is reactivated at step 183. Machine two 19 is graphically highlighted on the display (e.g., see
While waiting for the player to spin the second stage (machine two 19), like all other points that the program waits for input, a check is made at 187 to see if additional credits have been purchased by the player. If more credits are input, they are registered on the “Total Credits” meter 37 (step 188), and the player is looped back to step 187. Ultimately, the “Spin Reels” button 30 is actuated by the player at step 187, and play on the second machine 19 commences.
The button 30 is then deactivated (step 189), the second machine reels are graphically shown spinning (step 190), and the sequence of steps 170 and 171a through 171e described with respect to the first machine 18 is repeated, except now as related to the second machine 19, as shown in steps 191 and 192a through 192e.
As shown in
If a bet has been registered for lines on the third machine 20 (step 202), the “Spin Reels” button 30 is again activated (step 203), machine 20 is graphically highlighted on the display (e.g., see
The “Spin Reels” button is once more deactivated (step 209), and steps 210, 211 and 212a through 212e repeat steps 169, 170 and 171a through 171e, respectively, this time for the third machine 20.
As shown in
If there are credits won, then the “Total Won” credits are added to the “Total Credits” meter 37, accompanied by a bang, knocker or other exciting sound, as indicated at step 225. If the “Game Over” sequence is engaged out of step 176b, then the program cycles through step 225 then 224, and returns to step 150.
The multi-stage slot machine gaming machine embodiment being described has, as a base component, a single slot machine which is then adapted for a plurality of stages. The first step in the construction of the single machine of the game is to select the paying combinations for the stage, and then to lay out the symbols on the five reels in a manner to achieve the desired hit rate. The “hit rate” (percentage of games with at least one winning combination) in this embodiment is of importance, because getting a hit (or any win) is the criterion used to advance to the subsequent stage. In this first embodiment, it was decided to use the same machine at each stage with a doubling of the rewards for each successive level. If the “hit rate” for such a configuration was set at exactly 50%, then the expected return percentage would be the same for each level. If the “hit rate” was less than 50%, then the player would get a lower expected return at each successive level, which is not desirable in general. Moreover, certain gaming jurisdictions require that each additional coin bet on a game have the same or greater expected return than the previous coin.
If the “hit rate” is set at just over 50%, then each successive stage will have a slightly greater return than the previous stage, which is desirable to provide the player with an incentive to play more coins per game. While it is easy to mathematically determine that the “hit rate” of any payline will be 18.64% in the described first embodiment, a more thorough analysis is needed to determine the “hit rate” when five lines are played. This is due to multiple winners on different lines on certain spins. While the single line “hit rate” may be mathematically determined using the quantities of each symbol on each reel, the five-line “hit rate” requires knowledge of the actual layout of each reel strip to take into account which pays will occur.
The first embodiment described above uses reel strips with thirty stop positions laid out as shown in Table 1.
With thirty stops on each of five reels, there are a total of 305 or 24,300,000 possible combinations. To determine the “hit rate” for this set of reel strips, a computer analysis well known to the art is used to evaluate each of the 24,300,000 combinations of the five reels. For each combination, the symbols are analyzed across each of the five paylines in comparison with the paytables and rules shown in
Table 2 shows the number of times each symbol appears on each of the five reels. This frequency data is used in combination with Table 3 to determine the payout percentage.
Table 3 shows a table of the available “pays” along with the necessary information to determine the payout percentage of the game. To provide the correct analysis, it should be clear that all “pays,” except the “Scatter” pay of three “Scattered Dice” symbols, will only pay left to right. That is, the indicated combination must be shown on successive reels starting with Reel 1 (see
The “Occurrences” column of Table 3 is created using the Table 2 frequency data and enumerating each way to create that combination. Some examples are shown for clarity:
5 “WILD” 1×1×1×1×1=1
One “Wild” symbol on each reel results in one Occurrence of five “WILD.”
4 “WILD” 1×1×1×1×(2+2)=4
One “WILD” symbol on each of the first four reels and either a Drum or a Dice symbol on the fifth reel (any other symbol will result in five of that symbol instead of four wild).
3 “WILD” 1×1×1×3×30=90
One “WILD” symbol on each of the first three reels and a Drum on the fourth reel and any symbol on the fifth reel (any other symbol but a Drum on the fourth reel results in four or five of that symbol).
5 “7's” ((1+3)×(1+4)×(1+2)×(1+1)×(1+2))−1=359
Either a “WILD” or “7” on each reel, not counting the number of ways (one) to have five “WILDs.”
4 “7's” ((1+3)×(1+4)×(1+2)×(1+1)×(30−1−2))−(1×1×1×1×(30−1−2))=3213
The first component is the number of combinations with either a “WILD” or a “7” on each of the first four reels with any symbol except “WILD” or “7” on the fifth reel. This component includes combinations that have four “WILDs” which either pay as four “WILDs” or five of some other symbol, which need to be subtracted off. The second component is the number of combinations that have four “WILDs” on the first four reels that were part of the first component.
3 Bananas ((1+5)×(1+1)×(1+5)×(30−1−4)×30)−((1×1×1×(30−1−4)×30)=53250
The first component is the number of combinations with either a “WILD” or banana on each of the first three reels, with any symbol except a “WILD” or banana on the fourth reel and any symbol on the fifth reel. This component includes combinations that begin with three “WILDs,” which will pay as three “WILDs” or, four of some other symbol or five of some other symbol. The combinations with three “WILDs” are subtracted off in the second component which includes the number of combinations that contain “WILD” on the first three reels, any symbol but “WILD” or Banana on the fourth reel, and any symbol on the fifth reel.
3 Scattered Dice (5×3)×30×(2×3)×30×(2×3)=486,000
Each of the five Dice on the first reel qualifies for the “Scatter” pay in any of three positions (upper position, center position and lower position). This is multiplied by the thirty stops representing any position on the second reel, multiplied by the two Dice times three positions on the third reel, multiplied by the thirty stops of the fourth reel, multiplied by the two Dice times three positions on the fifth reel.
All other counts in the “Occurrences” column are calculated in a similar manner.
The “Probability” column for each row of Table 3 is computed by dividing the “Occurrences” in that row by the total number of combinations which is 24,300,000.
The EV or “Expected Value” for each row is computed by multiplying the “Pay” amount times the “Probability” for that row. The return from a single stage of this machine is computed by taking the sum of all EV entries, which is 0.906239712, or a 90.62% return. The payout percentage can be modified by modifying the Column 2 “Pay” values and the corresponding paytable, as is well known in the art. The payout percentage may also be modified by changing the symbol frequencies shown in Table 2, and corresponding reel strips of Table 1. Care must be taken to keep the “hit rate” at the desired level while changing the payout percentage. This is also well known in the art, and is often the preferred method used to alter payout percentage, because when this method is used, the player cannot tell from the paytable which machine has a higher return, or for that matter know for sure that machines are set at different payout percentages.
