Multi-stage multi-bet game, gaming device and method

Information

  • Patent Grant
  • 6612927
  • Patent Number
    6,612,927
  • Date Filed
    Friday, November 10, 2000
    24 years ago
  • Date Issued
    Tuesday, September 2, 2003
    21 years ago
Abstract
A game is comprised of a plurality of stages. Each operation of the game begins with the operation of a first stage. Depending on the outcome of the first stage the game may be over, or there may be an operation of a second stage. Depending on the outcome of the second stage, the game may be over or there may be an operation of another stage. This sequence continues until the game ends or until the final (nth) stage has been operated, at which time the game ends. Wagers are made on successive stages of the multi-stage game. Each stage of the game may typically have its own paytable or payout scheme, and its own expected return. A bet made on a stage of the game which is not played is lost in the preferred form of the invention. One embodiment is a three stage, multi-line, multi-coin video slot machine. The same game format (slots) with the same paytable is operated on three stages, with increasing payout multipliers at each stage providing an increasing amount to win at the higher stages. The “spin” at each stage is independent of the previous stages. The second embodiment is a multi-stage Five-Card Stud poker game. Each stage is again independent of the previous stage. A variation of this game is also shown which uses the same paytable on each stage, but combined with a mechanism to increase the “hit” rate. A third embodiment is a Draw poker game that combines the concepts of the Stud poker embodiment with the decisions and optimal play analysis that are integral to Draw poker. The fourth embodiment is a dice game which has been adapted to provide a high dependency between the first stage and the next stages.
Description




FIELD OF THE INVENTION




This invention relates to games in general, and particularly to gaming machines allowing wagers to be placed on a game, and more particularly to an innovative casino-type gaming machine which allows wagers on a plurality of game levels.




DISCUSSION OF THE PRIOR ART




There are many ways in which multiple wagers may be placed on different gaming machines. In one of the simplest forms, a player may make a variable wager on a specific bet. On a single line slot machine for example, as the player inputs additional coins into the machine (per play) the payouts for the single payline is multiplied by the number of coins bet. Often the higher awards increase beyond the given multiple, offering a bonus for betting more coins on this single payline. The same type of multiple coin bet is also well known in video poker, where a typical bet is one to five coins on each hand played. In such a video poker game, the paytable is multiplied by the number of coins bet with a substantial bonus being given for a Royal Flush when five coins are bet.




In other gaming machines, there are multiple bets that can be made on different outcomes. In a multiline slot machine for example, a wager can be made on each of a plurality of paylines. Typically, each payline is paid according to a paytable (also referred to as a “payout table”) that is similar for each payline. A single spin of the reels yields a result on each payline which is paid if it matches a winning combination on the paytable.




The above two techniques have been combined, providing multiple paylines and multiple coins per payline. The pay for each payline is multiplied by the number of coins bet on that payline with certain bonuses available when a higher number of coins per payline are wagered.




Additionally, there have been games such as Double-Down Stud poker which allow a player to place an additional bet on a game that is already in progress. There have been games such as Play-It-Again poker which allow a player to make a new bet on a re-play of a starting hand.




Thus, it can be appreciated that there have been poker games, for instance, which allow a player to bet on multiple hands where each of the plurality of hands is generated from a single initial deal, followed by independent draws or re-deals for each hand that received a bet. In each case, the bets that are made are considered to be made on a game of chance, and paid if there is a winning result.




SUMMARY OF THE INVENTION




In broad overview, the present invention in one aspect allows the placing of multiple bets on different stages of a game. The game is comprised of a plurality of stages. Each operation of the game begins with the operation of a first stage. Depending on the outcome of the first stage the game may be over, or there may be an operation of a second stage. The second stage operation may be totally independent of the first stage, or may have dependencies on first stage events or data, e.g., the achievement of a “winning” first stage. As will be understood throughout this invention disclosure, “winning” is just one form of possible advancement to the next level. For example, one aspect of the invention includes a “special card” (Free Ride) which permits advancement even if a “losing” condition is presented at a level.




Depending on the outcome of the second stage, the game may be over or there may be an operation of a third stage. This sequence continues until the game ends or until the final (n


th


) stage has been operated, at which time the game ends.




It should be appreciated that not every stage will operate in each game, and that the lowest stages will operate the most often while the highest stages will operate the least often.




As noted above, the present invention furthermore allows the player to place wagers on different stages of the multi-stage game. Each stage of the game may typically have its own paytable or payout scheme, and its own expected return. A bet made on a stage of the game which is not played is lost in one contemplated form of the invention. Thus, at the highest stages the bets made are lost very often, without even playing that stage of the game, because most games will end before getting to the highest stage bet. Due to this architecture, there is much greater opportunity for large wins in games which get to the highest stages. This makes for a more exciting gaming experience, because as the players watch the game successfully continue through the various stages, the expectation of what may be won at each stage usually increases.




Embodiments shown herein are generally constructed such that the player specifies at the outset of the game the number of stages or levels to bet on. For instance, bets are made on a first level, a second level, and up to the number of levels specified by the player. While this is one preferred embodiment which gives the player action at all levels up to the highest level bet, it is envisioned that the player could be allowed to arbitrarily choose which levels to bet without departing from the invention. So too, it is contemplated that the game could allow for a new bet as stages are achieved.




Certain contemplated embodiments also have a structure that any “Win” on a given stage advances the game to the next stage. Other contemplated embodiments have different game rules for continuing from stage to stage, and operate under those rules for a given stage.




In one aspect of the invention, it is a principal objective to provide a method of playing a game, where a player is initially provided with a first stage game of chance upon which a first wager is placed by the player, and a second stage game of chance upon which a second wager is placeable. As previously noted, the game stages can be the same type of game (e.g., slots), or different games (e.g., slots, cards, dice, roulette, etc.).




Each stage has a “winning” condition and a “losing” condition. That is, there is an established criterion or criteria whereby the player may advance from one stage to the next, or may not. As used throughout this disclosure, and in the claims, “winning” and “losing” are to be considered synonymous with advancing or terminating, unless otherwise stated.




The first stage game is played, with a determination of whether a winning/advancement or losing/terminating condition is presented. If a winning condition is presented by the first stage game as played, then the player advances to the second stage game, assuming a bet has been previously placed for that stage. If a losing condition is presented by the first stage game as played, however, the game is over and any second wager (or higher) is lost. It will be understood that in some embodiments a loss condition could be presented by simply achieving a condition where only part of a wager placed on a given level may be returned, i.e., a player wagered 5 on a level but only achieved a return of 3. So too, all of the bet need not be lost as a terminating/losing condition.




In the event that the first stage presents a winning condition and there is a wager for the second stage, then the second stage game is played. There follows a determination as to which of the winning and losing conditions is presented by the second stage game as played. These steps are repeated for as many stages as are provided by the game if all have been bet upon, or as many stages as have actually been bet upon if fewer than all, again assuming a winning/advancement condition has been met for each preceding stage.




In a preferred form the foregoing method of playing a game includes the step of providing a payout for a winning condition at the second stage, or more preferably providing a payout for a winning condition at each stage. The payout can be based upon the amount of a respective wager at a respective stage, and advantageously includes an increase by a multiplier for a payout at a respective stage, with the multiplier increasing for each successive stage.




In another aspect of the invention, the foregoing method is adapted for operating a processor-controlled gaming machine. In this application of the invention, gameplay elements are provided in a manner that can be visualized by a player, such as on a video display screen, or in some three dimensional format where the gameplay elements can be tracked (such as on a board with an electronic interface), just to name two ways of such visualization. In this form of the invention, a mechanism for a wager input from the player is also provided, along with a mechanism for game operational input from the player, such as to start play.




There is a first stage game of chance upon which a first wager is placed by the player, and at least a second stage game of chance upon which a second wager is placeable. Each stage has a winning/advancement condition and a losing/terminating condition. In the preferred form of the invention, all wagers are placed before play begins at the first stage level.




This gaming machine displays at least the first stage game using at least some of the gameplay elements. For instance, using a video monitor as an example, a first slot machine may be displayed (or first display of cards, or dice, etc.). More than one stage may be displayed at a time (e.g., a plurality of slot machine representations stacked one on top of another on the display). The first stage game is then played, with the previously described determination of which of the winning and losing conditions is presented by the first stage game as played. Again, if a winning condition is presented, the player advances to the second stage game, but if a losing condition is presented by the first stage game as played, the game is over and at least some (and most preferably all) of the second (and any subsequent) wager is lost.




If not already displayed, and assuming there has been an advancing condition met at the first stage and a bet placed on the second stage, the second stage game of chance is displayed (or, for instance, activated if already displayed). This second stage is played, with a determination of which of the winning and losing conditions is presented by the second stage game as played. If there is a winning condition, this form of the invention provides a payout for the second stage, as well as for any subsequent consecutive stage for which there is a winning condition, and a wager placed thereon.




One embodiment of this method as applied to a gaming machine provides a set of differing gameplay element indicia, such as facets of a die. A subset of at least one match indicia against which a set of dice are to be matched in the course of play is established, such as a random selection of die faces (e.g., three die numbers against which tossed dice are to be matched. In a preferred form of this dice gaming machine, first, second, third and successive stages up to said nth stages are displayed together as discrete arrays on a visual display.




The dice are initially tossed in one embodiment, and beginning with at least the second stage game, a determination is made as to whether any match is made between the match indicia and the dice tossed. At least one match comprises a winning condition for a stage being played, in this embodiment. If a match is not made, then the unmatched indicium is removed from further play. The game ends when no matches are made at a given level, again assuming that a wager has been made up to and including that level.




Yet another aspect of the invention is providing a feature which is subject to random allocation to a stage in the course of play, with the feature if allocated enabling a next stage to be played regardless of whether a winning condition has otherwise been presented. The feature, referred to herein as a “Free Ride,” therefore constitutes or comprises a so-called winning/advancement condition. Of course, a wager still needs to have been placed on the next stage which is subject to being so enabled for play by the Free Ride feature.




A video card game comprises yet another form of the invention. Here, a video display device is driven by a cpu having a program. A wager input mechanism registers a wager placed by a player, with the wager including an ability to register bets upon successive stages of the game. A first deck of playing cards comprised of cards of suit and rank is generated by the program, with the program establishing a first array for display of a subset of the deck (i.e., a hand) of cards randomly selected from the deck.




A first stage hand of cards is dealt. The card game could be one in which the hand as so dealt is not subject to a draw, or the player can select cards to discard, with a new card taking the place of any discarded. In either event, the hand ultimately becomes set, and a determination is made as to whether the hand of cards presents a winning/advancement condition based upon a preset hierarchical ranking of card arrangements relating to suit and rank. As in the situations noted above, subsequent hands of cards are dealt if a winning condition is presented by the previous hand, provided a bet has been registered for each successive stage. If a losing condition is presented by a stage, or a stage is reached upon which no wager has been made, the game is over. Bets on any higher stage are lost if a losing condition is presented, as is the bet on the stage for which the losing condition is registered. A payout output based upon the wager and predetermined values for a stage is preferably provided according to a preset hierarchical ranking of card arrangements relating to suit and rank. The payout output can include payout tables which are different for at least some of the stages, and may further include a multiplier for at least some of the stages, with the multiplier increasing for successively higher stages.




In a video slot machine version of the invention, a plurality of rotatable reels is generated by the computer program, each of the reels being comprised of a plurality of different indicia. Each of the reels is caused by the program to appear to rotate and then randomly stop to thereby yield a display of certain indicia as a spin. If an advancement condition is presented on the first stage spin, a second stage spin occurs if a bet has been registered for that second stage spin, and so forth. The first stage spin can be visually displayed as a first set of reels in a first array, with the second stage spin likewise visually displayed as a second set of reels in a second array, and successive stage spins each so displayed as further sets of reels in successive respective arrays, with a plurality of arrays being displayed together on the visual display. Alternatively, one set of reels could be repeatedly spun for each stage. Payouts and multipliers can be provided in like manner to that described above for the card game embodiment, or as otherwise may be desired. One variant of the slot machine version of the invention has the multiplier for the games nth stage spin (the last possible level) randomly selected by the program from a predetermined table of multipliers, where at least most of the multipliers are greater than a multiplier for any previous stage. This random multiplier can advantageously be displayed, or physically embodied, as a wheel having segments with the multipliers displayed in respective segments of the wheel. The wheel is caused to rotate and come to a stop with the random multiplier at a designated stop point.




Of course, the foregoing invention as described in a video slot machine embodiment could be readily embodied in a standard mechanical slot machine. Likewise, the video dice game is readily adapted to a table-type game format, as is the video card game contemplated above.




In the same vein, a gaming machine coming within the scope of one aspect of the invention broadly comprises a gaming unit having at least first and second stages of play, each stage having an advancement condition and a non-advancement condition. Some kind of interface mechanism with the gaming unit allows gameplay input for a player, with the gameplay input including wagering input allowing the player to register a bet upon one or more stages of play.




An operational device operates the gaming unit, upon player input including an operational command. The operational device determines which of the conditions is presented by a first stage as played, and if an advancement condition is presented, then advancing the gaming unit to the second stage, but if a non-advancement condition is presented, the game is over and at least a portion, and preferably all, of any second stage bet registered is lost. Play continues for a successive stage up to a predetermined nth stage if an advancement condition is determined for that next stage to be reached, and a bet has been previously registered for that successive stage. Again, the stages of play can be games which are of the same type of game, or different types of games. These can also be games that have not yet been invented.




These aspects of the invention, along with other aspects, advantages, objectives and accomplishments of the invention, will be further understood and appreciated upon consideration of the following detailed description of certain present embodiments of the invention, taken in conjunction with the accompanying drawings, in which:











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a video screen representation highlighting three paylines of a stage of a video slot machine embodiment of the present invention;





FIG. 2

is a video screen representation similar to

FIG. 1

highlighting five paylines;





FIG. 3

is a video screen representation of a three stage slot machine embodiment of the present invention;





FIG. 4

is a representation of a paytable of winning combinations for the slot machine presented in

FIG. 3

;





FIG. 5

is a representation of a continuation of the paytable of

FIG. 4

;





FIG. 6

is another video screen representation of the slot machine embodiment of

FIG. 3

of the present invention;





FIG. 7

is another video screen representation of the slot machine embodiment of

FIG. 3

;





FIG. 8

is another video screen representation of the slot machine embodiment of

FIG. 3

;





FIG. 9

is another video screen representation of the slot machine embodiment of

FIG. 3

;





FIGS. 10



a


-


10




e


present a flow chart of a method of operating a three stage video slot machine gaming machine of the type of embodiment of

FIG. 3

;





FIG. 11

is a representation highlighting a bonus multiplier wheel for use in a video slot machine embodiment of the present invention;





FIGS. 12



a


-


12




c


present flow charts of a method of operating a video slot machine gaming machine embodiment of the present invention using the bonus multiplier wheel of

FIG. 11

;





FIG. 13

is a video screen representation highlighting a multi-stage poker gaming machine embodiment of the present invention;





FIG. 14

is a video screen representation highlighting a first stage result on the poker machine embodiment of

FIG. 13

;





FIG. 15

is a video screen representation highlighting a second stage of the poker machine embodiment shown in

FIG. 13

;





FIG. 16

is a video screen representation highlighting a third stage of the poker machine embodiment of

FIG. 13

;





FIG. 17

is a video screen representation highlighting another multi-stage poker gaming machine embodiment of the present invention;





FIG. 18

is a representation of a paytable of winning combinations of the poker gaming machine embodiment of

FIG. 17

;





FIG. 19

is another video screen representation of the poker gaming machine embodiment of

FIG. 17

;





FIG. 20

is another video screen representation of the poker gaming machine embodiment of

FIG. 17

;





FIG. 21

is another video screen representation of the poker gaming machine embodiment of

FIG. 17

;





FIG. 22

is another video screen representation of the poker gaming machine embodiment of

FIG. 17

;





FIG. 23

is another video screen representation of the poker gaming machine embodiment of

FIG. 17

;





FIG. 24

is a video screen representation of the poker gaming machine embodiment of

FIG. 17

, but with a different opening hand shown using a “Free Ride” card;





FIG. 25

is another video screen representation of the poker gaming machine embodiment of

FIG. 24

;





FIG. 26

is another video screen representation of the poker gaming machine embodiment of

FIG. 24

;





FIGS. 27



a


-


27




f


present a flow chart of a method of operating a draw poker video gaming machine of the present invention;





FIG. 28

is a video screen representation of a multi-stage video dice gaming machine embodiment of the present invention;





FIG. 29

is a video screen representation highlighting a first stage or roll of the dice of the dice gaming machine embodiment of

FIG. 28

;





FIG. 30

is a video screen representation of a second stage of the play of the dice gaming machine embodiments of

FIG. 28

;





FIG. 31

is a video screen representation of a third stage of the play of the dice gaming machine embodiment of

FIG. 28

;





FIG. 32

is a video screen representation of a fourth stage of the play of the dice gaming machine embodiment of

FIG. 28

;





FIG. 33

is another video screen representation of the dice gaming machine embodiment of

FIG. 28

; and





FIGS. 34



a


-


34




d


present flow charts for a method of operating a video dice gaming machine of the present invention.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




Four different embodiments of the present invention are described herein, with some noted variations in certain cases. The first embodiment is a three stage, multi-line, multi-coin video slot machine. The same game format (slots) with the same paytable is operated on three stages, with increasing payout multipliers at each stage providing an increasing amount to win at the higher stages. The “spin” at each stage is independent of the previous stages.