Building now upon the single stage machine so described, Table 4 shows how the return for the multi-stage version of the game is computed. The first column shows the “Stage” for which the return is being computed. The second column shows the probability of a hit on the specified stage. In this first embodiment, this is the “hit rate” of a single stage of the machine, which is the criterion for moving up to the next stage. The third column shows the probability of playing the specified stage (as opposed to losing all bets on that stage without play). This is “1” for the first stage (the first stage is always played), and for the other stages is computed by multiplying the probability of playing the previous stage (third column, one line above) times the probability of a hit on the previous stage (second column, one line above). For Stage 2, this is 1×0.51727=0.51727. For the third stage this is 0.51727×0.51727=0.26757.
The fourth column shows the multiplier for all “pays” on the specified stage. This multiplier provides a reward that more than offsets the losses for the times that the stage is not played. The fifth column shows the EV for the machine on the specified stage, which is the same for each identical machine in this embodiment. The sixth column shows the overall EV of the specified stage, and is computed by multiplying the third through fifth columns together. This is because the EV of a stage (fifth column) has to be scaled up by the payoff multiplier (fourth column) and reduced by taking into account the probability of playing that stage (third column). The seventh column shows the cumulative EV when one, two or three stages are played. This is the average of the sixth column of the specified level and all levels above it. When only one stage is played the cumulative EV is the same as the EV of that stage. When two stages are played, the cumulative EV is the average of the EV of the first stage and the second stage. When all three stages are played, the cumulative EV is the average of the EV of the first stage, second stage and third stage. This results in an overall expected return of 93.79% when all three stages (fifteen lines) are played.
In a modification to the first embodiment above, a fourth stage is added allowing the player to wager on one to twenty lines. Instead of offering a fixed 8× multiplier on the fourth stage, however, after any win on the fourth stage the multiplier is randomly selected from a range of 4× to 50×, with weighted frequencies selected such that the overall value of the multiplier is about 8×. Each time that a spin on the fourth stage results in any win, the game goes through a selection process that presents a multiplier of 4× to 50× to the player. One method of presentation is to select the multiplier and show it on the screen to the player. Table 5 shows a table of weighted entries that are used for this purpose. After a win on the fourth stage of this game, the machine uses its RNG (random number generator) to select an integer from 1 to 29. This number is “looked up” in the second column of Table 5 (titled “Values”), and the corresponding value in the first column (titled “Multiplier”) is used as the stage multiplier for that spin. The third through fifth columns of Table 5 are used to determine the EV of the fourth stage multiplier in the same manner used in Table 3.
Table 6 is a modified version of Table 4, with the fourth stage added showing the overall payout percentage of this modified game is 95.43% with all twenty lines played. Also note that the payout percentage on the fourth stage is 100.34%. A bet on this particular stage has a positive expectation for the player. This bet (on lines sixteen through twenty) is only allowed in conjunction with the negative-expectation bets (i.e., less than 100%) on the first fifteen lines, thus resulting in an overall negative expectation of a 95.43% return.
To add even more excitement to the presentation of the foregoing fourth stage, another variation of this four stage game adds a mechanical wheel for selection of the multiplier for wins on the fourth stage. Adams, U.S. Pat. No. 5,823,874 and No. 5,848,932, and Telnaes, U.S. Pat. No. 4,448,419, may be referred to for detail on such bonus sequences and indicia. The wheel 42 shown in
The above-described embodiment of a gaming slot machine having four stages and a random number multiplier on the fourth stage is operationally summarized in the flow charts of
Turning first to
As in the other levels, the “Spin Reels” button is once more deactivated (step 239), and steps 240, 241 and 242a through 242e repeat steps 169, 170 and 171a through 171e, respectively, this time for the fourth machine. Turning to
Step 249 will now initiate a sequence for a multiplier to be applied to the fourth level in this version. First, a number is randomly selected from a table provided for the fourth level multiplier at step 249. The bonus wheel 42 (
Another embodiment uses this multi-stage game technique for the play of video poker. This second embodiment adapts a Five-Card Stud game with hit rates under 50% and over 50%. The invention may also be used to adapt many other poker games, including Five-Card Draw poker, Double Down Stud poker (see e.g., U.S. Pat. Nos. 5,100,137 and 5,167,413) and Big Split poker (disclosed by the inventors herein in a pending U.S. patent application) among others.
In this second embodiment, there are three stages of Five-Card Stud poker. This game pays on any hand that is one pair or better. It will be seen that about 49.88% of hands in Five-Card Stud poker rank as one pair or higher. For this game with a “hit rate” under 50%, it would be undesirable to use 2× and 4× multipliers on the second and third stages respectively, since this would make the return of these stages lower than the first stage. This means that a player wagering more money would get a lower expected return, which is undesirable to the proprietor of the game who wants to encourage as high a wager as possible, but may also run afoul of regulations in certain gaming jurisdictions, which require equal or higher return for each coin wagered on a single game. There are many ways that the game may be modified to cause the higher stages to have a higher payout, of which two will be shown here.
In the first version of this poker embodiment, a separate paytable is used for each stage of the game, as shown in
Referring still to
Having won Hand #1 (50), however, the player presses the “Deal Hand” button 56 and a second hand is dealt as is shown in
The player once again presses the “Deal Hand” button 56 after success at stage two, and a third hand (52) is dealt as is shown in
Table 8 shows how the calculation of certain architecture of the payout percentage (expected return) of the first stage of this second embodiment is computed. This table is for a one coin bet. It is well known in the art how to expand this for a higher number of coins bet per hand, and for the inclusion of bonuses for a higher number of coins.
The number of possible five card poker hands from a fifty-two card deck is known as “52 choose 5” and is computed with the following formula:
The first column of Table 8 shows the rank of all hands in this Five-Card Stud game. The second column shows the pay value for this ranking on Hand #1 (each hand 50, 51 and 52 having a separate paytable). The third column (“Occurrences”) is the number of times a particular hand occurs in the 2,598,960 possible five card poker hands dealt from a standard deck. This “Occurrence” tabulation is well known to those skilled in the art, and may be derived by analyzing each of the 2,598,960 hands with a computer program, also well known. The fourth column shows the probability of playing Hand #1 when a bet is placed on this hand. For Hand #1 this probability is 1.0, since the first hand will always be played when it is bet on. The fifth column shows the probability of receiving the hand called out in the first column. This is computed by dividing the “Occurrences” (third column) by the 2,598,960 total number of possible hands.
The sixth column is the product of the fourth and fifth columns, which is the probability of getting a particular hand on this stage (for the first stage it is the same as the fifth column since the first stage is always played). The seventh column is the expected value contribution EV, which is the product of the second column pay and the sixth column probability of achieving the given hand on the current stage. The sum of all EV contributions provides the expected return of 0.916288 or 91.63%. This expected return may be modified by making modifications to the “Pay” values in the second column of Table 8, as is well known in the art.
Table 9 shows a similar analysis for Hand #2 (51) (the second stage of this game). The second column now has the Hand #2 paytable showing all values doubled from the Hand #1 paytable with the Four of a Kind going from 50 to 200. The fourth column, “Probability of Playing This Stage” is the probability of getting any “hit” (one pair or higher) on the first stage. This is computed by adding up all of the fifth column values from Table 8 except for “Bust,” or by subtracting the probability of a “Bust” (0.50117739) from 1.0, resulting in a first stage hit rate of 0.498822606 or 49.88%. The sum of the EV components on the second stage is 0.9261078, indicating a 92.61% expected return. This higher expected return than the first stage is a result of the 200 coin Four of a Kind value more than offsetting the “hit rate” which is slightly under 50%.
This expected return may, again, be modified by making modifications to the “Pay” values.
Table 10 shows a similar analysis for Hand #3 (52) (the third stage of this game). The second column now has the Hand #3 paytable showing all values doubled from the Hand #2 paytable with the Full House going from 50 to 150. The “Probability of Playing This Stage” is the probability of getting any “hit” (one pair or higher) on the first and second stages. This is the square of the 0.498822606 “hit rate” of the first stage since a “hit” is required on both the first and second stages in order to play the third stage. The fourth column value may also be computed by subtracting the probability of getting a “Bust” on the first stage (0.50117739) and the probability of getting a “Bust” on the second stage (0.249998614) from 1.0 (i.e., 1−0.50117739−0.249998614=0.248823992). The sum of the EV components on the third stage is 0.941849, indicating a 94.18% expected return. This higher expected return than the second stage likewise is a result of the 150 coin Full House value more than offsetting the second stage “hit rate” which is slightly under 50%. Once again, the expected return may be modified by making modifications to the “Pay” values.
Table 11 shows the return of betting on one, two or three stages in this poker game of the second embodiment. For the “Stage” called out in the first column, the second column shows the EV for that stage taken from Tables 8, 9, and 10. The third column is the EV of an entire multi-stage game with a bet on the number of stages in the first column. This is the average of the selected second column level and all levels above (i.e., the average EV of all those stages in the multi-stage game). The expected return of the entire game when a player plays all three stages is 0.928081203 or 92.81%.
This modification of the Triple-Strike Stud poker game introduces a “Free Ride” feature. This feature is used to increase the “hit rate” of the basic game without making any other modifications to the game (such as which hands pay). This feature provides a greater flexibility in setting the “hit rate” than is available by simply setting which rank is the lowest pay. Using normal poker game construction techniques, one would typically have to include more paying hands to increase the “hit rate.” In the game of the above second embodiment, the highest nonpaying hand to add would be “Ace High,” which would add almost 20% to the hit rate as shown in Table 12. Paying on all hands that have an Ace (referred to as “Ace High”) would bring the hit rate up from 49.88% to 69.23%, which is far beyond the goal of just over 50%. Another variance could require “Ace-King” high as the minimum hand, which would bring the hit rate to 56.32%, which is still a very large increase.
In this modified embodiment, a “Free Ride” feature is added to the game wherein in some of the hands, on a random basis, a “Free Ride” indicia will be displayed, advantageously with an accompanying sound. When the “Free Ride” is indicated, the hand will be dealt as usual and paid according to the paytable, but the game will automatically advance to the next hand that was wagered on, whether or not the player wins the current hand.
Using this feature, multiple stages of this game can be constructed with a natural hit rate under 50%, yet use the same paytable for all stages with multipliers for each stage.
Another advantage of the “Free Ride” feature is that it is not necessary to modify paytable values to increase the “hit rate.” It is well known in the art that as additional “pays” are allowed to increase the “hit rate,” other pay values or frequencies will need to be decreased to offset the amount paid out on the new values. The “Free Ride” introduces a method of raising the “hit rate” of a game without any other modification to the payout of the game through the use of “hits” that award no coins/credits. This is important for the purpose of adapting games with paytables that are already familiar to the players. It is also a valuable tool that gives the game designer more flexibility in the creation of a game.
Table 8 is still representative of the first stage of this “Free Ride” version. In this modified embodiment, the “Free Ride” is offered on sixteen of every one thousand hands (based on a random number for each hand), or 1.6% of the hands played. This will increase the “hit rate” of the stage. Using more than 1.6% “Free Rides” will provide a greater increase, while using less than 1.6% will provide a smaller increase in the “hit rate.” Because the “Free Ride” offers no benefit when playing on the highest hand that has been wagered on (there being no “next hand” to advance to) it is not offered on the final hand.
Table 13 shows how the” hit rate” is determined for the first stage of Table 8 that includes a 1.6% “Free Ride.” The first line shows the “hit rate” that is achieved for first stage hands, 0.4988. The second line shows the sixteen in one thousand probability of the “Free Ride” being offered. The third line shows the probability of losing on the first stage. This is the “Bust” probability taken from Table 8. The fourth line is the product of the second and third lines, showing the probability of getting a “Free Ride” on a “Busted” hand. This is the additional “hit rate” component, since winning hands that receive the Free Ride are already figured into the first line. The fifth line is the sum of the first and fourth lines and is the resulting “hit rate” for the first stage including the “Free Ride” feature which is 0.506841 or 50.68%.
The second stage of the “Free Ride” variation is now represented by Table 14, which is similar to Table 9. The differences are in the “Pay” values, which are now exactly twice (2× multiplier) the “Pay” values from Table 8, and the fourth column “Probability of Playing This Stage”, which is now the 0.506841 value, computed in Table 13.
The third stage for the “Free Ride” variation is represented by Table 15, which is similar to Table 10. Again, the differences are in the “Pay” values, which are now exactly twice (2× multiplier), the “Pay” values from Table 14, and the fourth column “Probability of Playing This Stage”, which is now 0.25688825, which is the square of the 0.506841 “hit rate” of the first stage.
Finally, Table 16 is a similar table to Table 11, showing the overall payout percentage of the one, two and three stage versions of this “Free Ride” game. The increase in overall payout is a little over 1.2% when going from one to three stages. This range may be increased using a higher “Free Ride” percentage, or decreased using a lower “Free Ride” percentage. One skilled in the art will appreciate that changing the payout range using this independent “Free Ride” percentage provides much better precision and flexibility for setting this range than the paytable modification method used in the unmodified second embodiment.
Five-Card Draw poker is a very popular casino game and is offered in many variations including Jacks or Better, Joker Poker, Deuces Wild and various “bonus” type Jacks or Better versions, among others. While it is within the scope of the invention to use any poker game with paytables and/or multipliers that provide the increased reward on the higher stages, or to use different variations of poker or even other games of chance on different levels, this third embodiment will use a well known game with its well known paytables. It will also use multipliers to increase the reward on the higher levels. Many of the popular Five-Card Draw poker games have hit rates in the 40% to 50% range, including Jacks or Better, Deuces Wild and the many “bonus” poker variations that are popular today in the marketplace. Since most gaming jurisdictions require that video poker be played from a “fair” deck of cards, it has become widely known that a player can determine the payout percentage of a video poker machine by looking at its paytable. This has resulted in a growing popularity of this type of game. In this embodiment of the invention, a multiple stage Five-Card Draw poker game is constructed, also using the “Free Ride” feature previously discussed to maintain the familiar paytable. It will be shown that the frequency of the “Free Ride” feature can be used to achieve a similar payout percentage in the multi-stage game as the player may expect from the familiar paytable.
The player presses the “Coins per Hand” button 67 to select a bet ranging from one to five coins per hand. Those skilled in the art understand how to allow the range of coins bet to be broader or narrower or how to add bonuses for higher bets.