The second embodiment is a multi-stage Five-Card Stud poker game. Each stage is again independent of the previous stage. However, a separate paytable is used for each stage in this embodiment. A variation of this game is also shown which uses the same paytable on each stage, but combined with a mechanism to increase the “hit” rate.




The third embodiment is a Draw poker game that combines the concepts shown in the Stud poker game with the decisions and optimal play analysis that are integral to Draw poker. The final embodiment is a dice game which has been adapted to provide a high dependency between the first stage and the next stages.




While each of these embodiments uses a single game format, or type, to play from stage to stage, as noted above, it is clearly anticipated that the invention may be used with a first game type as a first stage, with a subsequent stage or stages being of a different game type, e.g., a single line slot stage, then a multi-line slot stage, then a Stud poker stage, etc. Thus, it should be appreciated that similar or different games of chance may be staged together, and the invention is not limited to the types of games shown here, and would encompass any conceivable other game, such as roulette, craps, baccarat, keno, and so on. It will also be apparent to one of skill in the art how to use the invention in live games with dealers (i.e., table games), notwithstanding the particular embodiments described herein relating to gaming machines.




Triple-Strike Slots




A first embodiment of this invention takes the form of a multi-stage slot machine. This may be done on a video screen with the presentation of a video slot machine, or may be accomplished with mechanical spinning reels, for instance. In a mechanical embodiment, the stages may be played sequentially on the same reels, or on physically separate reels. It is also adaptable for combinations of video slots and mechanical spinning reel slots, where some stages are played on the video slots and some stages are played on mechanical spinning reels.




In this first embodiment, there are three video slot machines (stages) vertically disposed on a video screen (although it will be apparent how to adapt this technique to any number of desired stages). In this embodiment, each machine has the same symbols, symbol frequency, hit rate and payout percentage. Of course, other embodiments may use different hit rates and frequencies, if not entirely different symbols and game themes from stage to stage.




In this first embodiment, the criterion for advancing from one stage to the next is any win on the current stage. It is envisioned that other criteria may be used in other embodiments, such as a special symbol, which while only paying in certain configurations, would advance a player to the next level anytime it appeared in the game.




Turning now to

FIG. 1

, the first embodiment has each stage as a five-reel, five-line video slot machine. This is of a type of slot machine often called “Australian style.” This machine allows the player to make a wager on one to five paylines, and allows a bet from one to nine coins bet on each payline for a maximum of forty-five coins bet per game.

FIG. 1

shows the first three paylines, with payline


1


drawn horizontally across the center symbols, payline two drawn across the upper symbols and payline three drawn across the lower symbols.





FIG. 2

is the same as

FIG. 1

, with fourth and fifth paylines added. The fourth payline is in the shape of the letter “V” while the fifth payline is an inverted “V”. It is well known by those skilled in the art how to design such a machine with more or fewer paylines, and more or fewer coins per line. It is also well known in the art, and envisioned for this type of game, to include special bonuses or bonus rounds for certain symbol combinations. Certain combinations have been included for this purpose in the present description, but the special bonuses and bonus rounds have been replaced by fixed awards for clarity of presentation.





FIG. 3

shows a screen with three stages displayed. For each game played, the player selects from one to fifteen paylines (i.e., five paylines times three stages) to play or “activate”. The player operates the machine by pressing (actuating) buttons through the use of a touchscreen display, some pointing device, or through the use of corresponding mechanical pushbutton switches. The player may repeatedly press the “Select Lines” button


12


in

FIG. 3

to select one to fifteen lines. One may also press the “Select 5 Lines”, “Select 10 Lines” or “Select 15 Lines” buttons (


14


,


15


and


16


, respectively) to select all lines of the first, first and second or all three machines respectively. As used herein, “machine” refers to each separate slot display


18


,


19


,


20


(which will variously be referred to as machine, stage and level). Selecting from one to five lines will activate the lines on the lower machine


18


and allow a “spin” (play) on the lower machine


18


. Selecting from six to ten lines will activate the five lines on the lower machine and one to five lines on the second machine


19


. This will then allow a spin on the first machine


18


; if there is any winner on the first machine


18


, a spin on the second machine will then follow. All amounts won on the second machine


19


are multiplied by two (2×) in this version (see window


22


).




Selecting from eleven to fifteen lines will activate the five lines on the first machine


18


, the five lines on the second machine


19


and from one to five lines on the third machine


20


. This will then allow a spin on the first machine


18


, and if there is a winner on the first machine, then a spin on the second machine


19


(with 2× payout following). If there is any winner on the second machine


19


, that will allow a spin on the third machine


20


. All amounts won on the third machine


20


are multiplied by four (4×) in this version (see window


23


).




In this particular embodiment, the “hit rate” (percentage of games that have any win) is carefully set just over 50%. This allows each stage (


18


,


19


and


20


) to have a multiplier that is twice that of the previous stage, and result in a reasonable expected payout for the player and reasonable expected return for the operator (e.g., gaming establishment). More stages could be added in a manner described without departing from the invention. Also, vastly different hit rates and multipliers could be used, separate paytables for each stage that do not scale evenly may be used, and other variations thereon will be readily apparent to those of skill in this art.




It should be noted that bets on the second machine


19


(lines six through ten) and the third machine


20


(lines eleven through fifteen) will be lost if a machine at a stage (level) below it does not result in a win, in this embodiment. This is considered offset in the mind of the player by game multipliers (2× and 4× respectively) when these machines do get a chance to spin. This increased opportunity for winnings when these upper stage machines get to spin adds a great deal of excitement and anticipation for the player.




Once the player has selected the number of lines, he or she specifies how many coins are to be wagered for each of the selected lines. As is well known in the art, all payouts are multiplied by the number of coins bet per payline. The player may repeatedly press the “Coins Per Line” button


25


(

FIG. 3

) to select one to nine coins-per-line. The total bet is the product of the number of lines selected (button


12


) and the number of coins-per-line, and is shown in the “Total Bet” meter


26


.




FIG.


4


and

FIG. 5

show the paytables indicating the available winning combinations and rules governing those combinations. These paytables may be displayed at any time by pressing the “Pays” button


28


(shown, e.g., in FIG.


3


). The “Help” button


29


may be pressed at any time for an overall description of the rules of the game and its operation. Again, these buttons, their operation and related programming, are well known.




Once the specifics of the bet are selected as described above, the player presses the “Spin Reels” button


30


, which will initially spin the reels on the first slot machine


18


. If there is no winning combination on any active (bet) payline then the game is over and the entire bet is lost, including any amount bet on the other machines


19


,


20


. If there is any winning combination on an active payline of the first machine


18


, then the machine display will first show all winning paylines followed by a pattern of cycling through the individual winning combinations.





FIGS. 6 and 7

show how the game cycles through multiple winning combinations of the first machine


18


. In

FIG. 6

, the single “WILD” symbol is shown as a winner on payline


1


. The machine draws boxes, for instance, around the winning symbols on the payline. In the payout information window


21


to the right of the first machine


18


, the top line calls out “Line 1: 2 Coins”. This indicates the two coins awarded for one “WILD” symbol on payline


1


, as confirmed by the paytable in FIG.


4


. After showing the display of

FIG. 6

for a few seconds, the machine shows the display of

FIG. 7

, which calls out the next winning combination.

FIG. 7

shows three cow symbols on payline


5


(in boxes). The top line of the payout information window


21


now calls out “Line 5:5 Coins” in recognition of the five coins won for the three cows on the fifth payline (confirmed by the paytable in FIG.


5


).




For both FIG.


6


and

FIG. 7

, the second line of the payout information window


21


shows the total number of coins from all pays of the first machine (in this case “SubTotal: 7” consisting of the two coins from the first payline and the five coins from the fifth payline). The lower half of the payout information window


21


then shows the total pay of the machine, times the machine multiplier, which for the first machine is one (1×).




This results in a “Total” of seven coins for the lower machine. The “Total Won” meter


36


on the right edge of the screen shows this seven coin figure in FIG.


7


. FIG.


6


and

FIG. 7

show the second machine


19


“lit up” and ready to spin as a result of the win on the first machine


18


.




As a result of winning on machine


18


, the player is now allowed to spin the reels of the second machine


19


, provided that a bet was placed on at least one of lines six through ten. The reels on the second machine


19


are spun by again pressing the “Spin Reels” button


30


. If there is no winning combination on the reels of the second machine


19


, then the game is over. In that case, any bet made on the third machine


20


(lines eleven through fifteen) is lost, and the winnings from the first machine


18


are paid to the player. The game pays the awarded credits from first machine


18


then restarts, becoming ready to take another bet.




In the case of a winning combination on the second machine


19


, then it may have an overall display similar to FIG.


8


. With only a single winning combination on the second machine, the machine boxes the “7's” symbol on its first payline, and shows in the second stage, payout information window


22


that one coin was won for a “SubTotal” of one coin on the second machine


19


. Since all pays on the second machine are multiplied by two in this version (multiplier 2×), this results in a total pay of two coins on the second machine


19


. The “Total Won” meter


36


is now updated to nine coins, which comprises the seven coins won from the first machine


18


, plus the two coins won from the second machine. Since the player bet five coins on the second machine


19


(one each on lines six through ten), this second machine result is actually a net loss of three coins. However, because it was not a total loser (zero coins won), the player is now entitled to spin the third machine


20


if a bet was placed on any of lines eleven through fifteen.

FIG. 8

shows the third machine


20


lit up and ready to spin as a result of the two coin win on the second machine.




Once again, the reels on the third machine are spun by pressing the “Spin Reels” button


30


. If there is no winning combination on the reels of the third machine


20


, then the game is over. In that case, the winnings from the two other machines are paid to the player, and the game recycles for a new bet.




A winning combination is shown on the third machine


20


in FIG.


9


. With only a single winning combination on the third machine


20


, the machine boxes the three “7's” symbols on its first payline, and shows in the third stage payout information window


23


that twenty-five coins were won, for a “SubTotal” of twenty-five coins on the third machine


20


. Since all “pays” on the third machine are multiplied by four (multiplier 4× for this version), this results in a total pay of one hundred coins on the third machine


20


. The “Total Won” meter


36


is now updated to 109 coins, to include the 100 coins won from the third machine. With the third and final machine having been played, the total winnings of 109 coins are now added to the total credits meter


37


, and the game is ready to restart and receive another bet.




The “Max Bet Spin” button


39


(shown in

FIGS. 3 through 9

) provides a one touch solution which will cause all fifteen lines to be selected with nine coins bet per line and spin the reels on the first machine


18


, assuming enough credits are available. It is the same as pressing the “Select Lines” button


12


until “15” is selected, then pressing the “Coins Per Line” button


25


until “9” is selected, then “Spin Reels” button


30


.




The above-described embodiment of a gaming slot machine is operationally summarized in the flow charts of

FIGS. 10A-E

.

FIG. 10A

generally describes the start-up of the Triple-Strike Slots game. First, an assessment of whether credit(s) are present is undertaken beginning at step


150


. If none is present, then a check is made as to whether the player has inserted the relevant coin, credit card, etc., for the necessary credit(s) at step


151


. If so, then at step


152


the credit(s) are registered and displayed at the “Total Credits” meter


37


(e.g., FIG.


3


). All available player buttons are then activated for initiation of play at


155


.




At this stage, the player enters a set-up loop where the player may choose to add more credits or proceed with play at step


156


. If credits are added, these are registered (on the meter display


37


) at step


158


, and the program loops back to step


156


(via


155


).




The “Coins Per Line” button


25


can alternatively be engaged from step


156


, causing the coins-per-line setting to be modified (as indicated at meter


40


, FIG.


3


), as well as updating the value of the “Total Bet” window


26


, as indicated at step


159


. Once again, the program loops back to step


156


.




Back at step


156


, the player then can choose the lines upon which to bet through operation of general “Select Lines” button


12


. This causes the graphics program to highlight the lines being designated at step


160


. Alternatively, the special “Select Lines” buttons


14


through


16


could be used out of step


156


, also resulting in a registration of the line group selected (at step


161


), then an update of the graphics at step


160


.




From step


160


, the number of lines bet is registered on lines-bet meter


41


(e.g., FIG.


3


), and updated if the lines bet has been modified up or down, as indicated at step


162


. The “Total Bet” window


26


is also updated in view of the lines being bet. The player is then returned to step


156


.




Once the player has input the parameters of the wager, then the “Spin Reels” button


30


is engaged. It should be noted that the foregoing selection sequence as to coins and lines to bet need not follow the order indicated.




The player has the option of skipping all of the line and coins-per-line selections, through resort to the “Max Bet Spin” button


39


. A subroutine will then execute at step


165


to assess the total credits the player has provided, and determine the maximum number of coins per line and the maximum number of lines (per an embedded look-up table) which can be played for the credit quantity shown in total credits meter


37


, up to a fixed maximum for the game. The graphics are updated accordingly at step


166


to show the lines being bet (as at step


160


), with a similar update of the coins-per-line meter


40


, lines-bet meter


41


and “Total Bet” meter


26


, all as indicated at step


167


.




From either the actuation of the “Spin Reels” button


30


or the “Max Bet Spin” button


39


, the selection buttons for player input are then deactivated and the amount bet is subtracted at step


168


, with the remaining credits updated on the “Total Credits” meter


37


. The display graphics then shows the reels spinning at the first stage/level/machine


18


(step


169


). The reel stop positions are selected in a random manner (step


170


), with the graphics displaying the final symbols coming into view for each reel in sequence (steps


171




a


through


171




e


).




Turning now to

FIG. 10B

, the program then assesses whether there is any winning combination presented by the reels in their stop positions, taken in view of the paytable (

FIGS. 4 and 5

) and the lines bet, as indicated at step


175


. If there is no winner, the game goes to a “Game Over” sequence (step


176




a


), described hereafter. If there is a winner, then the winning line(s) are graphically highlighted on the display (step


177


), the amount won is totaled and shown in the “SubTotal” area of the first stage payout information window


21


(step


178


), and the “SubTotal” amount is increased by the applicable multiplier (step


179


), which in this first embodiment is 1× for stage one. This total for machine one is displayed in payout information window


21


. The “Total Won” meter


36


is accordingly updated (step


180


).