The “Total Bet” is the product of the “Select Number of Hands” and “Coins per Hand” values, and is displayed in the “Total Bet” window 68. The player then presses the “Deal/Draw” button 70 to deal out a hand on the first stage 71. The buttons shown in
After receiving the initial hand, the player may hold one or more cards by using the touchscreen to indicate which cards are to be discarded.
However, as a result of obtaining a winning hand, the bet made on Hand #2 (72) will now be played. Five cards are dealt randomly from a separate (new) deck of fifty-two cards in the Hand #2 position.
Since a winning hand was achieved on Hand #2, the bet made on Hand #3 (73) will now be played. Five cards are again dealt randomly from a new deck in the Hand #3 position (73).
As a result of obtaining a winning hand on Hand #3, the bet made on Hand #4 (74) will now be played. Five cards are again dealt randomly from a new deck in the Hand #4 (74) position.
Multi-Strike Five-Card Draw Poker with “Free Ride”
In another example of the foregoing embodiment of Five-Card Draw poker, the same “Free Ride” feature that was described for Five-Card Stud poker is used to increase the hit rate without having to modify the popularly known paytable.
Part I—Review of “Standard Video Poker”
This analysis is of a “standard video Draw poker” game, which will then be related to Multi-Strike Five-Card Draw poker for a one coin wager per hand. It is well known by those skilled in the art how to expand this to more coins bet, and how to add bonuses for higher bets.
Those skilled in the art of video poker development know that a Five Card Draw poker game with the paytable shown in Table 17 has an expected return of 99.54398%. This payout percentage is what the game will return in the long run with “Optimal Play”. This game is usually referred to as 9-6 Jacks or Better. This is because most Jacks or Better games (without Four-of-a-Kind bonuses) use the same paytable except for the Full House and Flush awards which are modified to change the payout percentage. It is well known that a 9-6 Jacks or Better (awarding nine coins for Full House and six coins for Flush) provides a 99.54% return.
Unlike the previous embodiments, Draw poker has a skill element that requires decisions by the player on each hand. The game is designed such that the payout percentage will be reached over the long run when the game is played optimally. Each non-optimal play lowers the expected return (although it could result in a higher short term result). Each of the 2,598,960 possible hands may be played thirty-two ways by holding none, or any combination of the five initial cards dealt. Using expected value analysis of the thirty-two combinations can determine the best play for any given hand. One skilled in the art is readily able to construct the table in Table 17 by writing a computer program that performs this analysis on each of the 2,598,960 hands.
To further clarify this method, one of the possible 2,598,960 hands is examined, and in particular, the hand shown in
Table 18 shows the expected return for holding the Jack-10-9-8 four card straight. The first two columns show all possible rankings and their pay value. The third column shows the number of occurrences of each of these possible ranks when drawing to this exact situation (i.e., given the initial five cards, the cards that were held and the suits and rank of the remaining forty-seven cards). The computation of this third column may be exhaustively determined by analyzing each possible resulting hand, but is usually done by an analysis of the combinations of the held and remaining cards, which may be computed more quickly. In this example of drawing one card, it is easy to see that any of the four outstanding Queens or 7's result in eight possible straights, and the three outstanding Jacks would result in a pair of Jacks. All other draw cards would result in a “Bust”. The fourth column shows the “Probability” of drawing to the specified rank, which is computed by dividing the third column “Occurrences” count by the forty-seven total ways to draw this hold combination. The fifth column “EV” is the product of the “Pay” value of second column and the “Probability” value of fourth column. The sum of EV components results in a 0.744681 expected return for this play. That is, on average, this hold will yield 74.47% of the amount bet in the long run.
Table 19 shows a similar analysis for the case where just the Jack is held from the same hand shown in
This specifies the number of combinations of forty-seven cards taken four cards at a time. As stated above, these “Occurrences” are found by a well known/readily obtained computer program that either exhaustively analyzes each of the 178,365 draw combinations in conjunction with the Jack of Spades, or by an analysis of the combinations of the held and remaining cards. The expected return of holding the Jack of Spades is computed in Table 19 in a manner similar to that used in Table 18, resulting in a 47.93% expected return in the long run. Analyzing the other thirty ways to play this hand results in an even lower expected return than the “Jack Hold” of Table 19. Therefore, the best play for this particular hand is to hold the four card Straight analyzed in Table 18.
The analysis program that iterates over each of the 2,598,960 hands finds the best of the thirty-two possible holds, and keeps a running sum of the expected return for these optimal holds (for the sample hand of
Part II—Modification of Analysis for Multi-Strike Game
In playing a multi-stage Draw Poker game of the present invention, the optimal hold is no longer necessarily the hold that will provide the highest expected return for the current hand, but is rather the hold that will provide the highest expected return on the remainder of the multi-stage game (including the current hand). As with standard Draw poker, the expected return of thirty-two hold combinations must be examined. The expected return of any hold combination now has two components. The first component is the expected return of the current hand (which is the expected return as calculated in Table 18, times the current stage multiplier). The second component is the expected return of the remainder of the game given that hold combination. The second component is the product of the “Probability” of any win on the current stage (for the current hold combination) and the expected return of remaining stages. This sum may be represented as:
EVch=(EVstd*MULTstage)+(HRch*EVremain); where EQUATION 1
Simply stated, the second component is the value of “staying alive” by getting any win. For certain hands at certain stages, it will be advantageous to hold a combination with a lower EVstd due to its higher HRch.
The EVremain component drives an analysis of the game from the “top down.” That is, for games with four stages bet, the analysis is done for the fourth stage, then using the result from the fourth stage to set the EVremain value, the analysis may be done for the third stage and so on. For each stage, EVremain is a constant value determined from the analysis of the stage above it.
For the fourth stage, the second component of the Equation 1 sum drops out, because EVremain is zero since there are no subsequent stages. This means that the EVch for any given hold is eight times EVstd, which means that standard 9-6 strategy is optimal, and will provide a return of 0.99543983*8=7.96351864.
Before looking at the third stage analysis, it is important to understand the effect of the “Free Ride” feature. For the examples given here, a “Free Ride” rate of seventy-three per one thousand hands is used, or 7.3%. This value was carefully selected to arrive at a total “hit rate” (natural plus “Free Ride”) of slightly over 50%, as will be shown later. Those skilled in the art will see that this rate may be increased or decreased as desired to affect the “hit rate” and expected return. The “Free Ride” is randomly selected for 7.3% of the hands when there is a bet on a higher hand. On hands that receive a “Free Ride” card, the second component of the Equation 1 sum becomes a constant, since HRch is 1.0 for all holds (i.e., one will “hit” or advance to the next level 100% of the time regardless of the hold combination). This means that the best hold combination for hands that have been given a “Free Ride” will match the standard strategy.