An assessment is then made as to whether the player has bet on any lines of the second stage/level/machine


19


, as noted at step


182


. If not, then the game goes to the “Game Over” sequence (step


176




b


). If a stage-two bet has been registered, then the player “Spin Reels” button


30


is reactivated at step


183


. Machine two


19


is graphically highlighted on the display (e.g., see FIG.


6


), which may include flashing the button


30


or the like to alert the player to continue play (step


184


).




While waiting for the player to spin the second stage (machine two


19


), like all other points that the program waits for input, a check is made at


187


to see if additional credits have been purchased by the player. If more credits are input, they are registered on the “Total Credits” meter


37


(step


188


), and the player is looped back to step


187


. Ultimately, the “Spin Reels” button


30


is actuated by the player at step


187


, and play on the second machine


19


commences.




The button


30


is then deactivated (step


189


), the second machine reels are graphically shown spinning (step


190


), and the sequence of steps


170


and


171




a


through


171




e


described with respect to the first machine


18


is repeated, except now as related to the second machine


19


, as shown in steps


191


and


192




a


through


192




e.






As shown in

FIG. 10C

, steps


195


and


197


through


200


then repeat the process for the second machine described in steps


175


and


177


through


180


, respectively, with regard to the first machine. Note that step


199


increases the “Sub-Total” by 2× in this version, and the payout information window


22


is utilized.




If a bet has been registered for lines on the third machine


20


(step


202


), the “Spin Reels” button


30


is again activated (step


203


), machine


20


is graphically highlighted on the display (e.g., see FIG.


8


), which may include flashing the button


30


or the like to alert the player to continue play (step


204


), and the player is again given the option of adding more credits, or alternatively simply advancing to play the third stage (step


207


). If more credits are input, they are registered on the “Total Credits” meter


37


(step


208


), and the player is looped back to step


207


. Ultimately, the “Spin Reels” button


30


is actuated by the player at step


207


, and play on the third machine


20


commences.




The “Spin Reels” button is once more deactivated (step


209


), and steps


210


,


211


and


212




a


through


212




e


repeat steps


169


,


170


and


171




a


through


171




e


, respectively, this time for the third machine


20


.




As shown in

FIG. 10D

, steps


215


and


217


through


220


then repeat the process for the third machine


20


described in steps


175


and


177


through


180


, respectively, with regard to the first machine


18


. Note that step


219


increases the “Sub-Total” by 4× in this version, and the payout information window


23


is utilized (e.g., see FIG.


9


).





FIG. 10E

depicts the “Game Over” sequence out of either step


176




a


or


176




b


. If out of step


176




a


, the program “dims” the game display with a “GAME OVER” message (step


222


). An assessment is made as to whether there are any credits in the “Total Won” meter


36


at step


223


. If not, the player is returned to the start up sequence step


150


from step


224


.




If there are credits won, then the “Total Won” credits are added to the “Total Credits” meter


37


, accompanied by a bang, knocker or other exciting sound, as indicated at step


225


. If the “Game Over” sequence is engaged out of step


176




b


, then the program cycles through step


225


then


224


, and returns to step


150


.




Analysis of Certain Architecture of the Triple-Strike Slots Game




The multi-stage slot machine gaming machine embodiment being described has, as a base component, a single slot machine which is then adapted for a plurality of stages. The first step in the construction of the single machine of the game is to select the paying combinations for the stage, and then to lay out the symbols on the five reels in a manner to achieve the desired hit rate. The “hit rate” (percentage of games with at least one winning combination) in this embodiment is of importance, because getting a hit (or any win) is the criterion used to advance to the subsequent stage. In this first embodiment, it was decided to use the same machine at each stage with a doubling of the rewards for each successive level. If the “hit rate” for such a configuration was set at exactly 50%, then the expected return percentage would be the same for each level. If the “hit rate” was less than 50%, then the player would get a lower expected return at each successive level, which is not desirable in general. Moreover, certain gaming jurisdictions require that each additional coin bet on a game have the same or greater expected return than the previous coin.




If the “hit rate” is set at just over 50%, then each successive stage will have a slightly greater return than the previous stage, which is desirable to provide the player with an incentive to play more coins per game. While it is easy to mathematically determine that the “hit rate” of any payline will be 18.64% in the described first embodiment, a more thorough analysis is needed to determine the “hit rate” when five lines are played. This is due to multiple winners on different lines on certain spins. While the single line “hit rate” may be mathematically determined using the quantities of each symbol on each reel, the five-line “hit rate” requires knowledge of the actual layout of each reel strip to take into account which pays will occur.




The first embodiment described above uses reel strips with thirty stop positions laid out as shown in Table 1.

















TABLE 1









Reel











Stop #




Reel 1




Reel 2




Reel 3




Reel 4




Reel 5




























1




Scatter (Dice)




Pumpkin




Pumpkin




Cow




Dart Board






2




Dart Board




Cow




Pineapple




Pineapple




Cow






3




Wild




Wild




Wild




Wild




Wild






4




Cow




Dart Board




Banana




Dart Board




Banana






5




Banana




Bonus (Drum)




Cow




Pumpkin




Dart Board






6




7's




Cow




Pineapple




Apple




Pineapple






7




Pumpkin




7's




7's




Dart Board




Bonus (Drum)






8




Apple




Bonus (Drum)




Apple




Bonus (Drum)




Apple






9




Scatter (Dice)




Dart Board




Banana




Banana




Cow






10




Cow




Banana




Pineapple




Pumpkin




Banana






11




Banana




Cow




Cow




Cow




Pumpkin






12




Bonus (Drum)




7's




Apple




Dart Board




Cow






13




7's




Dart Board




Dart Board




Pineapple




7's






14




Pineapple




Pineapple




Banana




Pumpkin




Scatter (Dice)






15




Scatter (Dice)




Bonus (Drum)




Scatter (Dice)




Bonus (Drum)




Pineapple






16




Apple




7's




Pumpkin




Banana




Cow






17




Dart Board




Cow




7's




Dart Board




7's






18




Bonus (Drum)




Pumpkin




Scatter (Dice)




Apple




Pumpkin






19




Banana




Dart Board




Pineapple




Cow




Dart Board






20




Pumpkin




Apple




Apple




Banana




Pineapple






21




Scatter (Dice)




Bonus (Drum)




Bonus (Drum)




Dart Board




Bonus (Drum)






22




Banana




Pumpkin




Banana




Pineapple




Banana






23




Cow




Cow




Apple




Bonus (Drum)




Dart Board






24




Bonus (Drum)




7's




Bonus (Drum)




7's




Pumpkin






25




Pineapple




Dart Board




Pineapple




Dart Board




Apple






26




Banana




Pumpkin




Banana




Pumpkin




Dart Board






27




Scatter (Dice)




Bonus (Drum)




Bonus (Drum)




Pineapple




Pineapple






28




7's




Cow




Apple




Cow




Scatter (Dice)






29




Cow




Pineapple




Pineapple




Banana




Banana






30




Pineapple




Dart Board




Bonus (Drum)




Pumpkin




Pumpkin














With thirty stops on each of five reels, there are a total of 30


5


or 24,300,000 possible combinations. To determine the “hit rate” for this set of reel strips, a computer analysis well known to the art is used to evaluate each of the 24,300,000 combinations of the five reels. For each combination, the symbols are analyzed across each of the five paylines in comparison with the paytables and rules shown in FIG.


4


and FIG.


5


. For each of the 24,300,000 combinations, if one or more of the paylines has a winning combination or if a scatter pay is present, then a hit counter is incremented. The analysis shows that for the reel strips of Table 1 with the paytable information provided in FIG.


4


and

FIG. 5

, 12,569,760 of the 24,300,000 combinations of the five reels result in a win, providing a 51.73% “hit rate.”




Table 2 shows the number of times each symbol appears on each of the five reels. This frequency data is used in combination with Table 3 to determine the payout percentage.

















TABLE 2









Symbol




Reel 1




Reel 2




Reel 3




Reel 4




Reel 5




























WILD




1




1




1




1




1






7's




3




4




2




1




2






Apple




2




1




5




2




2






Banana




5




1




5




4




4






Pineapple




3




2




6




4




4






Pumpkin




2




4




2




5




4






Dart Board




2




6




1




6




5






Cow




4




6




2




4




4






Bonus (Drum)




3




5




4




3




2






Scatter (Dice)




5




0




2




0




2







30




30




30




30




30














Table 3 shows a table of the available “pays” along with the necessary information to determine the payout percentage of the game. To provide the correct analysis, it should be clear that all “pays,” except the “Scatter” pay of three “Scattered Dice” symbols, will only pay left to right. That is, the indicated combination must be shown on successive reels starting with Reel


1


(see FIG.


1


). The “WILD” symbol may substitute for any symbol except the “Bonus (Drum)” symbol and the “Scatter (Dice)” symbol. The “Scatter” pay will pay for three dice symbols anywhere in the fifteen symbol visible display area. The “Scatter” pay will pay all paylines in addition to the highest pay on each line. On each payline, only the highest combination is paid. For the purposes of the math table of Table 3, if there are two ways to make the same highest pay value, then the combination using more symbols is used (e.g. “WILD-WILD-WILD-Banana-Any” is counted as four bananas instead of three “WILDs”, both of which pay 50 coins).




The “Occurrences” column of Table 3 is created using the Table 2 frequency data and enumerating each way to create that combination. Some examples are shown for clarity:




5 “WILD” 1×1×1×1×1=1




One “Wild” symbol on each reel results in one Occurrence of five “WILD.”




4 “WILD” 1×1×1×1×(2+2)=4




One “WILD” symbol on each of the first four reels and either a Drum or a Dice symbol on the fifth reel (any other symbol will result in five of that symbol instead of four wild).




3 “WILD” 1×1×1×3×30=90




One “WILD” symbol on each of the first three reels and a Drum on the fourth reel and any symbol on the fifth reel (any other symbol but a Drum on the fourth reel results in four or five of that symbol).




5 “7's” ((1+3)×(1+4)×(1+2)×(1+1)×(1+2))−1=359




Either a “WILD” or “7” on each reel, not counting the number of ways (one) to have five “WILDs.”




4 “7's” ((1+3)×(1+4)×(1+2)×(1+1)×(30−1−2))−(1×1×1×1×(30−1−2))=3213




The first component is the number of combinations with either a “WILD” or a “7” on each of the first four reels with any symbol except “WILD” or “7” on the fifth reel. This component includes combinations that have four “WILDs” which either pay as four “WILDs” or five of some other symbol, which need to be subtracted off. The second component is the number of combinations that have four “WILDs” on the first four reels that were part of the first component.




3 Bananas ((1+5)×(1+1)×(1+5)×(30−1−4)×30)−((1×1×1×(30−1−4)×30)=53250




The first component is the number of combinations with either a “WILD” or banana on each of the first three reels, with any symbol except a “WILD” or banana on the fourth reel and any symbol on the fifth reel. This component includes combinations that begin with three “WILDs,” which will pay as three “WILDs” or, four of some other symbol or five of some other symbol. The combinations with three “WILDs” are subtracted off in the second component which includes the number of combinations that contain “WILD” on the first three reels, any symbol but “WILD” or Banana on the fourth reel, and any symbol on the fifth reel.




3 Scattered Dice (5×3)×30×(2×3)×30×(2×3)=486,000




Each of the five Dice on the first reel qualifies for the “Scatter” pay in any of three positions (upper position, center position and lower position). This is multiplied by the thirty stops representing any position on the second reel, multiplied by the two Dice times three positions on the third reel, multiplied by the thirty stops of the fourth reel, multiplied by the two Dice times three positions on the fifth reel.




All other counts in the “Occurrences” column are calculated in a similar manner.




The “Probability” column for each row of Table 3 is computed by dividing the “Occurrences” in that row by the total number of combinations which is 24,300,000.




The EV or “Expected Value” for each row is computed by multiplying the “Pay” amount times the “Probability” for that row. The return from a single stage of this machine is computed by taking the sum of all EV entries, which is 0.906239712, or a 90.62% return. The payout percentage can be modified by modifying the Column 2 “Pay” values and the corresponding paytable, as is well known in the art. The payout percentage may also be modified by changing the symbol frequencies shown in Table 2, and corresponding reel strips of Table 1. Care must be taken to keep the “hit rate” at the desired level while changing the payout percentage. This is also well known in the art, and is often the preferred method used to alter payout percentage, because when this method is used, the player cannot tell from the paytable which machine has a higher return, or for that matter know for sure that machines are set at different payout percentages.
















TABLE 3









Pay Symbols




Pay




Occurrences




Probability




EV



























5 WILD




7500




1




4.11523E-08




0.000308642






4 WILD




200




4




1.64609E-07




3.29218E-05






3 WILD




50




90




3.7037E-06




0.000185185






2 WILD




5




5,400




0.000222222




0.001111111






1 WILD




2




529,200




0.021777778




0.043555556






5 7's




1000




359




1.47737E-05




0.014773663






4 7's




100




3,213




0.000132222




0.013222222






3 7's




25




49,560




0.002039506




0.050987654






2 7's




2




461,700




0.019




0.038






1 7's




1




2,025,000




0.083333333




0.083333333






5 Apples




500




323




1.32922E-05




0.006646091






4 Apples




75




2,889




0.000118889




0.008916667






3 Apples




15




28,350




0.001166667




0.0175






2 Apples




2




108,000




0.004444444




0.008888889






5 Bananas




300




1,799




7.40329E-05




0.022209877






4 Bananas




50




8,975




0.000369342




0.018467078






3 Bananas




10




53,250




0.002191358




0.02191358






2 Bananas




2




237,600




0.009777778




0.019555556






5 Pineapples




250




2,099




8.63786E-05




0.02159465






4 Pineapples




50




10,475




0.00043107




0.021553498






3 Pineapples




10




62,250




0.002561728




0.025617284






2 Pineapples




2




227,700




0.00937037




0.018740741






5 Pumpkins




200




1,349




5.55144E-05




0.011102881






4 Pumpkins




50




6,725




0.000276749




0.013837449






3 Pumpkins




10




31,680




0.001303704




0.013037037






5 Dart Boards




200




1,763




7.25514E-05




0.014510288






4 Dart Boards




50




7,032




0.000289383




0.014469136






3 Dart boards




10




28,290




0.001164198




0.011641975






5 Cows




200




2,624




0.000107984




0.021596708






4 Cows




50




13,100




0.000539095




0.026954733






3 Cows




5




78,000




0.003209877




0.016049383






5 Bonus (Drum)




1000




360




1.48148E-05




0.014814815






4 Bonus (Drum)




150




5,040




0.000207407




0.031111111






3 Bonus (Drum)




50




48,600




0.002




0.1






3 Scatter (Dice)




8




486,000




0.02




0.16






Losing Spin





19,771,200




0.81362963








24,300,000




1




0.906239712














Building now upon the single stage machine so described, Table 4 shows how the return for the multi-stage version of the game is computed. The first column shows the “Stage” for which the return is being computed. The second column shows the probability of a hit on the specified stage. In this first embodiment, this is the “hit rate” of a single stage of the machine, which is the criterion for moving up to the next stage. The third column shows the probability of playing the specified stage (as opposed to losing all bets on that stage without play). This is “1” for the first stage (the first stage is always played), and for the other stages is computed by multiplying the probability of playing the previous stage (third column, one line above) times the probability of a hit on the previous stage (second column, one line above). For Stage


2


, this is 1×0.51727=0.51727. For the third stage this is 0.51727×0.51727=0.26757.




The fourth column shows the multiplier for all “pays” on the specified stage. This multiplier provides a reward that more than offsets the losses for the times that the stage is not played. The fifth column shows the EV for the machine on the specified stage, which is the same for each identical machine in this embodiment. The sixth column shows the overall EV of the specified stage, and is computed by multiplying the third through fifth columns together. This is because the EV of a stage (fifth column) has to be scaled up by the payoff multiplier (fourth column) and reduced by taking into account the probability of playing that stage (third column). The seventh column shows the cumulative EV when one, two or three stages are played. This is the average of the sixth column of the specified level and all levels above it. When only one stage is played the cumulative EV is the same as the EV of that stage. When two stages are played, the cumulative EV is the average of the EV of the first stage and the second stage. When all three stages are played, the cumulative EV is the average of the EV of the first stage, second stage and third stage. This results in an overall expected return of 93.79% when all three stages (fifteen lines) are played.


















TABLE 4












Multiplier






Cumulative







Probability




Probability




For Pays






EV of All







of hit on this




of Playing




on this




EV of




EV of This




Stages up to






Stage




stage




This Stage




Stage




Machine




Stage




this Level





























1




0.517274074




1




1




0.906239712




0.906239712




0.90624






2




0.517274074




0.517274074




2




0.906239712




0.937548616




0.921894






3




0.517274074




0.267572468




4




0.906239712




0.969939184




0.937909














A Variation on Triple-Strike Slots




In a modification to the first embodiment above, a fourth stage is added allowing the player to wager on one to twenty lines. Instead of offering a fixed 8× multiplier on the fourth stage, however, after any win on the fourth stage the multiplier is randomly selected from a range of 4× to 50×, with weighted frequencies selected such that the overall value of the multiplier is about 8×. Each time that a spin on the fourth stage results in any win, the game goes through a selection process that presents a multiplier of 4× to 50× to the player. One method of presentation is to select the multiplier and show it on the screen to the player. Table 5 shows a table of weighted entries that are used for this purpose. After a win on the fourth stage of this game, the machine uses its RNG (random number generator) to select an integer from 1 to 29. This number is “looked up” in the second column of Table 5 (titled “Values”), and the corresponding value in the first column (titled “Multiplier”) is used as the stage multiplier for that spin. The third through fifth columns of Table 5 are used to determine the EV of the fourth stage multiplier in the same manner used in Table 3.
















TABLE 5









Multiplier




Values




Occurrences




Probability




EV



























50




1




1




0.03448276




1.724138






25




2




1




0.03448276




0.862069






10




3-5




3




0.10344828




1.034483






8




6-7




2




0.06896552




0.551724






6




 8-12




5




0.17241379




1.034483






5




13-25




13




0.44827586




2.241379






4




26-29




4




0.13793103




0.551724








29




1




8














Table 6 is a modified version of Table 4, with the fourth stage added showing the overall payout percentage of this modified game is 95.43% with all twenty lines played. Also note that the payout percentage on the fourth stage is 100.34%. A bet on this particular stage has a positive expectation for the player. This bet (on lines sixteen through twenty) is only allowed in conjunction with the negative-expectation bets (i.e., less than 100%) on the first fifteen lines, thus resulting in an overall negative expectation of a 95.43% return.


















TABLE 6












Multiplier






Cumulative







Probability




Probability




For Pays






EV of All







of hit on this




of Playing




on this




EV of




EV of This




Stages up to






Stage




stage




This Stage




Stage




Machine




Stage




this Level





























1




0.517274074




1




1




0.906239712




0.906239712




0.906239712






1




0.517274074




1




1




0.906239712




0.906239712




0.906239712






2




0.517274074




0.517274074




2




0.906239712




0.937548616




0.921894164






3




0.517274074




0.267572468




4




0.906239712




0.969939184




0.937909171






4




0.517274074




0.1384083




8




0.906239712




1.003448787




0.954294075














To add even more excitement to the presentation of the foregoing fourth stage, another variation of this four stage game adds a mechanical wheel for selection of the multiplier for wins on the fourth stage. Adams, U.S. Pat. Nos. 5,823,874 and 5,848,932, and Telnaes, U.S. Pat. No. 4,448,419, may be referred to for detail on such bonus sequences and indicia. The wheel


42


shown in

FIG. 11

has sixteen sections, although any number of visible sections may be used. Table 7 uses the same multiplier values as shown in Table 5, but allocates these values to the sixteen sections of the mechanical wheel of FIG.


11


.




The above-described embodiment of a gaming slot machine having four stages and a random number multiplier on the fourth stage is operationally summarized in the flow charts of

FIGS. 12A-12C

. The program for this Multi-Strike Slots variation embodiment is substantially the same as that previously described with respect to

FIGS. 10A through 10E

. Accordingly, and keeping with the same convention used throughout this application, like numbers are used to describe like steps. The changes made to the previously-described program will therefore only be discussed as to this version.




Turning first to

FIG. 12A

, Multi-Strike Slots follows the same programming as set forth in the flow charts of

FIGS. 10A through 10C

for Triple-Strike Slots, and up through step


220


. Step


232


begins a sequence for a fourth stage/level/machine, with steps


233


,


234


,


237


and


238


corresponding to steps


183


,


184


,


187


and


188


, respectively, except as now related to a fourth machine. Note that in the event of no bet on the fourth machine (step


232


), a “Game Over” sequence is then engaged at step


176




c.






As in the other levels, the “Spin Reels” button is once more deactivated (step


239


), and steps


240


,


241


and


242




a


through


242




e


repeat steps


169


,


170


and


171




a


through


171




e


, respectively, this time for the fourth machine. Turning to

FIG. 12B

, steps


245


,


247


and


248


then repeat the process for the fourth machine described in steps


175


,


177


and


178


, respectively, with regard to the first machine


18


.




Step


249


will now initiate a sequence for a multiplier to be applied to the fourth level in this version. First, a number is randomly selected from a table provided for the fourth level multiplier at step


249


. The bonus wheel


42


(

FIG. 11

) may then be graphically “spun” at step


250


, and stopped on the previously selected number from step


249


, as indicated at step


253


. A mechanical wheel of the type disclosed in U.S. Pat. Nos. 5,823,874 and 5,848,932 can likewise be advantageously employed. This multiplier factor is then displayed (step


254


), and the “Sub-Total” amount for the fourth level is then increased by this factor and displayed as a “Total” for the fourth machine (step


255


), with the latter sum then added to the “Total Won” meter


36


amount for display, as shown in step


256


. The game then proceeds from step


256


to “Game Over” sequence


176




c


. The “Game Over” sequence shown at

FIG. 12C

for this version is the same as that previously described, except for reflecting the path from point


11


(rather than from point


9


in the previous version).

















TABLE 7









Wheel











Stop




Multiplier




Values




Occurrences




Probability




EV




























1




8




 1




1




0.034482759




0.275862069






2




5




2-3




2




0.068965517




0.344827586






3




6




4-6




3




0.103448276




0.620689655






4




5




7-9




3




0.103448276




0.517241379






5




10




10-11




2




0.068965517




0.689655172






6




4




12-13




2




0.068965517




0.275862069






7




50




14




1




0.034482759




1.724137931






8




5




15-17




3




0.103448276




0.517241379






9




25




18




1




0.034482759




0.862068966






10




4




19




1




0.034482759




0.137931034






11




10




20




1




0.034482759




0.344827586






12




5




21-23




3




0.103448276




0.517241379






13




8




24




1




0.034482759




0.275862069






14




4




25




1




0.034482759




0.137931034






15




6




26-27




2




0.068965517




0.413793103






16




5




28-29




2




0.068965517




0.344827586









29




1




8














Triple-Strike Stud Poker




Another embodiment uses this multi-stage game technique for the play of video poker. This second embodiment adapts a Five-Card Stud game with hit rates under 50% and over 50%. The invention may also be used to adapt many other poker games, including Five-Card Draw poker, Double Down Stud poker (see e.g., U.S. Pat. Nos. 5,100,137 and 5,167,413) and Big Split poker (disclosed by the inventors herein in a pending U.S. patent application) among others.




In this second embodiment, there are three stages of Five-Card Stud poker. This game pays on any hand that is one pair or better. It will be seen that about 49.88% of hands in Five-Card Stud poker rank as one pair or higher. For this game with a “hit rate” under 50%, it would be undesirable to use 2× and 4× multipliers on the second and third stages respectively, since this would make the return of these stages lower than the first stage. This means that a player wagering more money would get a lower expected return, which is undesirable to the proprietor of the game who wants to encourage as high a wager as possible, but may also run afoul of regulations in certain gaming jurisdictions, which require equal or higher return for each coin wagered on a single game. There are many ways that the game may be modified to cause the higher stages to have a higher payout, of which two will be shown here.




In the first version of this poker embodiment, a separate paytable is used for each stage of the game, as shown in FIG.


13


. In

FIG. 13

, it is clear that the Hand #


2


(


51


) paytable has all pays from the Hand #


1


(


50


) paytable multiplied by 2×, except for the “4 of a Kind” which goes from 50 to 200, thus providing additional return that will more than offset the “hit rate” being under 50%. Likewise, the Hand #


3


(


52


) paytable has all pays from the Hand #


2


paytable multiplied by 2× except for the “Full House”, which goes from 50 to 150, which again more than offsets the “hit rate” being under 50%. This will become clear in the analysis shown below, if not already evident.




Referring still to

FIG. 13

, the player uses the “Select Number of Hands” button


54


to select a bet on one to three hands (stages)


50


,


51


and


52


. The game may be configured with more or less stages (number of hands) without departing from the invention. The “Coins per Hand” button


55


is then used to wager from one to five coins per hand. This range of coins may be modified to any acceptable range, as is well known in the art. The “Deal Hand” button


56


will cause the game to deal out Hand #


1


(


50


) from a standard fifty-two card deck of playing cards. While this game uses a standard deck of cards of rank and suit, other embodiments may use one or more “Jokers.” Still other embodiments may use certain cards, such as Deuces, as wild cards. Even more broadly, while this second embodiment is a poker game, other card games or different games of chance will be readily adaptable to use with the overall inventive concept, as previously noted.





FIG. 14

shows the game screen after one coin was bet on three hands, and a first stage hand has been dealt. The hand shown contains a pair of 5's, which pays one coin for a “Low Pair” (highlighted on the Hand #


1


(


50


) paytable). The one coin won is shown in the “Total Won” meter


58


. As a result of achieving any win on Hand #


1


, Hand #


2


(


51


) may now be played. If Hand #


1


(


50


) was a loser (less than one pair), then the game would be over and the wagers on Hand #


2


(


51


) and Hand #


3


(


52


) would be lost without playing those stages.




Having won Hand #


1


(


50


), however, the player presses the “Deal Hand” button


56


and a second hand is dealt as is shown in FIG.


15


. In this hand


51


, the player has received another pair of 5's, which now pays two coins as called out in the Hand #


2


(


51


) paytable. The “Total Won” meter


58


is updated to three (one coin from Hand #


1


plus two coins from Hand #


2


). As a result of a win on Hand #


2


, Hand #


3


(


52


) may now be played. If Hand #


2


(


51


) had been a loser (less than one pair), then the game would be over and the wager on Hand #


3


lost.




The player once again presses the “Deal Hand” button


56


after success at stage two, and a third hand (


52


) is dealt as is shown in FIG.


16


. This hand has a pair of tens and a pair of deuces for “Two Pair.” The paytable shows that two pair pays twelve coins when achieved on Hand #


3


(as opposed to six coins on hand #


2


or three coins on hand #


1


). The “Total Won” meter


58


is updated to “15,” and the game is over since all hands wagered on have been played. The total win of fifteen credits is added to the “Credits” meter


59


, advancing the meter from “177” to “192” (from an arbitrary start of “180”).




Analysis of Triple-Strike Stud Poker Game




Table 8 shows how the calculation of certain architecture of the payout percentage (expected return) of the first stage of this second embodiment is computed. This table is for a one coin bet. It is well known in the art how to expand this for a higher number of coins bet per hand, and for the inclusion of bonuses for a higher number of coins.




The number of possible five card poker hands from a fifty-two card deck is known as “52 choose 5” and is computed with the following formula:








52
!



5
!

*


(

52
-
5

)

!



=

2
,
598
,
960











The first column of Table 8 shows the rank of all hands in this Five-Card Stud game. The second column shows the pay value for this ranking on Hand #


1


(each hand


50


,


51


and


52


having a separate paytable). The third column (“Occurrences”) is the number of times a particular hand occurs in the 2,598,960 possible five card poker hands dealt from a standard deck. This “Occurrence” tabulation is well known to those skilled in the art, and may be derived by analyzing each of the 2,598,960 hands with a computer program, also well known. The fourth column shows the probability of playing Hand #


1


when a bet is placed on this hand. For Hand #


1


this probability is 1.0, since the first hand will always be played when it is bet on. The fifth column shows the probability of receiving the hand called out in the first column. This is computed by dividing the “Occurrences” (third column) by the 2,598,960 total number of possible hands.




The sixth column is the product of the fourth and fifth columns, which is the probability of getting a particular hand on this stage (for the first stage it is the same as the fifth column since the first stage is always played). The seventh column is the expected value contribution EV, which is the product of the second column pay and the sixth column probability of achieving the given hand on the current stage. The sum of all EV contributions provides the expected return of 0.916288 or 91.63%. This expected return may be modified by making modifications to the “Pay” values in the second column of Table 8, as is well known in the art.



















TABLE 8













Probability of




Probability




Probability of










Playing This




of




This Hand on







Pay




Occurrences




Stage




This Hand




This Stage




EV






























ROYAL FLUSH




2000




4




1




1.5391E-06




1.53908E-06




0.003078






STRAIGHT FLUSH




250




36




1




1.3852E-05




1.38517E-05




0.003463






FOUR OF A KIND




50




624




1




0.0002401




0.000240096




0.012005






FULL HOUSE




25




3,744




1




0.00144058




0.001440576




0.036014






FLUSH




15




5,108




1




0.0019654




0.001965402




0.029481






STRAIGHT




8




10,200




1




0.00392465




0.003924647




0.031397






THREE OF A KIND




5




54,912




1




0.02112845




0.021128451




0.105642






TWO PAIR




3




123,552




1




0.04753902




0.047539016




0.142617






JACKS OR BETTER




2




337,920




1




0.13002124




0.130021239




0.260042






LOW PAIR




1




760,320




1




0.29254779




0.292547788




0.292548






BUST





1,302,540




1




0.50117739




0.501177394




0








2,598,960





1





0.916288














Table 9 shows a similar analysis for Hand #


2


(


51


) (the second stage of this game). The second column now has the Hand #


2


paytable showing all values doubled from the Hand #


1


paytable with the Four of a Kind going from 50 to 200. The fourth column, “Probability of Playing This Stage” is the probability of getting any “hit” (one pair or higher) on the first stage. This is computed by adding up all of the fifth column values from Table 8 except for “Bust,” or by subtracting the probability of a “Bust” (0.50117739) from 1.0, resulting in a first stage hit rate of 0.498822606 or 49.88%. The sum of the EV components on the second stage is 0.9261078, indicating a 92.61% expected return. This higher expected return than the first stage is a result of the 200 coin Four of a Kind value more than offsetting the “hit rate” which is slightly under 50%. This expected return may, again, be modified by making modifications to the “Pay” values.



















TABLE 9













Probability of




Probability




Probability of










Playing This




of




This Hand on







Pay




Occurrences




Stage




This Hand




This Stage




EV






























ROYAL FLUSH




4000




4




0.498822606




1.5391E-06




7.67726E-07




0.003071






STRAIGHT FLUSH




500




36




0.498822606




1.3852E-05




6.90954E-06




0.003455






FOUR OF A KIND




200




624




0.498822606




0.0002401




0.000119765




0.023953






FULL HOUSE




50




3,744




0.498822606




0.00144058




0.000718592




0.03593






FLUSH




30




5,108




0.498822606




0.0019654




0.000980387




0.029412






STRAIGHT




16




10,200




0.498822606




0.00392465




0.001957703




0.031323






THREE OF A KIND




10




54,912




0.498822606




0.02112845




0.010539349




0.105393






TWO PAIR




6




123,552




0.498822606




0.04753902




0.023713536




0.142281






JACKS OR BETTER




4




337,920




0.498822606




0.13002124




0.064857533




0.25943






LOW PAIR




2




760,320




0.498822606




0.29254779




0.14592945




0.291859






BUST





1,302,540




0.498822606




0.50117739




0.249998614




0








2,598,960





1





0.926107














Table 10 shows a similar analysis for Hand #


3


(


52


) (the third stage of this game).