To analyze the first three stages, one looks at each of the 2,598,960 possible initial five card hands. For each hand, the thirty-two possible hold combinations will need to be analyzed to determine the best EVch hold using Equation 1 and the best standard play hold using the method of Table 18 (EVstd). For many hands, the same hold will yield the highest EVch and the highest EVstd. The expected return for a given initial hand is now given by Equation 2:
EV123=(FRoff*EVchbest)+(FRon*((EVstdbest*MULTstage)+(1.0*EVremain))); where EQUATION 2
The first component of Equation 2 represents the hands that do not receive a “Free Ride.” The “No Free Ride” probability of 0.927 is used to weight the expected return that is computed using the formula of Equation 1. The second component represents the hands that receive a “Free Ride. The “Free Ride” probability of 0.073 is used to weight the return that will result by using the standard 9-6 strategy when a “Free Ride” is awarded on this hand.
For Levels one through three, the expected return is computed by adding the EV123 values for each of the 2,598,960 possible starting hands and dividing by 2,598,960. This expected return has the return of levels above it embedded within its value.
It is helpful to look at how EVchbest is found for a particular hand. For the hand shown in
EVch=(EVstd*MULTstage)+(HRch*EVremain) [EQUATION 1]
Taking the Hit Rate (HRch) for holding Jack-10-9-8=1−(36/47)=0.234043 (from Table 18):
Hold Jack-10-9-8: EVch=(0.744681*4)+(0.234043*7.96351864)=4.84253.
The Hit Rate (HRch) for Holding Jack=1−(118550/178365)=0.335352 (from Table 19).
Hold Jack: EVch=(0.479298*4)+(0.335352*7.96351864)=4.58777.
The EVch for the other thirty hold combinations is lower than for holding just the Jack, therefore, EVchbest=4.84253 resulting from holding the four card Straight. From Table 18 and Table 19 it can be seen that EVstdbest=0.744681 for this hand (also hold the straight). Therefore, the expected return on the third stage of this initial five-card hand is:
EV123=(FRoff*EVchbest)+(FRon*((EVstdbest*MULTstage)+(1.0*EVremain))) [using EQUATION 2]
EV123=(0.927*4.84253)+(0.073*((0.744681*4)+(1.0*7.96351864)))=5.287809
The sum of all of the EV123 values divided by 2,598,960 for the third stage results in an expected return of 7.95080267. This is the number of coins expected to be won in the remainder of any game that reaches the third stage (i.e. return of third and fourth stages combined).
The second stage is analyzed identically as the third stage, however EVremain is now 7.95080267 and MULTstage is now 2. Looking at the hand of
Hold Jack-10-9-8: EVth=(0.744681*2)+(0.234043*7.95080267)=3.3501917
Hold Jack: EVch=(0.479298*2)+(0.335352*7.95080267)=3.6249136
When the hand of
EV123=(0.927*3.624914)+(0.073*((0.744681*2)+(1.0*7.95080267)))=4.049427
A computer program known to those of skill in the art is used to find that the sum of all of the EV123 values divided by 2,598,960 for the second stage results in an expected return of 5.96916633. This is the number of coins a player is expected to win in the remainder of any game that reaches the second stage (i.e. return of second third and fourth stages combined).
The first stage is analyzed identically as the second and third stages, however EVremain is now 5.96916633 and MULTstage is now 1. Looking at the hand of
Hold Jack-10-9-8: EVch=(0.744681*1)+(0.234043*5.96916633)=2.141723
Hold Jack: EVch=(0.479298*1)+(0.335352*5.96916633)=2.481070
When the hand of
EV123=(0.927*2.481070)+(0.073*((0.744681*1)+(1.0*5.96916633)))=2.790063
The sum of all of the EV123 values divided by 2,598,960 for the first stage results in an expected return of 3.995391. This is the number of coins a player is expected to win in a four stage game for which a four coin bet is made. Dividing this value by the four coin bet results in an expected return of 0.998848 or 99.88%. By setting the “Free Ride” percentage at 7.3% for the four stage game, the expected return of 99.54% of this standard game was increased to 99.88% to give a player an incentive to learn the modified optimal play strategy dictated by the EVch analysis.
In order to determine the actual amount paid out on each level as well as the independent return of coins bet on that level, it is useful to maintain several running sums while working through each of the 2,598,960 possible hands. The following equation is calculated for each hand, and a sum of these values is maintained:
EVplayedhand=(FRoff*EVSTDchbest)+(FRon*EVstdbest) EQUATION 3
For each hand, if there is no “Free Ride”, it will be held to maximize EVch using Equation 1. The FRoff value is used to weight the standard (Table 18 method) EV of this best hold (called EVSTDchbest)). If there is a “Free Ride”, then the optimal play is to hold the combination that gives the highest standard EV. The FRon is used to weight this value. For the example hand of
EVplayedhand=(FRoff*EVSTDchbest)+(FRon*EVstdbest) [using EQUATION 3]
EVplayedhand=(0.927*0.479298)+(0.073*0.744681)=0.498671
The EVSTDchbest and EVstdbest values come from Table 19 and Table 18, respectively.
For each stage, for each of the 2,598,960 hands, these EVplayedhand components are added together and the sum is divided by 2,598,960. This indicates the payout of hands played on that level. These values are shown in the second column of Table 20.
In a manner similar to Equation 3, the HRch hit rate components are weighted and added to result in the hit rate shown in the third column of Table 20. The fourth column of Table 20 shows the probability of playing a hand on a given level, which is 1.0 on the first level, and for the other levels, is the product of the third and fourth columns of the level below. The fifth column shows the stage multiplier for the given level. The sixth column is the actual return for a particular level, which is the product of the second, fourth and fifth columns. The seventh column is expected return for the rest of a game that has reached the current stage. For the fourth stage, this is the product of the second column (return) and fifth column (multiplier). For the lower levels, it is the product of the second and fifth columns (which represents the Expected Pay for playing the current level) plus the third column (hit rate on current level) times the seventh column of the next higher level. This seventh column value is the same as the sum of the EV123 values previously discussed.
It is easily seen in Table 20 that on lower levels some of the column 2 return is sacrificed to increase the column 3 hit rate to allow more frequent play of the lucrative upper levels as seen in column 6.
Finally, when only two or three stages are bet, the analysis must be done again from the beginning, starting with the top stage and working down. The results for two or three stages are not inferable from the Table 20 data, but need to be developed independently.
It should be clear that a single stage game (i.e., a bet on only the first level) is no different than the standard 9-6 Jacks or Better game.
This third embodiment of a multi-stage draw poker gaming machine is operationally summarized in the flow charts of
At this stage, the player enters a set-up loop where the player may choose to add more credits or proceed with play at step 276. If credits are added, these are registered on the meter display 77 at step 277. The cards displayed from a previous hand, along with any stage total(s) and subtotal(s) reflected in the payout information window(s), and “Total Won” meter 85 are all cleared for the new game (step 278). The program loops back to step 276.
The “Coins per Hand” button 67 can alternatively be engaged from step 276, causing the coins-per-hand setting to be modified (as indicated at meter 64,
Back at step 276, the player then can choose the “Select Number of Hands” button 66 to input this aspect of his or her wager. This likewise causes the “Total Bet” to be so modified, as well as displaying the number of hands bet at meter 63, all as indicated at step 280. Graphics are also updated at step 281 to highlight the hands which are now “active” (i.e., potentially playable). Steps 278 and 275 then follow in the loop back to step 276.