The second column now has the Hand #


3


paytable showing all values doubled from the Hand #


2


paytable with the Full House going from 50 to 150. The “Probability of Playing This Stage” is the probability of getting any “hit” (one pair or higher) on the first and second stages. This is the square of the 0.498822606 “hit rate” of the first stage since a “hit” is required on both the first and second stages in order to play the third stage. The fourth column value may also be computed by subtracting the probability of getting a “Bust” on the first stage (0.50117739) and the probability of getting a “Bust” on the second stage (0.249998614) from 1.0 (i.e., 1−0.50117739−0.249998614=0.248823992). The sum of the EV components on the third stage is 0.941849, indicating a 94.18% expected return. This higher expected return than the second stage likewise is a result of the 150 coin Full House value more than offsetting the second stage “hit rate” which is slightly under 50%. Once again, the expected return may be modified by making modifications to the “Pay” values.



















TABLE 10













Probability of




Probability




Probability of










Playing This




of




This Hand on







Pay




Occurrences




Stage




This Hand




This Stage




EV






























ROYAL FLUSH




8000




4




0.248823992




1.5391E-06




3.82959E-07




0.003064






STRAIGHT FLUSH




1000




36




0.248823992




1.3852E-05




3.44663E-06




0.003447






FOUR OF A KIND




400




624




0.248823992




0.0002401




5.97417E-05




0.023897






FULL HOUSE




150




3,744




0.248823992




0.00144058




0.00035845




0.053767






FLUSH




60




5,108




0.248823992




0.0019654




0.000489039




0.029342






STRAIGHT




32




10,200




0.248823992




0.00392465




0.000976546




0.031249






THREE OF A KIND




20




54,912




0.248823992




0.02112845




0.005257266




0.105145






TWO PAIR




12




123,552




0.248823992




0.04753902




0.011828848




0.141946






JACKS OR BETTER




8




337,920




0.248823992




0.13002124




0.032352404




0.258819






LOW PAIR




4




760,320




0.248823992




0.29254779




0.072792909




0.291172






BUST





1,302,540




0.248823992




0.50117739




0.12470496




0








2,598,960





1





0.941849














Table 11 shows the return of betting on one, two or three stages in this poker game of the second embodiment. For the “Stage” called out in the first column, the second column shows the EV for that stage taken from Tables 8, 9, and 10. The third column is the EV of an entire multi-stage game with a bet on the number of stages in the first column. This is the average of the selected second column level and all levels above (i.e., the average EV of all those stages in the multi-stage game). The expected return of the entire game when a player plays all three stages is 0.928081203 or 92.81%.














TABLE 11











EV of Game







Total EV




Playing this many






Stage




For Stage




stages











1




0.91628805




0.916288054






2




0.92610692




0.921197488






3




0.94184863




0.928081203














A Variation on Triple-Strike Stud Poker




This modification of the Triple-Strike Stud poker game introduces a “Free Ride” feature. This feature is used to increase the “hit rate” of the basic game without making any other modifications to the game (such as which hands pay). This feature provides a greater flexibility in setting the “hit rate” than is available by simply setting which rank is the lowest pay. Using normal poker game construction techniques, one would typically have to include more paying hands to increase the “hit rate.” In the game of the above second embodiment, the highest nonpaying hand to add would be “Ace High,” which would add almost 20% to the hit rate as shown in Table 12. Paying on all hands that have an Ace (referred to as “Ace High”) would bring the hit rate up from 49.88% to 69.23%, which is far beyond the goal of just over 50%. Another variance could require “Ace-King” high as the minimum hand, which would bring the hit rate to 56.32%, which is still a very large increase.















TABLE 12











Sum of




Hit Rate at







Occurrences




Occurrences




this rank


























ROYAL FLUSH




4




4




0.00%






STRAIGHT FLUSH




36




40




0.00%






FOUR OF A KIND




624




664




0.03%






FULL HOUSE




3744




4408




0.17%






FLUSH




5108




9516




0.37%






STRAIGHT




10200




19716




0.76%






THREE OF A KIND




54912




74628




2.87%






TWO PAIR




123552




198180




7.63%






JACKS OR BETTER




337920




536100




20.63%






LOW PAIR




760320




1296420




49.88%






ACE-KING




167280




1463700




56.32%






ACE HIGH




335580




1799280




69.23%






BUST




799680




2598960




100.00%







2,598,960














In this modified embodiment, a “Free Ride” feature is added to the game wherein in some of the hands, on a random basis, a “Free Ride” indicia will be displayed, advantageously with an accompanying sound. When the “Free Ride” is indicated, the hand will be dealt as usual and paid according to the paytable, but the game will automatically advance to the next hand that was wagered on, whether or not the player wins the current hand.




Using this feature, multiple stages of this game can be constructed with a natural hit rate under 50%, yet use the same paytable for all stages with multipliers for each stage.




Another advantage of the “Free Ride” feature is that it is not necessary to modify paytable values to increase the “hit rate.” It is well known in the art that as additional “pays” are allowed to increase the “hit rate,” other pay values or frequencies will need to be decreased to offset the amount paid out on the new values. The “Free Ride” introduces a method of raising the “hit rate” of a game without any other modification to the payout of the game through the use of “hits” that award no coins/credits. This is important for the purpose of adapting games with paytables that are already familiar to the players. It is also a valuable tool that gives the game designer more flexibility in the creation of a game.




Table 8 is still representative of the first stage of this “Free Ride” version. In this modified embodiment, the “Free Ride” is offered on sixteen of every one thousand hands (based on a random number for each hand), or 1.6% of the hands played. This will increase the “hit rate” of the stage. Using more than 1.6% “Free Rides” will provide a greater increase, while using less than 1.6% will provide a smaller increase in the “hit rate.” Because the “Free Ride” offers no benefit when playing on the highest hand that has been wagered on (there being no “next hand” to advance to) it is not offered on the final hand.




Table 13 shows how the“hit rate” is determined for the first stage of Table 8 that includes a 1.6% “Free Ride.” The first line shows the “hit rate” that is achieved for first stage hands, 0.4988. The second line shows the sixteen in one thousand probability of the “Free Ride” being offered. The third line shows the probability of losing on the first stage. This is the “Bust” probability taken from Table 8. The fourth line is the product of the second and third lines, showing the probability of getting a “Free Ride” on a “Busted” hand. This is the additional “hit rate” component, since winning hands that receive the Free Ride are already figured into the first line. The fifth line is the sum of the first and fourth lines and is the resulting “hit rate” for the first stage including the “Free Ride” feature which is 0.506841 or 50.68%.















TABLE 13













Hit Rate for Hands of First Stage




0.498823















Free Ride Prob.




0.016








First Stage Busts




0.501177







Free Ride Hits





0.008019














First Stage Hit Rate w/ Free Ride




0.506841















The second stage of the “Free Ride” variation is now represented by Table 14, which is similar to Table 9. The differences are in the “Pay” values, which are now exactly twice (2× multiplier) the “Pay” values from Table 8, and the fourth column “Probability of Playing This Stage”, which is now the 0.506841 value, computed in Table 13.



















TABLE 14













Probability of




Probability




Probability of










Playing This




of




This Hand on







Pay




Occurrences




Stage




This Hand




This Stage




EV






























ROYAL FLUSH




4000




4




0.506841444




1.5391E-06




7.80068E-07




0.00312






STRAIGHT FLUSH




500




36




0.506841444




1.3852E-05




7.02061E-06




0.00351






FOUR OF A KIND




100




624




0.506841444




0.0002401




0.000121691




0.012169






FULL HOUSE




50




3,744




0.506841444




0.00144058




0.000730144




0.036507






FLUSH




30




5,108




0.506841444




0.0019654




0.000996147




0.029884






STRAIGHT




16




10,200




0506841444




0.00392465




0.001989174




0.031827






THREE OF A KIND




10




54,912




0.506841444




0.02112845




0.010708775




0.107088






TWO PAIR




6




123,552




0.506841444




0.04753902




0.024094743




0.144568






JACKS OR BETTER




4




337,920




0.506841444




0.13002124




0.065900153




0.263601






LOW PAIR




2




760,320




0.506841444




0.29254779




0.148275344




0.296551






BUST





1,302,540




0.506841444




0.50117739




0.254017474




0








2,598,960





1





0.928826














The third stage for the “Free Ride” variation is represented by Table 15, which is similar to Table 10. Again, the differences are in the “Pay” values, which are now exactly twice (2× multiplier), the “Pay” values from Table 14, and the fourth column “Probability of Playing This Stage”, which is now 0.25688825, which is the square of the 0.506841 “hit rate” of the first stage.



















TABLE 15













Probability of




Probability




Probability of










Playing This




of




This Hand on







Pay




Occurrences




Stage




This Hand




This Stage




EV






























ROYAL FLUSH




8000




4




0.2568825




1.5391E-06




3.95371E-07




0.003136






STRAIGHT FLUSH




1000




36




0.25688825




1.3852E-05




3.55834E-06




0.003558






FOUR OF A KIND




200




624




0.25688825




0.0002401




6.16779E-05




0.012336






FULL HOUSE




100




3,744




0.25688825




0.00144058




0.000370067




0.037007






FLUSH




60




5,108




0.25688825




0.0019654




0.000504889




0.030293






STRAIGHT




32




10,200




0.25688825




0.00392465




0.001008196




0.032262






THREE OF A KIND




20




54,912




0.25688825




0.02112845




0.005427651




0.108553






TWO PAIR




12




123,552




0.25688825




0.04753902




0.012212215




0.146547






JACKS OR BETTER




8




337,920




0.25688825




0.13002124




0.033400929




0.267207






LOW PAIR




4




760,320




0.25688825




0.29254779




0.075152089




0.300608






BUST





1,302,540




0.25688825




0.50117739




0.128746584




0








2,598,960





1





0.941535














Finally, Table 16 is a similar table to Table 11, showing the overall payout percentage of the one, two and three stage versions of this “Free Ride” game. The increase in overall payout is a little over 1.2% when going from one to three stages. This range may be increased using a higher “Free Ride” percentage, or decreased using a lower “Free Ride” percentage. One skilled in the art will appreciate that changing the payout range using this independent “Free Ride” percentage provides much better precision and flexibility for setting this range than the paytable modification method used in the unmodified second embodiment.














TABLE 16











EV of Game







Total EV




Playing this many






Stage




For Stage




stages











1




0.91628805




0.916288054






2




0.92882552




0.922556787






3




0.94153454




0.928882704














Multi-Strike Five-Card Draw Poker




Five-Card Draw poker is a very popular casino game and is offered in many variations including Jacks or Better, Joker Poker, Deuces Wild and various “bonus” type Jacks or Better versions, among others. While it is within the scope of the invention to use any poker game with paytables and/or multipliers that provide the increased reward on the higher stages, or to use different variations of poker or even other games of chance on different levels, this third embodiment will use a well known game with its well known paytables. It will also use multipliers to increase the reward on the higher levels.




Many of the popular Five-Card Draw poker games have hit rates in the 40% to 50% range, including Jacks or Better, Deuces Wild and the many “bonus” poker variations that are popular today in the marketplace. Since most gaming jurisdictions require that video poker be played from a “fair” deck of cards, it has become widely -known that a player can determine the payout percentage of a video poker machine by looking at its paytable. This has resulted in a growing popularity of this type of game. In this embodiment of the invention, a multiple stage Five-Card Draw poker game is constructed, also using the “Free Ride” feature previously discussed to maintain the familiar paytable. It will be shown that the frequency of the “Free Ride” feature can be used to achieve a similar payout percentage in the multi-stage game as the player may expect from the familiar paytable.





FIG. 17

shows the current (third) embodiment four-stage 9-6 Jacks or Better game. The game uses the familiar paytable shown in

FIG. 18

, which may be displayed by pressing the “Pay Table” button


65


shown in FIG.


17


. The player presses the “Select Number of Hands” button


66


to designate a bet on one to four hands (stages) of this game. This third embodiment of course may be constructed with a lesser or greater number of stages than four, without departing from the invention.




The player presses the “Coins per Hand” button


67


to select a bet ranging from one to five coins per hand. Those skilled in the art understand how to allow the range of coins bet to be broader or narrower or how to add bonuses for higher bets.




The “Total Bet” is the product of the “Select Number of Hands” and “Coins per Hand” values, and is displayed in the “Total Bet” window


68


. The player then presses the “Deal/Draw” button


70


to deal out a hand on the first stage


71


. The buttons shown in

FIG. 17

are video buttons for use with a touchscreen display. A pointing device such as a mouse or trackball, physical pushbutton switches and the like may be used in addition to or instead of the video buttons shown. If the player wishes to bet the maximum twenty coins on a game, he or she may press the “Max Bet Deal” button


76


which has the same result as pressing the “Select Number of Hands” button


66


until “4” is shown, followed by pressing the “Coins per Hand” button


67


until “5” is shown, followed by pressing the “Deal/Draw” button


70


.




After receiving the initial hand, the player may hold one or more cards by using the touchscreen to indicate which cards are to be discarded.

FIG. 19

shows the display after the player elects to hold only the Jack of Spades


80


from the hand dealt in FIG.


17


.

FIG. 19

shows the word “Held” above the Jack of Spades


80


that was selected to be held. The player then presses the “Deal/Draw” button


70


to replace the other four cards.





FIG. 20

shows a possible result of the draw. The draw results in a Three of a Kind. The Three of a Kind awards three coins as shown in the

FIG. 18

paytable. The three coin award multiplied by the Hand #


1


(


71


) multiplier of 1× X is shown to total three coins in the first stage payout information window


84


to the right of Hand #


1


in FIG.


20


. This three coin sub-total is shown in the “Total Won” meter


85


of FIG.


20


. If Hand #


1


was a loser instead of getting “Jacks or Better” (as was accomplished with a hand of Three of a Kind), the game would be over and the bets on Hand #


2


(


72


), Hand #


3


(


73


) and Hand #


4


(


74


) would be lost without playing those hands.




However, as a result of obtaining a winning hand, the bet made on Hand #


2


(


72


) will now be played. Five cards are dealt randomly from a separate (new) deck of fifty-two cards in the Hand #


2


position.

FIG. 20

shows that the cards dealt to Hand #


2


(


72


) include a pair of Queens


81


, which already ranks above the “Jacks or Better” level required to win. A skilled player would hold the pair of Queens, and press the “Deal/Draw” button


70


.





FIG. 21

shows one possible result of this second draw. In

FIG. 21

, a third Queen was drawn to Hand #


2


resulting in Three of a Kind, which as seen on Hand #


1


, awards three coins.

FIG. 21

shows that this three coin award is multiplied by the 2× multiplier for Hand #


2


, which results in a six coin total win from Hand #


2


. The coins awarded are shown in the second stage payout information window


87


to the right of Hand #


2


(


72


). The “Total Won” meter


85


is now updated to show nine coins won, which is the sum of the three coins won on Hand #


1


and the six coins won on Hand #


2


. If Hand #


2


was a loser instead of getting “Jacks or Better” (as was accomplished with a hand of Three of a Kind), the game would be over and the bets on higher level hands would be lost.




Since a winning hand was achieved on Hand #


2


, the bet made on Hand #


3


(


73


) will now be played. Five cards are again dealt randomly from a new deck in the Hand #


3


position (


73


).

FIG. 21

shows that the cards dealt to Hand #


3


include two pair, which already is above the “Jacks or Better” level required to win. A skilled player would hold the two pair and press the “Deal/Draw” button


70


.





FIG. 22

shows one possible result of this third draw. In

FIG. 22

, Hand #


3


was not improved, resulting in two pair which awards two coins.

FIG. 22

shows that this two coin award is multiplied by the 4× multiplier for Hand #


3


, which results in an eight coin total win from Hand #


3


. These numbers are shown in the third stage payout information window


88


to the right of Hand #


3


(


73


). The “Total Won” meter


85


is now updated to show seventeen coins won, which is the sum of the three coins won on Hand #


1


, the six coins won on Hand #


2


and the eight coins won on Hand #


3


.




As a result of obtaining a winning hand on Hand #


3


, the bet made on Hand #


4


(


74


) will now be played. Five cards are again dealt randomly from a new deck in the Hand #


4


(


74


) position.

FIG. 22

shows that the cards dealt to Hand #


4


include three Jacks, which already is above the “Jacks or Better” level required to win. The three Jacks are held by the player and the “Deal/Draw” button


70


is again pressed.





FIG. 23

shows one possible result of this fourth draw. In

FIG. 23

, Hand #


4


(


74


) becomes a Full House as a result of drawing a pair of fours. A Full House awards nine coins as seen in FIG.


18


.

FIG. 23

shows that this nine coin award is multiplied by the 8× multiplier for Hand #


4


, which results in a seventy-two coin total win from Hand #


4


. These numbers are shown to the right of Hand #


4


(


74


) in the fourth stage payout information window


89


. The “Total Won” meter is now updated to show eighty-nine coins won which is the sum of coins won on all levels. The game is over as a result of playing all hands on which bets were placed. The credits shown in the “Total Won” meter


85


are added to the “Total Credits” window


77


taking this value to “285.”




Multi-Strike Five-Card Draw Poker with “Free Ride”




In another example of the foregoing embodiment of Five-Card Draw poker, the same “Free Ride” feature that was described for Five-Card Stud poker is used to increase the hit rate without having to modify the popularly known paytable.

FIG. 24

shows that the “Free Ride” card


90


was dealt to the player in Hand #


1


(


71


). The game makes an exciting sound when the card is dealt to alert the player that Hand #


2


(


72


) will be available whether or not a win is achieved on Hand #


1


. After showing the

FIG. 24

display for a few seconds to allow the special sound to complete, the “Free Ride” card


90


is replaced by another randomly selected card and the remainder of the hand is dealt to the player in usual fashion.





FIG. 25

shows this completed hand along with a “Free Ride” indicator


91


on the left edge of the screen. As in the previous example, the player will hold desired cards and draw replacements for those cards not held. A skilled player would hold the 7, 10 and Jack of Diamonds, and then press the “Deal/Draw” button


70


.





FIG. 26

shows that the cards drawn did not result in a win. The first stage payout information window


84


now shows a zero coin win with “Free -Ride” being indicated as the reason for advance. As a result of the “Free Ride” on Hand #


1


(


71


), five cards are now dealt for Hand #


2


(


72


). Play would continue from level to level as long as there is a winning hand, or “Free Ride” on each level, as previously described.




Analysis of Certain Architecture of the Multi-Strike Five-Card Draw Poker Game




Part I—Review of “Standard Video Poker”




This analysis is of a “standard video Draw poker” game, which will then be related to Multi-Strike Five-Card Draw poker for a one coin wager per hand. It is well known by those skilled in the art how to expand this to more coins bet, and how to add bonuses for higher bets.




Those skilled in the art of video poker development know that a Five Card Draw poker game with the paytable shown in Table 17 has an expected return of 99.54398%. This payout percentage is what the game will return in the long run with “Optimal Play”. This game is usually referred to as 9-6 Jacks or Better. This is because most Jacks or Better games (without Four-of-a-Kind bonuses) use the same paytable except for the Full House and Flush awards which are modified to change the payout percentage. It is well known that a 9-6 Jacks or Better (awarding nine coins for Full House and six coins for Flush) provides a 99.54% return.
















TABLE 17









Hand Rank




Pay




Occurrences




Probability




EV











Royal Flush




800




64.3457483




2.47583E−05




0.019806614






Straight Flush




50




284.1410173




0.000109329




0.005466437






Four of a Kind




25




6140.161736




0.002362546




0.059063642






Full House




9




29919.76638




0.011512207




0.103609866






Flush




6




28626.22236




0.011014491




0.066086948






Straight




4




29184.62522




0.011229348




0.04491739






Three of a Kind




3




193489.1896




0.074448699




0.223346096






Two Pair




2




335990.6964




0.129278902




0.258557805






Jacks or Better




1




557697.9125




0.214585031




0.214585031






Bust




0




1417562.939




0.545434689




0








2598960




1




0.99543983














Unlike the previous embodiments, Draw poker has a skill element that requires decisions by the player on each hand. The game is designed such that the payout percentage will be reached over the long run when the game is played optimally. Each non-optimal play lowers the expected return (although it could result in a higher short term result). Each of the 2,598,960 possible hands may be played thirty-two ways by holding none, or any combination of the five initial cards dealt. Using expected value analysis of the thirty-two combinations can determine the best play for any given hand. One skilled in the art is readily able to construct the table in Table 17 by writing a computer program that performs this analysis on each of the 2,598,960 hands.




To further clarify this method, one of the possible 2,598,960 hands is examined, and in particular, the hand shown in FIG.


19


: Jack of Spades, 10 of Hearts, 9 of Diamonds, 8 of Clubs and 4 of Hearts. To find the best way to play a hand, one computes the expected value of each of the thirty-two ways to play the hand. Here, two of the thirty-two ways to hold the hand of

FIG. 19

are analyzed. In one case, the Jack-10-9-8 four card straight is held. The second case will be holding just the Jack of Spades.




Table 18 shows the expected return for holding the Jack-10-9-8 four card straight. The first two columns show all possible rankings and their pay value. The third column shows the number of occurrences of each of these possible ranks when drawing to this exact situation (i.e., given the initial five cards, the cards that were held and the suits and rank of the remaining forty-seven cards). The computation of this third column may be exhaustively determined by analyzing each possible resulting hand, but is usually done by an analysis of the combinations of the held and remaining cards, which may be computed more quickly. In this example of drawing one card, it is easy to see that any of the four outstanding Queens or 7's result in eight possible straights, and the three outstanding Jacks would result in a pair of Jacks. All other draw cards would result in a “Bust”. The fourth column shows the “Probability” of drawing to the specified rank, which is computed by dividing the third column “Occurrences” count by the forty-seven total ways to draw this hold combination. The fifth column “EV” is the product of the “Pay” value of second column and the “Probability” value of fourth column. The sum of EV components results in a 0.744681 expected return for this play. That is, on average, this hold will yield 74.47% of the amount bet in the long run.












TABLE 18











(Expected Value of Holding Jack-10-9-8 from the

FIG. 19

Hand)















Hand Rank




Pay




Occurrences




Probability




EV


















Royal Flush




800




0




0




0






Straight Flush




50




0




0




0






Four of a Kind




25




0




0




0






Full House




9




0




0




0






Flush




6




0




0




0






Straight




4




8




0.17021277




0.680851






Three of a Kind




3




0




0




0






Two Pair




2




0




0




0






Jacks or Better




1




3




0.06382979




0.06383






Bust




0




36




0.76595745




0








47




1




0.744681














Table 19 shows a similar analysis for the case where just the Jack is held from the same hand shown in FIG.


19


. The “Occurrences” column now, involves 178,365 different resulting hands when only 1 card is held. This number of combinations is “47 choose 4” which is stated by the formula:








47
!



4
!

*


(

47
-
4

)

!



=

178
,
365











This specifies the number of combinations of forty-seven cards taken four cards at a time. As stated above, these “Occurrences” are found by a well known/readily obtained computer program that either exhaustively analyzes each of the 178,365 draw combinations in conjunction with the Jack of Spades, or by an analysis of the combinations of the held and remaining cards. The expected return of holding the Jack of Spades is computed in Table 19 in a manner similar to that used in Table 18, resulting in a 47.93% expected return in the long run. Analyzing the other thirty ways to play this hand results in an even lower expected return than the “Jack Hold” of Table 19. Therefore, the best play for this particular hand is to hold the four card Straight analyzed in Table 18.












TABLE 19











(Expected Value of Holding Only the Jack in

FIG. 19

Hand)















Hand Rank




Pay




Occurrences




Probability




EV


















Royal Flush




800




1




5.60648E-06




0.004485






Straight Flush




50




3




1.68194E-05




0.000841






Four of a Kind




25




52




0.000291537




0.007288






Full House




9




288




0.001614667




0.014532






Flush




6




491




0.002752782




0.016517






Straight




4




548




0.003072352




0.012289






Three of a Kind




3




4102




0.022997785




0.068993






Two Pair




2




8874




0.049751913




0.099504






Jacks or Better




1




45456




0.254848205




0.254848






Bust




0




118550




0.664648333




0








178365




1




0.479298














The analysis program that iterates over each of the 2,598,960 hands finds the best of the thirty-two possible holds, and keeps a running sum of the expected return for these optimal holds (for the sample hand of

FIG. 19

, 0.744681 would be added to this sum). The sum of all optimal hold expected returns is then divided by 2,598,960 to determine the expected return for the game. The fifth column of Table 17 shows this result of 0.99543983 along with the contribution from each type of hand.




Part II—Modification of Analysis for Multi-Strike Game




In playing a multi-stage Draw Poker game of the present invention, the optimal hold is no longer necessarily the hold that will provide the highest expected return for the current hand, but is rather the hold that will provide the highest expected return on the remainder of the multi-stage game (including the current hand). As with standard Draw poker, the expected return of thirty-two hold combinations must be examined. The expected return of any hold combination now has two components. The first component is the expected return of the current hand (which is the expected return as calculated in Table 18, times the current stage multiplier). The second component is the expected return of the remainder of the game given that hold combination. The second component is the product of the “Probability” of any win on the current stage (for the current hold combination) and the expected return of remaining stages. This sum may be represented as:















EQUATION 1






EV


ch


= (EV


std


* MULT


stage


) + (HR


ch


* EV


remain


); where

























EV


ch






=




Expected Value of current hold;






EV


std






=




Expected Value using standard analysis such as done in








Table 18;






MULT


stage






=




Stage Multiplier, which is a constant for each stage;






HR


ch






=




“Hit rate” (probability of any win) of current hold








combination; and






EV


remain






=




Combined expected return of all stages above the








current level that have received a bet, which is a








constant for each stage.














Simply stated, the second component is the value of “staying alive” by getting any win. For certain hands at certain stages, it will be advantageous to hold a combination with a lower EV


std


due to its higher HR


ch


.




The EV


remain


component drives an analysis of the game from the “top down.” That is, for games with four stages bet, the analysis is done for the fourth stage, then using the result from the fourth stage to set the EV


remain


value, the analysis may be done for the third stage and so on. For each stage, EV


remain


is a constant value determined from the analysis of the stage above it.




For the fourth stage, the second component of the Equation 1 sum drops out, because EV


remain


is zero since there are no subsequent stages. This means that the EV


ch


for any given hold is eight times EV


std


, which means that standard 9-6 strategy is optimal, and will provide a return of 0.99543983*8=7.96351864.




Before looking at the third stage analysis, it is important to understand the effect of the “Free Ride” feature. For the examples given here, a “Free Ride” rate of seventy-three per one thousand hands is used, or 7.3%. This value was carefully selected to arrive at a total “hit rate” (natural plus “Free Ride”) of slightly over 50%, as will be shown later. Those skilled in the art will see that this rate may be increased or decreased as desired to affect the “hit rate” and expected return. The “Free Ride” is randomly selected for 7.3% of the hands when there is a bet on a higher hand. On hands that receive a “Free Ride” card, the second component of the Equation 1 sum becomes a constant, since HR


ch


is 1.0 for all holds (i.e., one will “hit” or advance to the next level 100% of the time regardless of the hold combination). This means that the best hold combination for hands that have been given a “Free Ride” will match the standard strategy.




To analyze the first three stages, one looks at each of the 2,598,960 possible initial five card hands. For each hand, the thirty-two possible hold combinations will need to be analyzed to determine the best EV


ch


hold using Equation 1 and the best standard play hold using the method of Table 18 (EV


std


). For many hands, the same hold will yield the highest EV


ch


and the highest EV


std


. The expected return for a given initial hand is now given by Equation 2:















EQUATION 2






EV


123


= (FR


off


* EV


chbest


) + (FR


on


* ((EV


stdbest


*






MULT


stage


) + (1.0 * EV


remain


))); where

























EV


123






=




Expected return for a given initial hand on Levels 1, 2 or








3;






FR


off






=




Probability of not receiving “Free Ride” (.927 for this








example);






EV


chbest






=




EV


ch


from hold that yields highest value in Equation 1;






FR


on






=




Probability of receiving “Free Ride” (.073 for this








example);






EV


stdbest






=




EV of best hold combination using standard (Table 18)








analysis;






MULT


stage






=




Stage Multiplier, which is a constant for each stage; and






EV


remain






=




Combined expected return of all stages above the current








level that have received a bet, which is a constant for








each stage.














The first component of Equation 2 represents the hands that do not receive a “Free Ride.” The “No Free Ride” probability of 0.927 is used to weight the expected return that is computed using the formula of Equation 1. The second component represents the hands that receive a “Free Ride. The “Free Ride” probability of 0.073 is used to weight the return that will result by using the standard 9-6 strategy when a “Free Ride” is awarded on this hand.




For Levels one through three, the expected return is computed by adding the EV


123


values for each of the 2,598,960 possible starting hands and dividing by 2,598,960. This expected return has the return of levels above it embedded within its value.




It is helpful to look at how EV


chbest


is found for a particular hand. For the hand shown in

FIG. 19

, we now use the data from Table 18 and Table 19 to compare the Ev


ch


for the hold of the four card Straight vs. holding the Jack on the third stage. To do this we use Equation 1:








EV




ch


=(


EV




std




*MULT




stage


)+(


HR




ch




*EV




remain


)  [EQUATION 1]






Taking the Hit Rate (HR


ch


) for holding Jack-10-9-8=1−(36/47)=0.234043 (from Table 18):






Hold Jack-10-9-8


: EV




ch


=(0.744681*4)+(0.234043*7.96351864)=4.84253.






The Hit Rate (HR


ch


) for Holding Jack=1−(118550/178365)=0.335352 (from Table 19).






Hold Jack:


EV




ch


=(0.479298*4)+(0.335352*7.96351864)=4.58777.






The EV


ch


for the other thirty hold combinations is lower than for holding just the Jack, therefore, EV


chbest


=4.84253 resulting from holding the four card Straight. From Table 18 and Table 19 it can be seen that EV


stdbest


=0.744681 for this hand (also hold the straight). Therefore, the expected return on the third stage of this initial five-card hand is:








EV




123


=(


FR




off




*EV




chbest


)+(


FR




on


*((


EV




stdbest




*MULT




stage


)+(1.0


* EV




remain


)))   [using EQUATION 2]










EV




123


=(0.927*4.84253)+(0.073*((0.744681*4)+(1.0*7.96351864)))=5.287809






The sum of all of the EV


123


values divided by 2,598,960 for the third stage results in an expected return of 7.95080267. This is the number of coins expected to be won in the remainder of any game that reaches the third stage (i.e. return of third and fourth stages combined).