Once the player has input the parameters of the wager, then the “Deal Draw” button 70 is engaged. It should be noted that the foregoing selection sequence as to coins and hands to bet need not follow the order indicated.
The player has the option of skipping all of the hands and coins per hand selections, through resort to the “Max Bet Deal” button 76. A subroutine will then execute at step 285 to assess the total credits the player has provided, and then determine the maximum number of coins per hand and the maximum number of hands (per an embedded look-up table) which can be played for that credit quantity, up to a fixed maximum for the game. The graphics are updated accordingly at steps 286 and 287 to show the hands being bet, coins-per-hand and total bet (as at steps 279 and 280). Steps 288 and 289 then follow, and are the same as steps 281 and 278, respectively.
From either the actuation of the “Deal Draw” button 70 or the “Max Bet Deal button 76, the selection buttons for player input are then deactivated and the amount bet is subtracted at step 291, with the remaining credits updated on the “Total Credits” meter 77. The main game play sequence is then begun (step 292).
The program randomly “shuffles” the deck to establish a playing order for the fifty-two regular playing cards (used in this version) at step 293 (
From either step 296 or 297, the program then “deals” (step 300) the cards for the hand, displaying the cards graphically in the five spaces allotted in the first hand 71. A check is made in the course of the foregoing deal to determine if one of the dealt cards is a “Free Ride” card at step 301. If it is (i.e., the “Free Ride” feature is available), then the “Free Ride” card is caused to be displayed in the space corresponding to its placement in the order, as indicated at step 302. Whereupon there is an audio cue also provided, and much rejoicing is heard throughout the land (step 303). After a suitable interval, the “Free Ride” card is caused to be replaced by the next regular playing card in the deck order (step 304), and a “Free Ride” icon is displayed next to the level (as seen at 91 in
From step 304, or step 301 if no “Free Ride” is detected, the program then performs an evaluation of the dealt hand (step 308) to determine if a winning hand is presented, using the paytable hierarchy discussed with regard to
Step 315 provides multiple options to the player at this juncture. The player may choose to add more credits, for example, which if elected results in an update to the “Total Credits” meter 77 at step 314, then looping back to step 315.
The player can also choose which cards to hold/discard at this point. A card that is to be held is selected (step 316) and then tagged as “held” (step 317) (e.g., see
When the player has exercised whatever of the foregoing options are desired, if any, from step 315, the “Deal/Draw” button 70 is again actuated. This results in the removal from the graphic display of any card not designated as “held” (step 320). Each card removed is replaced with the next card in the deck order, as indicated at step 321. A re-evaluation of the hand now presented takes place at steps 322 and 325, similar to that of steps 308 and 309. If a winning hand is presented (again with reference to the paytable of
If a winning hand is not presented at step 325, then a check is made as to whether the “Free Ride” icon is registered for the level at step 329. If it is, a message is displayed in payout information window 84 that the “Free Ride” feature is being employed to advance to the next stage/level/hand (step 330). If the “Free Ride” is not registered, then the game is over, and progresses to a “Game Over” sequence 331.
Out of steps 328 or 330, the program determines if the second stage/level/hand is “active,” i.e., bet upon (step 332). If it is not, the player is sent to the “Game Over” sequence (step 331). If it is active, however, then it is on to the next level.
Referring to
From step 349 or step 350, a “draw” sequence is again executed as described with respect to the first hand, beginning at step 355. This includes the option of adding more credits (update of credit meter at step 354), and the selection of cards to be “held” via steps 356 through 358 (corresponding to steps 316 through 318, respectively, described above). Once card selection is completed at step 355, previously described steps 320 through 322, and 325 through 332 are repeated, but for this second stage/level/hand, through respective steps 360 through 362, and 365 through 372. At this point, either the game is over, and the player is routed to the “Game Over” sequence (step 371), or the player advances to another hand that has been bet upon, and play advances to the third stage/level/hand out of step 372, shown in
Referring now to
Play of the fourth hand is similar to that described above, except that no “Free Ride” is available (this being the last hand in this particular embodiment of the game). Accordingly (and using the same convention for grouping like steps of the first and fourth levels for ease of description), cards are “shuffled” at step 413/293, dealt at step 420/300, and the hand is evaluated at step 428/308. If a winning hand is present (step 429/309), then a message is displayed at step 430/310.
Beginning with step 435, a “draw” sequence is again executed as described with respect to the first hand. In this fourth level, steps described for the first level draw sequence correspond to their fourth level counterparts as follows: 314-318/434-438, 320-322/440-442, and 325-328/445-448. Since there is no fifth level, the game proceeds to the “Game Over” sequence out of step 448 or step 445 at step 451.
The “Game Over” sequence is set forth in
Bunco, sometimes called Bunko, Bonko or Bonco, is a dice game that dates back to the mid 1800's in the United States. While there are many variations that are currently played, what follows is what appear to be very popular rules of the game.
Bunco is typically played in groups of eight to twenty players, usually women and occasionally couples as a social event. A group typically meets once a month, and plays at multiple tables of four players. Players seated across from each other are partners although it is typical to change partners for each game played. Each table has three dice that are passed around from player to player.
The game is played in “rounds”. The first round starts with all tables rolling for a “point” of one. The dice move clockwise to each person at the table who gets to roll the dice. A team scores one point for each die that matches the current point (one in this case). Each time one or more dice match the current point, the player's team scores and the player continues to roll. If the player gets all three dice to match on a number other than the current point then that team scores five points and the player continues to roll. If the player gets all three dice to match the current point they yell out “Bunco” and the team is awarded twenty-one points.
Once a player rolls the dice showing no points, the turn ends. Each round continues with the dice going from player to player around the table. The game ends when a player at the first or head table reaches twenty-one points, which is usually indicated by ringing a hand-bell to signal all the tables that the round is over. At this point the players change partners and rotate through the tables based on the winners and losers, and the next game would play with a “point” of two.
This fourth embodiment of the current invention consists of a dice game that is loosely based on an individual player's turn during a round of Bunco. While this game may be played in a casino with live dealers (as is done with the casino game of Craps) or on a gaming machine that propels real physical dice, the preferred embodiment is on a video gaming machine.
Unlike the version of Bunco described above, in this fourth embodiment there may be up to three points which the player is trying to roll. Instead of being a single number, any number that has been rolled on every stage of the current game is an active point. On the first roll, each number that appears on a die becomes a point, for a possible total of three points if all three dice are different (that is, all six possible numbers are points for the first roll). On the second roll, the player must roll one or more points matching the first roll to keep the game going. Any numbers that were rolled on both the first and second rolls remain points for the third roll. The player continues to roll until no dice match a number found in all previous rolls, or until the highest stage upon which a bet has been placed is rolled.
Referring to
The player presses the “Roll Dice” button 102 for the second stage, and a possible result is shown in
The player presses the “Roll Dice” button 102 for the third stage and a possible result is shown in
The player presses the “Roll Dice” button 102 for the fourth stage and a possible result is shown in
It should be noted that in the example shown, the bets for levels above the fourth level were lost without those levels being played. As is intuitive and will be shown in the following analysis, the higher the level, the less often it will be played. This is offset by offering the player very large awards for very modest events on these higher levels when they are played.
It should also be noted that while the slot machine and poker embodiments previously discussed have stages that are independent games that allow advancing to the next stage upon winning, this fourth Bunco embodiment is an ongoing game with stages that, as a result of the nature of the game, also involve multi-stage betting working with an evolving game. This game is not limited to advancing to the next stage only with a win, since the game will always play the second stage if two or more stages have been bet upon, even though, except for a first stage “Bunco”, the player will not win on the first stage.
Looking at
Shown in the upper right section of
The foregoing Bunco gaming machine is operationally summarized in the flow charts of
At this stage, the player enters a set-up loop where the player may choose to add more credits or proceed with play at step 466. If credits are added, these are registered on the meter display (115) at step 468. The program loops back to step 466.
The “Coins per Line” button 101 can alternatively be engaged from step 466, causing the coins-per-line setting to be modified (as indicated at meter 103,
Back at step 466, the player can choose the “Select Lines” button 100 to input this aspect of his or her wager. Graphics are updated at step 470 to highlight the lines which are now “active” (i.e., potentially playable). This likewise causes the lines bet meter 111 and “Total Bet” 104 to be so modified, all as indicated at step 472. The program once again loops back to step 466.
Once the player has input the parameters of the wager, then the “Roll Dice” button 102 is engaged. It should be noted that the foregoing selection sequence as to coins and lines to bet need not follow the order indicated.
The player has the option of skipping all of the lines and coins-per-line selections, through resort to the “Max Bet Roll Dice” button 116 (
The dice are rolled at step 480, as shown in
If this is not the first roll of the game (step 482), then copies of the dice just rolled are generated at step 490. The program executes a comparison of the numbers (dice) in the window 107 (which are the Points to match), with the dice just rolled at step 491. If there is a match, the graphics of the program colors a copy (or copies) of the matching die rolled with a hue to indicate a “Point Made” at step 492. For each match not made, the die (dice) is colored with a hue to indicate that no match/Point was made (step 493), and the dice are displayed as so hued in the current stage/level/roll (step 489).
From step 489, another comparison is then made at step 495 between the current roll and the Point(s) to be matched/made. Each Point in the window 107 is assessed as to a match on a die (number) of the current roll at step 496. If at step 496 there is no match for a Point, it is removed from the game and the graphics of window 107 are updated accordingly, at step 498. The program then assesses whether there is any Point remaining (step 497), and the game proceeds to a “Bunco” determination if the answer to the foregoing is positive. If there are no Points remaining (window 107), the player is passed to a “Game Over” sequence at step 500.
The “Bunco” assessment is set forth in
The program then determines whether two “Bunco's” had previously been rolled in the same game at step 506. If “yes,” then the “Triple BUNCO BONUS” is highlighted on the screen (step 507), and the predetermined amount for that bonus is added to the “Total So Far” meter 110 at step 508.
If two “Bunco's” have not been registered at step 506, the program makes a determination as to whether one “Bunco” had previously been scored at step 510. If “yes,” then the “Double BUNCO BONUS” is highlighted on the screen (step 512), and the predetermined amount for that bonus is added to the “Total So Far” meter 110 at step 513.
Back at step 501, if a “Bunco” has not been rolled, then a count is made of the number of rolled dice that match any of the remaining Points in the window 107 (step 515). That count is used to highlight the appropriate pay for that level for that number of points in the paytable information window as indicated at step 516. That amount is added to the meter 110 at step 517.
Out of either step 508, 513 or 517, the player then advances to step 520, which is a program assessment as to whether all lines that have been bet on have been played. If all have been played, then the game is over and the “Game Over” sequence is engaged out of step 521.
If all possible lines have not been played, then the player is given the option of adding more credits and/or continuing through actuation of the “Roll Dice” button 102 at step 525. If the choice is to add credits, then the “Credits” meter is so updated at step 526, and the player is looped back to step 525. If the choice is to roll, then another round is started (step 527) upon actuation of the button 102, whereupon the sequence of events beginning at step 480 recommences.
Once all lines have been played or there are no Points left in the window 107 (i.e., no match at a level), then the “Game Over” sequence of
The mathematical payout percentage of this fourth embodiment is determined by breaking down the different possible combinations for each of the seven stages. This will be done for one coin per line only, as it is well known by those skilled in the art how to expand this result for multiple coins per line, as well as the inclusion of bonus values, if desired. The first stage is fairly easy to analyze. There are three possible types of outcome of the first roll: “Bunco” (equivalent to one point established), two points established or three points established. There are two hundred and sixteen possible combinations of three dice computed by multiplying the possible combinations of each die: 6×6×6=216. The number of occurrences of “Bunco” or three dice that match are six. This is computed as 6×1×1 because the first die can take any of the six numbers, then the second die must match that number and the third die must also match that number. Three points are established when all three of the dice have a different number showing, and is computed by 6×5×4=120 because the first die can take on any value while the second die can take on any of the five remaining values that don't match the first die, and the third die can then take on any of the remaining values that don't match the first two dice.
This leaves ninety occurrences of a combination that results in two points (216−6−120=90). The ninety occurrences of two points can also be computed directly as follows: There are three forms that a roll resulting in two points may take: XYX, XXY or YXX. The combinations for these are as follows:
Table 21 organizes the data described above. The first column indicates the number of points established by the first roll. The second column shows the value paid for that result. The third column shows the “Occurrences” of that result which was determined above. The fourth column is the probability of that result, which is the occurrence count divided by 216, the number of possible outcomes. The fifth column is the Expected Value component from each pay, which is the product of the paytable value times the probability of receiving that value. The sum of all EV components is the expected return of the stage, which is 88.89%. If only stage one was played, then the expected return to the player would be 88.89%. The payout percentage may be modified by making a change to the second column “Pay” value, which would also change in the paytable. For example, changing the pay for “Bunco” (one point established) from “32” to “33” would result in a 91.67% expected return. Unlike the slot machine example, the “Occurrence” data is locked into the rules of the game, and any change to the payout will be apparent to the player. It must be done by modifying the paytable as described above, or by changing the rules of the game.
The second stage of the game has three separate analyses based on the number of points established in the first stage of the game. The “Occurrences” for each row in Table 22 (the fourth column) are calculated in the same manner as shown for the first stage and will not be elaborated on further. The first column of Table 22 states the number of points alive at the start of the second stage. This table has three separate analyses based on whether one, two or three points were alive at the start of the second stage.
The second column shows the combination being enumerated. The three possible points are called “A”, “B” and “C”. “x” indicates a die that matches no point. The “Comb. Column” shows the makeup of the dice for that line of the table. For example, AAA is three dice matching point “A”. The BBA is two dice matching point “B” and one die matching point “A”, and this can occur in any order. The third column indicates the amount paid for the specified combination. This is based on the second stage paytable line of 1,1,2,6 (e.g.,
The seventh column is the probability of the specified “Result” occurring, which is the product of the fifth and sixth columns. This result is due to the need for the probability of the sixth column to start the stage with the number of points specified in the first column, as well as the need for the probability of the combination, which is given in the fifth column.