The second stage is analyzed identically as the third stage, however EV


remain


is now 7.95080267 and MULT


stage


is now 2. Looking at the hand of

FIG. 19

, one now has the following calculations:




 Hold Jack-10-9-8


: EV




ch


=(0.744681*2)+(0.234043*7.95080267)=3.3501917






Hold Jack:


EV




ch


=(0.479298*2)+(0.335352*7.95080267)=3.6249136






When the hand of

FIG. 19

is analyzed on the second stage, it is now better to hold just the Jack rather than Jack-10-9-8, therefore EV


chbest


is 3.6249136. The EV


stdbest


is still 0.744681 as Jack-10-9-8 is the best standard play on any stage of the game. The expected return of this hand on the second level (including the expected return of levels three and four) EV


123


for this hand is computed as:








EV




123


=(0.927*3.624914)+(0.073*((0.744681*2)+(1.0*7.95080267)))=4.049427






A computer program known to those of skill in the art is used to find that the sum of all of the EV


123


values divided by 2,598,960 for the second stage results in an expected return of 5.96916633. This is the number of coins a player is expected to win in the remainder of any game that reaches the second stage (i.e. return of second third, and fourth stages combined).




The first stage is analyzed identically as the second and third stages, however EV


remain


is now 5.96916633 and MULT


stage


is now 1. Looking at the hand of

FIG. 19

, we now have the following calculations:






Hold Jack-10-9-8


: EV




ch


=(0.744681*1)+(0.234043*5.96916633)=2.141723








Hold Jack:


EV




ch


=(0.479298*1)+(0.335352*5.96916633)=2.481070






When the hand of

FIG. 19

is analyzed on the first stage, it is again better to hold just the Jack rather than Jack-10-9-8, therefore EV


chbest


is 2.481070. The EV


stdbest


is still 0.744681 as Jack-10-9-8 is the best standard play on any stage of the game. The expected return of this hand on the first level (including the expected return of levels two, three and four) EV


123


for this hand is computed as:








EV




123


=(0.927*2.481070)+(0.073*((0.744681*1)+(1.0*5.96916633)))=2.790063






The sum of all of the EV


123


values divided by 2,598,960 for the first stage results in an expected return of 3.995391. This is the number of coins a player is expected to win in a four stage game for which a four coin bet is made. Dividing this value by the four coin bet results in an expected return of 0.998848 or 99.88%. By setting the “Free Ride” percentage at 7.3% for the four stage game, the expected return of 99.54% of this standard game was increased to 99.88% to give a player an incentive to learn the modified optimal play strategy dictated by the EV


ch


analysis.




In order to determine the actual amount paid out on each level as well as the independent return of coins bet on that level, it is useful to maintain several running sums while working through each of the 2,598,960 possible hands. The following equation is calculated for each hand, and a sum of these values is maintained:








EV




playedhand


=(


FR




off




*EVSTD




chbest


)+(


FR




on




*EV




stdbest


)  EQUATION 3






EV


stdbest


=EV of best hold combination using standard (Table 18) analysis




EVSTD


chbest


=Standard (Table 18) analysis EV of best hold for maximizing Equation 1.




For each hand, if there is no “Free Ride”, it will be held to maximize EV


ch


using Equation 1. The FR


off


value is used to weight the standard (Table 18 method) EV of this best hold (called EVSTD


chbest


)). If there is a “Free Ride”, then the optimal play is to hold the combination that gives the highest standard EV. The FR


on


is used to weight this value. For the example hand of

FIG. 19

, on the first stage or second stage, this would give the following equation:








EV




playedhand


=(


FR




off




*EVSTD




chbest


)+(


FR




on




*EV




stdbest


)  [using EQUATION 3]










EV




playedhand


=(0.927*0.479298)+(0.073*0.744681)=0.498671






The EVSTD


chbest


and EV


stdbest


values come from Table 19 and Table 18, respectively.




For each stage, for each of the 2,598,960 hands, these EV


playedhand


components are added together and the sum is divided by 2,598,960. This indicates the payout of hands played on that level. These values are shown in the second column of Table 20.




In a manner similar to Equation 3, the HR


ch


hit rate components are weighted and added to result in the hit rate shown in the third column of Table 20. The fourth column of Table 20 shows the probability of playing a hand on a given level, which is 1.0 on the first level, and for the other levels, is the product of the third and fourth columns of the level below. The fifth column shows the stage multiplier for the given level. The sixth column is the actual return for a particular level, which is the product of the second, fourth and fifth columns. The seventh column is expected return for the rest of a game that has reached the current stage. For the fourth stage, this is the product of the second column (return) and fifth column (multiplier). For the lower levels, it is the product of the second and fifth columns (which represents the Expected Pay for playing the current level) plus the third column (hit rate on current level) times the seventh column of the next higher level. This seventh column value is the same as the sum of the EV


123


values previously discussed.


















TABLE 20










Payout of












Hands played







Return for







on this




Hit Rate




Probability of





Bets on this






Level




Level




of Level




Playing Level




Multiplier




Level




EV


remain













4




0.99543983




0.45456531




0.128598042




8




1.024092903




7.96351864






3




0.99142626




0.5004192




0.256980631




4




1.019109383




7.950802667






2




0.97183568




0.50630045




0.50756548




2




0.986540487




5.969166328






1




0.96564822




0.50756548




1




1




0.96564822




3.995390993











0.998847748














It is easily seen in Table 20 that on lower levels some of the column


2


return is sacrificed to increase the column


3


hit rate to allow more frequent play of the lucrative upper levels as seen in column


6


.




Finally, when only two or three stages are bet, the analysis must be done again from the beginning, starting with the top stage and working down. The results for two or three stages are not inferable from the Table 20 data, but need to be developed independently.




It should be clear that a single stage game (i.e., a bet on only the first level) is no different than the standard 9-6 Jacks or Better game.




This third embodiment of a multi-stage draw poker gaming machine is operationally summarized in the flow charts of

FIGS. 27A-27F

.

FIG. 27A

generally describes the start-up of the Multi-Strike Five-Card Draw Poker game embodiment, which is initially quite similar to that of the first (slots) embodiment. First, an assessment of whether credit(s) are present is undertaken beginning at step


270


. If none is present, then a check is made as to whether the player has inserted the relevant coin, credit card, etc., for the necessary credit(s) at step


271


. If so, then at step


272


the credit(s) are registered and displayed at the “Total Credits” meter


77


(e.g., FIG.


17


). All available player buttons are then activated for initiation of play at


275


.




At this stage, the player enters a set-up loop where the player may choose to add more credits or proceed with play at step


276


. If credits are added, these are registered on the meter display


77


at step


277


. The cards displayed from a previous hand, along with any stage total(s) and subtotal(s) reflected in the payout information window(s), and “Total Won” meter


85


are all cleared for the new game (step


278


). The program loops back to step


276


.




The “Coins per Hand” button


67


can alternatively be engaged from step


276


, causing the coins-per-hand setting to be modified (as indicated at meter


64


, FIG.


17


), as well as updating the value of the “Total Bet” window


68


, as indicated at step


279


. Once again, the program loops back to step


276


through steps


278


and


275


.




Back at step


276


, the player then can choose the “Select Number of Hands” button


66


to input this aspect of his or her wager. This likewise causes the “Total Bet” to be so modified, as well as displaying the number of hands bet at meter


63


, all as indicated at step


280


. Graphics are also updated at step


281


to highlight the hands which are now “active” (i.e., potentially playable). Steps


278


and


275


then follow in the loop back to step


276


.




Once the player has input the parameters of the wager, then the “Deal Draw” button


70


is engaged. It should be noted that the foregoing selection sequence as to coins and hands to bet need not follow the order indicated.




The player has the option of skipping all of the hands and coins per hand selections, through resort to the “Max Bet Deal” button


76


. A subroutine will then execute at step


285


to assess the total credits the player has provided, and then determine the maximum number of coins per hand and the maximum number of hands (per an embedded look-up table) which can be played for that credit quantity, up to a fixed maximum for the game. The graphics are updated accordingly at steps


286


and


287


to show the hands being bet, coins-per-hand and total bet (as at steps


279


and


280


). Steps


288


and


289


then follow, and are the same as steps


281


and


278


, respectively.




From either the actuation of the “Deal Draw” button


70


or the “Max Bet Deal button


76


, the selection buttons for player input are then deactivated and the amount bet is subtracted at step


291


, with the remaining credits updated on the “Total Credits” meter


77


. The main game play sequence is then begun (step


292


).




The program randomly “shuffles” the deck to establish a playing order for the fifty-two regular playing cards (used in this version) at step


293


(FIG.


27


B). A determination is made as to whether the second stage/level/hand is “active” (bet upon) at step


295


. If it is not, the program proceeds to step


300


described below. If it is, then a subroutine is engaged for a “Free Ride” card (this version including this added feature). Beginning at step


296


, a random selection process (discussed above) determines whether the “Free Ride” is available or not. If it is, then the “Free Ride” card is caused to be registered in one of the first five positions representing the order of the cards in the shuffled deck for the cards of the first hand (step


297


), and the “Free Ride” feature will be available (as described hereafter). If it is not, then no “Free Ride” card is displayed, and the “Free Ride” feature is not available.




From either step


296


or


297


, the program then “deals” (step


300


) the cards for the hand, displaying the cards graphically in the five spaces allotted in the first hand


71


. A check is made in the course of the foregoing deal to determine if one of the dealt cards is a “Free Ride” card at step


301


. If it is (i.e., the “Free Ride” feature is available), then the “Free Ride” card is caused to be displayed in the space corresponding to its placement in the order, as indicated at step


302


. Whereupon there is an audio cue also provided, and much rejoicing is heard throughout the land (step


303


). After a suitable interval, the “Free Ride” card is caused to be replaced by the next regular playing card in the deck order (step


304


), and a “Free Ride” icon is displayed next to the level (as seen at


91


in FIG.


25


).




From step


304


, or step


301


if no “Free Ride” is detected, the program then performs an evaluation of the dealt hand (step


308


) to determine if a winning hand is presented, using the paytable hierarchy discussed with regard to

FIG. 18

, or more simply, is a pair of “Jacks or Better” presented (step


309


)? If a winning hand is presented, then from step


309


a message is graphically displayed indicating the hand “rank” along with an audio sound acknowledging to the player that a winner is already in hand (with or without rejoicing, as desired, rejoicing being player dependent), as set forth in step


310


. From either step


309


or


310


, the program then advances to step


315


.




Step


315


provides multiple options to the player at this juncture. The player may choose to add more credits, for example, which if elected results in an update to the “Total Credits” meter


77


at step


314


, then looping back to step


315


.




The player can also choose which cards to hold/discard at this point. A card that is to be held is selected (step


316


) and then tagged as “held” (step


317


) (e.g., see FIG.


19


and related discussion). Cards previously selected for being held can likewise be de-selected (step


318


). From either step


317


or


318


, the process loops back to step


315


.




When the player has exercised whatever of the foregoing options are desired, if any, from step


315


, the “Deal/Draw” button


70


is again actuated. This results in the removal from the graphic display of any card not designated as “held” (step


320


). Each card removed is replaced with the next card in the deck order, as indicated at step


321


. A re-evaluation of the hand now presented takes place at steps


322


and


325


, similar to that of steps


308


and


309


. If a winning hand is presented (again with reference to the paytable of FIG.


18


), the type of winner is identified (e.g., “Three Of A Kind,”) graphically for the player in the payout information window


84


, along with the number of coins/credits won as a sub-total, all as indicated in step


326


. That sub-total is increased by the stage multiplier (which in the case of the first level, is 1×) and displayed as a “total” for the first hand, at step


327


. From here, the first hand total is added to the “Total Won” meter amount at


85


(e.g.,

FIG. 20

) (step


328


).




If a winning hand is not presented at step


325


, then a check is made as to whether the “Free Ride” icon is registered for the level at step


329


. If it is, a message is displayed in payout information window


84


that the “Free Ride” feature is being employed to advance to the next stage/level/hand (step


330


). If the “Free Ride” is not registered, then the game is over, and progresses to a “Game Over” sequence


331


.




Out of steps


328


or


330


, the program determines if the second stage/level/hand is “active,” i.e., bet upon (step


332


). If it is not, the player is sent to the “Game Over” sequence (step


331


). If it is active, however, then it is on to the next level.




Referring to

FIG. 27C

, play and operation continue substantially similar to that described with respect to that of the first level. A “new” deck is “shuffled,” (step


333


). As in the first level, a determination is then made as to whether the third stage/level/hand is “active” (bet upon) at step


335


. Steps


335


through


337


,


340


through


344


and


348


through


350


are the same as their respective counterpart steps (


295


et seq.) discussed with regard to the play of the first hand, albeit now in view of second level play.




From step


349


or step


350


, a “draw” sequence is again executed as described with respect to the first hand, beginning at step


355


. This includes the option of adding more credits (update of credit meter at step


354


), and the selection of cards to be “held” via steps


356


through


358


(corresponding to steps


316


through


318


, respectively, described above). Once card selection is completed at step


355


, previously described steps


320


through


322


, and


325


through


332


are repeated, but for this second stage/level/hand, through respective steps


360


through


362


, and


365


through


372


. At this point, either the game is over, and the player is routed to the “Game Over” sequence (step


371


), or the player advances to another hand that has been bet upon, and play advances to the third stage/level/hand out of step


372


, shown in FIG.


27


D.




Referring now to

FIG. 27D

(and, e.g., FIG.


21


), play continues for the third hand in the same manner as that described for the first and second hands, albeit now in view of third level play. Accordingly, and for ease of description, steps described as to the first level are related to their corresponding steps in the third level by grouping the respective steps as follows:


293


/


373


,


295


-


297


/


375


-


377


,


300


-


304


/


380


-


384


,


308


-


310


/


388


-


390


,


314


-


318


/


394


-


398


,


320


-


322


/


400


-


402


,


325


-


332


/


405


-


412


. At this point, either the game is over, and the player is routed to the “Game Over” sequence (step


411


), or the player advances to another hand that has been bet upon, and play advances to the fourth stage/level/hand out of step


412


, shown in FIG.


27


E.




Play of the fourth hand is similar to that described above, except that no “Free Ride” is available (this being the last hand in this particular embodiment of the game). Accordingly (and using the same convention for grouping like steps of the first and fourth levels for ease of description), cards are “shuffled” at step


413


/


293


, dealt at step


420


/


300


, and the hand is evaluated at step


428


/


308


. If a winning hand is present (step


429


/


309


), then a message is displayed at step


430


/


310


.




Beginning with step


435


, a “draw” sequence is again executed as described with respect to the first hand. In this fourth level, steps described for the first level draw sequence correspond to their fourth level counterparts as follows:


314


-


318


/


434


-


438


,


320


-


322


/


440


-


442


, and


325


-


328


/


445


-


448


. Since there is no fifth level, the game proceeds to the “Game Over” sequence out of step


448


or step


445


at step


451


.




The “Game Over” sequence is set forth in

FIG. 27F. A

“GAME OVER” message is displayed by the graphics (step


452


). The “Total Won” amount (meter


85


in

FIG. 20

) is checked, and if greater than zero (step


453


), the credit(s) amassed as represented on the meter


85


are added to the “Total Credits” meter


87


at step


454


. The player, and the game, are both returned to the game start up sequence out of step


453


(if nothing won) or step


454


.




Bunco




Bunco, sometimes called Bunko, Bonko or Bonco, is a dice game that dates back to the mid 1800's in the United States. While there are many variations that are currently played, what follows is what appear to be very popular rules of the game.




Bunco is typically played in groups of eight to twenty players, usually women and occasionally couples as a social event. A group typically meets once a month, and plays at multiple tables of four players. Players seated across from each other are partners although it is typical to change partners for each game played. Each table has three dice that are passed around from player to player.




The game is played in “rounds”. The first round starts with all tables rolling for a “point” of one. The dice move clockwise to each person at the table who gets to roll the dice. A team scores one point for each die that matches the current point (one in this case). Each time one or more dice match the current point, the player's team scores and the player continues to roll. If the player gets all three dice to match on a number other than the current point then that team scores five points and the player continues to roll. If the player gets all three dice to match the current point they yell out “Bunco” and the team is awarded twenty-one points.