The eighth column is the expected value contribution from this combination which is computed as the product of the “Pay” value times the seventh column “Probability of this Result”. The sum of all values in the eighth column provides the expected return which is 92.28%.
The ninth column is the number of points still alive after the roll. This is represented by the number of unique capitalized letters in the second column combination.
The last four columns are used to determine the probability of the number of points alive at the end of the stage. The seventh column “Probability of This Result” value is copied to the column that corresponds to the ninth column “Points Alive” number. For example, for AAA there is one point alive which results in the 0.00013 value to be copied from the seventh column to the eleventh column, which is the column that calculates the “Probability that Points Left=1”.
The bolded numbers at the bottom of the last four columns of Table 22 tally the probability of ending the second round with the number of Points specified at the head of the column. For example, of the games that play a second stage (which is all games in this embodiment), 24.31% will finish the second stage with two points active.
Table 23 provides a similar analysis for the third stage of the game. The first two columns are the same. The third column has been modified to reflect the 2-2-5-14 (e.g.,
The fifth column uses the “Probability of Start Condition” for the specified number of points taken from the bottom of Table 22. Those numbers at the bottom of Table 22 show the probability of ending the second stage with zero, one, two or three points. The values in the rest of the columns are calculated in the same manner as was described for Table 22.
Looking at the sum of the “EV” column, it is clear that the expected return for the third stage of the game is 90.24%. The right four columns are used to compute the probability of zero, one, two or three points remain alive after the third stage. Note that the sum of these probability values does not total 1.0, but rather 0.79102. The additional component is the 0.20898 found at the bottom of Table 22 under “Probability that Points Left=0”. This represents games that ended after two stages and thus are not reflected in the stage three ending breakdown. In the same manner, the 0.3821 probability of ending the game in the third stage will not be included in the stage four ending breakdown.
The analysis for stages four through seven is done in a manner identical to stage three. The comparable tables for these stages are therefore not shown.
The analysis provided thus far does not include the bonuses for two “Buncos” and three “Buncos” occurring in the same game. The probability of getting a second or third “Bunco” in a game must be analyzed on a stage by stage basis, with the expected value of such awards added to the EV of the stage in which the bonus occurs.
A double “Bunco” award is given on a particular stage when the second “Bunco” in a game is achieved in that stage. It is not possible to get a double “Bunco” in the first stage. In the second stage, the only way to achieve a double “Bunco” bonus is to roll a “Bunco” on each of the first two stages. On the third stage, one could get “Bunco” on the first and third stage, or the second and third stage (the first and second stage is the case noted above of getting a double “Bunco” on the second stage). The shorthand xBB is used to indicate no “Bunco” on the first stage followed by “Bunco” on the second and third stages, while similarly BxB indicates “Bunco” on the first and third stages with no “Bunco” on the second stage.
Table 24 shows the combinations that will result in a double “Bunco” on the seventh stage. Note that all combinations must have the second “Bunco” occur as the seventh stage because if the second “Bunco” occurred earlier then it would be attributed to the earlier stage.
Working through the cases in Table 24, it is found that as a result of symmetry, the probability of each of these components to a seventh level double “Bunco” is identical. Likewise, there are five ways of identical probability to achieve a sixth level double “Bunco” bonus and the two ways mentioned above to achieve a third level double “Bunco” bonus have identical probability.
In order to compute the probability of the required components, there is a need to use three values that were computed earlier. In Table 21, the probability of a “Bunco” on the first roll is shown to be 0.027777778. The “x” components in the first line of Table 24 is the probability of staying alive in a game that has established one point, by rolling anything but a “Bunco”. This is found by taking the second and third lines of Table 22 (AAx and Axx) and adding the probability of those rolls (fourth column), which results in a total of 0.416666667. Finally, there is the probability of rolling a “Bunco” while one point is alive. This is shown in the first line of Table 22 (AAA) as 0.00462963. Using these values, one may construct the double “Bunco” probability table of Table 25.
The first column of Table 25 shows the game “Stage” for which the probability of double “Bunco” is being computed. The second column is the “Number of Forms” a double “Bunco” may take on that stage (such as the six forms shown for the seventh stage in Table 24). The third column shows the “Sample Form” being computed for the stage. The fourth through tenth columns are the probability components matching the respective letters in the third column forms. The eleventh column is the “Probability” of getting a double “Bunco” on that level which is the product of the second column form count and all probability components (“Comp.” 1 through 7).
The analysis for the “Triple Bunco Bonus” is similar to the “Double Bunco Bonus.” Table 26 shows all of the possible forms of a seventh level “Triple Bunco Bonus.”
Using the same symmetry that was used for the double “Bunco” calculation, one arrives at Table 27.
Table 28 shows the expected return from the double “Bunco” and triple “Bunco” awards. The first column shows the game “Stage”. The second column shows the “75” coin pay for the “Double Bunco Bonus”. The third column shows the “Double Bunco Probability” computed in Table 25 for each stage. The fourth column computes the expected return” (EV) for double “Buncos” on the given stage by multiplying the “Pay” (second column) times the “Probability” (third column). The fifth through seventh columns compute the triple “Bunco” expected return in the same manner as was used for “Double Bunco” in the second through fourth columns.
Finally, the overall EV of each stage and the overall EV of multi-stage games is shown in Table 29. The first column indicates the “Stage” number. The second column shows the expected return for the base game stage which was generated for the first three stages in Table 21, Table 22, and Table 23. The third and fourth column show the “Double” and “Triple Bunco” bonus EV components generated in Table 28. The fifth column is the total EV for the stage, which is created by adding the EV components in the second, third and fourth columns. The sixth column is the EV of an entire multi-stage game that bet on the number of stages in the first column. This is the average of the fifth column in the current row and all rows above (i.e., the average EV of all stages in the multi-stage game). The expected return of the entire game when a player plays all seven stages is 0.927423292 or 92.74%.
It will additionally be noted that the invention further contemplates a training program for players of these games, particularly in the video game versions. Such training programs are designed to teach players not only the fundamentals of game play, but to optimize game playing strategy, as with visual and aural cues for the player, replay options, and the like. Representative training programs are disclosed in applicants' co-pending patent application Ser. No. 09/539,286, filed Mar. 30, 2000, and that disclosure is hereby incorporated by reference.
Thus, while the invention has been disclosed and described with respect to certain embodiments, those of skill in the art will recognize modifications, changes, other applications and the like which will nonetheless fall within the spirit and ambit of the invention, and the following claims are intended to capture such variations.
This application is a continuation of application Ser. No. 11/182,407, filed Jul. 15, 2005, which is a divisional application of application Ser. No. 10/435,650, filed May 9, 2003, which is a divisional application of application Ser. No. 09/709,922, filed Nov. 10, 2000.
Number | Date | Country | |
---|---|---|---|
Parent | 10435650 | May 2003 | US |
Child | 11182407 | US | |
Parent | 09709922 | Nov 2000 | US |
Child | 10435650 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11182407 | Jul 2005 | US |
Child | 12875037 | US |