Once a player rolls the dice showing no points, the turn ends. Each round continues with the dice going from player to player around the table. The game ends when a player at the first or head table reaches twenty-one points, which is usually indicated by ringing a hand-bell to signal all the tables that the round is over. At this point the players change partners and rotate through the tables based on the winners and losers, and the next game would play with a “point” of two.




This fourth embodiment of the current invention consists of a dice game that is loosely based on an individual player's turn during a round of Bunco. While this game may be played in a casino with live dealers (as is done with the casino game of Craps) or on a gaming machine that propels real physical dice, the preferred embodiment is on a video gaming machine.




Unlike the version of Bunco described above, in this fourth embodiment there may be up to three points which the player is trying to roll. Instead of being a single number, any number that has been rolled on every stage of the current game is an active point. On the first roll, each number that appears on a die becomes a point, for a possible total of three points if all three dice are different (that is, all six possible numbers are points for the first roll). On the second roll, the player must roll one or more points matching the first roll to keep the game going. Any numbers that were rolled on both the first and second rolls remain points for the third roll. The player continues to roll until no dice match a number found in all previous rolls, or until the highest stage upon which a bet has been placed is rolled.





FIG. 28

shows a display of this fourth embodiment. A maximum of seven stages or rolls of the dice per game is provided. The game may allow more or fewer stages without departing from the invention. Each stage (level) of the game represents a roll of the dice as described above. The player may place a bet on from one to seven stages or lines. The player may bet from one to five coins per stage in this version. Of course, it is anticipated that different numbers of coins per stage could be allowed. Also, the player could be allowed to place bets on different stages at random, rather than from the bottom up. For that matter, the player could be allowed to make different size wagers on different stages at will, without departing from the invention.




Referring to

FIG. 28

, the “Select Lines” button


100


is pressed to select from one to seven stages to bet on. The “Coins per Line” button


101


is pressed to indicate the number of coins to bet on each line. The player then presses the “Roll Dice” button


102


to roll the dice for the first stage.





FIG. 29

shows a game in progress after the first roll. This roll of 3-4-6 is placed in the first stage area


105


next to the applicable line of the paytable


106


for that stage (0,0,0,32). For each stage there are four paytable values. These values are for rolling one, two or three points or for rolling “Bunco,” which is achieved when all three dice match one number which is an active point. Only the highest value is paid at each stage, so a “Bunco” does not also pay for three points matched. For the first roll (with all six numbers active) any combination of three matching dice is a “Bunco.” Scoring a “Bunco” is the only way to win the first level bet, although in this game the player automatically advances to the second stage. It is envisioned that other embodiments could set the active points in advance of the first roll which would then require a match on the first roll to continue. A first stage “Bunco” awards thirty-two coins. The machine highlights the appropriate paytable value in the “3 points matched” column for this roll and shows the remaining points under the first stage line (


107


).




The player presses the “Roll Dice” button


102


for the second stage, and a possible result is shown in FIG.


30


. The roll of 1-4-6 matches two of the three points that were established in the first roll. Thus, the points “4” and “6” remain “alive,” i.e., in play (


107


). The point of “3” from the first roll is no longer alive because it does not appear in the second roll. The three dice are placed on the second stage line


108


next to the applicable paytable


106


values for that stage. The game highlights the “2 points matched” value in the paytable indicating that one coin is awarded for matching two points on the second stage. The “Total So Far” meter


110


is updated to show the total of one coin won at this point (zero coins on the first stage and one coin on the second stage). The window


107


under the first stage now shows that only the “4” and the “6” remain as active points.




The player presses the “Roll Dice” button


102


for the third stage and a possible result is shown in FIG.


31


. The roll of 1-1-6 matches one of the two points that were alive after the second roll. Thus, only the point “6” remains alive (


107


). The point of “4” from the first two rolls is no longer alive because it does not appear in the third roll. The three dice are placed on the third stage line


112


next to the paytable values for that stage. The game highlights the “1 point matched” value in the paytable indicating that two coins are awarded for matching one point on the third stage. The “Total So Far” meter


110


is updated to show the total of three coins won at this point (zero coins on the first stage, one coin on the second stage and two coins on the third stage). The window


107


under the first stage now shows that only the “6” remains as an active point.




The player presses the “Roll Dice” button


102


for the fourth stage and a possible result is shown in FIG.


32


. The roll of 1-4-5 does not match the point of “6,” which was the only point left alive. While “4” was an active point after the first two rolls, the absence of a “4” on the third roll took it out of play as a point, and thus was of no value in the fourth roll. As a result of matching no points the game is over. The “Total So Far” meter


110


value of three coins is copied to the “Paid” window


114


, and this is added to the credits counter


115


taking it from an arbitrary“865” to “868” credits.




It should be noted that in the example shown, the bets for levels above the fourth level were lost without those levels being played. As is intuitive and will be shown in the following analysis, the higher the level, the less often it will be played. This is offset by offering the player very large awards for very modest events on these higher levels when they are played.




It should also be noted that while the slot machine and poker embodiments previously discussed have stages that are independent games that allow advancing to the next stage upon winning, this fourth Bunco embodiment is an ongoing game with stages that, as a result of the nature of the game, also involve multi-stage betting working with an evolving game. This game is not limited to advancing to the next stage only with a win, since the game will always play the second stage if two or more stages have been bet upon, even though, except for a first stage “Bunco”, the player will not win on the first stage.





FIG. 33

shows another Bunco game at its conclusion. The first roll of 1-5-5 established only two points as a result of the duplicate 5's. The second roll of 1-3-3 kept only the point of “1” alive. The third roll of 1-1-1 is “Bunco” scoring fourteen coins. The fourth roll of 3-4-6 does not match the point of “1”, and thus ends the game. A total of fifteen coins were won on this game (one for matching one point on the second stage and fourteen for “Bunco” on the third stage).




Looking at

FIG. 33

, the “Max Bet/Roll Dice” button


116


is also seen. This button


116


establishes the maximum bet, which in this embodiment is thirty-five coins, (seven stages times five coins per stage) and then rolls the dice for the first stage. Pressing this button


116


is the same as pressing the “Select Lines” button


100


until seven lines are selected, and then pressing the “Coins per Line” button


101


until five coins per line are selected, and then finally pressing the “Roll Dice” button


102


to roll the dice for the first stage.




Shown in the upper right section of

FIG. 33

are the bonuses for games that achieve two “Buncos” and three “Buncos”: “75” coins and “2500” coins respectively. These bonuses add excitement to the game, as well as the opportunity to win a more sizable award than is available from the seven stages of the game.




The foregoing Bunco gaming machine is operationally summarized in the flow charts of

FIGS. 34A through 34D

.

FIG. 34A

generally describes the start-up of the Multi-Strike BUNCO game embodiment, which is initially quite similar to that of the first (slots) embodiment. First, an assessment of whether credit(s) are present is undertaken beginning at step


460


. If none is present, then a check is made as to whether the player has inserted the relevant coin, credit card, etc., for the necessary credit(s) at step


461


. If so, then at step


462


the credit(s) are registered and displayed at the “Credits” meter


115


(e.g., FIG.


28


). All available player buttons are then activated for initiation of play at


465


.




At this stage, the player enters a set-up loop where the player may choose to add more credits or proceed with play at step


466


. If credits are added, these are registered on the meter display (


115


) at step


468


. The program loops back to step


466


.




The “Coins per Line” button


101


can alternatively be engaged from step


466


, causing the coins-per-line setting to be modified (as indicated at meter


103


, FIG.


28


), as well as updating the value of the “Total Bet” window


104


, and the paytable information window


106


, all as indicated at step


469


. Once again, the program loops back to step


466


.




Back at step


466


, the player can choose the “Select Lines” button


100


to input this aspect of his or her wager. Graphics are updated at step


470


to highlight the lines which are now “active” (i.e., potentially playable). This likewise causes the lines bet meter


111


and “Total Bet”


104


to be so modified, all as indicated at step


472


. The program once again loops back to step


466


.




Once the player has input the parameters of the wager, then the “Roll Dice” button


102


is engaged. It should be noted that the foregoing selection sequence as to coins and lines to bet need not follow the order indicated.




The player has the option of skipping all of the lines and coins-per-line selections, through resort to the “Max Bet Roll Dice” button


116


(FIG.


33


). A subroutine will then execute at step


475


to assess the total credits the player has provided, and determine the maximum number of coins per line and the maximum number of lines (per an embedded look-up table) which can be played for that credit quantity, up to a fixed maximum for the game. The graphics are updated accordingly at steps


476


and


477


to show the lines being bet, coins-per-lines and total bet (as at steps


469


,


470


and


472


). Either out of step


477


or after actuation of the “Roll Dice” button


102


, the player selection buttons are deactivated (step


478


), the sum of the wager is subtracted from the “Credits” meter


115


and the new amount is displayed. The game then progresses to a main play sequence (step


479


).




The dice are rolled at step


480


, as shown in FIG.


34


B. The program assesses whether this is the first roll of the game (step


482


). If it is the first roll, then “Match these POINTS” window


107


(e.g., see

FIG. 29

) is activated at step


483


, and a determination is made as to how many different numbers are presented by the rolled dice (step


484


). The different “Points” are then displayed in the window


107


, depending on whether there are one, two or three different numbers (steps


485




a


through


485




c


). The graphics of the program generates copies of the dice rolled, with a color hue to indicate a “Point Made” at step


488


, and the dice are displayed in the current stage/level/roll (step


489


), which here is the first level


105


.




If this is not the first roll of the game (step


482


), then copies of the dice just rolled are generated at step


490


. The program executes a comparison of the numbers (dice) in the window


107


(which are the Points to match), with the dice just rolled at step


491


. If there is a match, the graphics of the program colors a copy (or copies) of the matching die rolled with a hue to indicate a “Point Made” at step


492


. For each match not made, the die (dice) is colored with a hue to indicate that no match/Point was made (step


493


), and the dice are displayed as so hued in the current stage/level/roll (step


489


).




From step


489


, another comparison is then made at step


495


between the current roll and the Point(s) to be matched/made. Each Point in the window


107


is assessed as to a match on a die (number) of the current roll at step


496


. If at step


496


there is no match for a Point, it is removed from the game and the graphics of window


107


are updated accordingly, at step


498


. The program then assesses whether there is any Point remaining (step


497


), and the game proceeds to a “Bunco” determination if the answer to the foregoing is positive. If there are no Points remaining (window


107


), the player is passed to a “Game Over” sequence at step


500


.




The “Bunco” assessment is set forth in FIG.


34


C. The program first assesses whether a “Bunco” has been rolled at step


501


. If the evaluation is positive, then the graphics highlight the “BUNCO” pay (see, e.g.,


113


in

FIG. 33

) for the current level (step


502


). That “BUNCO” pay amount is added to the “Total So Far” meter


110


at step


503


.




The program then determines whether two “Bunco's” had previously been rolled in the same game at step


506


. If “yes,” then the “Triple BUNCO BONUS” is highlighted on the screen (step


507


), and the predetermined amount for that bonus is added to the “Total So Far” meter


110


at step


508


.




If two “Bunco's” have not been registered at step


506


, the program makes a determination as to whether one “Bunco” had previously been scored at step


510


. If “yes,” then the “Double BUNCO BONUS” is highlighted on the screen (step


512


), and the predetermined amount for that bonus is added to the “Total So Far” meter


110


at step


513


.




Back at step


501


, if a “Bunco” has not been rolled, then a count is made of the number of rolled dice that match any of the remaining Points in the window


107


(step


515


). That count is used to highlight the appropriate pay for that level for that number of points in the paytable information window as indicated at step


516


. That amount is added to the meter


110


at step


517


.




Out of either step


508


,


513


or


517


, the player then advances to step


520


, which is a program assessment as to whether all lines that have been bet on have been played. If all have been played, then the game is over and the “Game Over” sequence is engaged out of step


521


.




If all possible lines have not been played, then the player is given the option of adding more credits and/or continuing through actuation of the “Roll Dice” button


102


at step


525


. If the choice is to add credits, then the “Credits” meter is so updated at step


526


, and the player is looped back to step


525


. If the choice is to roll, then another round is started (step


527


) upon actuation of the button


102


, whereupon the sequence of events beginning at step


480


recommences.




Once all lines have been played or there are no Points left in the window


107


(i.e., no match at a level), then the “Game Over” sequence of

FIG. 34D

is engaged. A “GAME OVER” message is displayed at step


530


, and a determination is made as to whether the “Total So Far” meter


110


shows any credits (i.e., any winnings for the game) at step


531


. Any winnings as shown in meter


110


are then added to the total “Credits” meter


115


(step


532


), and the player and the program are returned to the game start sequence at step


460


.




Analysis of Certain Architecture of the Bunco Embodiment




The mathematical payout percentage of this fourth embodiment is determined by breaking down the different possible combinations for each of the seven stages. This will be done for one coin per line only, as it is well known by those skilled in the art how to expand this result for multiple coins per line, as well as the inclusion of bonus values, if desired. The first stage is fairly easy to analyze. There are three possible types of outcome of the first roll: “Bunco” (equivalent to one point established), two points established or three points established. There are two hundred and sixteen possible combinations of three dice computed by multiplying the possible combinations of each die: 6×6×6=216. The number of occurrences of “Bunco” or three dice that match are six. This is computed as 6×1×1 because the first die can take any of the six numbers, then the second die must match that number and the third die must also match that number. Three points are established when all three of the dice have a different number showing, and is computed by 6×5×4=120 because the first die can take on any value while the second die can take on any of the five remaining values that don't match the first die, and the third die can then take on any of the remaining values that don't match the first two dice.




This leaves ninety occurrences of a combination that results in two points (216-6-120=90). The ninety occurrences of two points can also be computed directly as follows: There are three forms that a roll resulting in two points may take: XYX, XXY or YXX. The combinations for these are as follows:




XYX=6×5×1=30 First can be any, second must not match first, third must match first.




XXY=6×1×5=30 First can be any, second must match first, third must not match first.




YXX=5×6×1=30 First can be any but X, second can be any, third must match second.




Table 21 organizes the data described above. The first column indicates the number of points established by the first roll. The second column shows the value paid for that result. The third column shows the “Occurrences” of that result which was determined above. The fourth column is the probability of that result, which is the occurrence count divided by 216, the number of possible outcomes. The fifth column is the Expected Value component from each pay, which is the product of the paytable value times the probability of receiving that value. The sum of all EV components is the expected return of the stage, which is 88.89%. If only stage one was played, then the expected return to the player would be 88.89%. The payout percentage may be modified by making a change to the second column “Pay” value, which would also change in the paytable. For example, changing the pay for “Bunco” (one point established) from “32” to “33” would result in a 91.67% expected return. Unlike the slot machine example, the “Occurrence” data is locked into the rules of the game, and any change to the payout will be apparent to the player. It must be done by modifying the paytable as described above, or by changing the rules of the game.
















TABLE 21









Number of Points




Pay




Occurrences




Probability




EV



























1




32




6




0.027777778




0.888889






2




0




90




0.416666667




0






3




0




120




0.555555556




0








216




1




0.888889














The second stage of the game has three separate analyses based on the number of points established in the first stage of the game. The “Occurrences” for each row in Table 22 (the fourth column) are calculated in the same manner as shown for the first stage and will not be elaborated on further. The first column of Table 22 states the number of points alive at the start of the second stage. This table has three separate analyses based on whether one, two or three points were alive at the start of the second stage.




The second column shows the combination being enumerated. The three possible points are called “A”, “B” and “C”. “x” indicates a die that matches no point. The “Comb. Column” shows the makeup of the dice for that line of the table. For example, AAA is three dice matching point “A”. The BBA is two dice matching point “B” and one die matching point “A”, and this can occur in any order. The third column indicates the amount paid for the specified combination. This is based on the second stage paytable line of 1,1,2,6 (e.g.,

FIG. 30

) awarding one coin for matching one or two points, two coins for matching three points in a non-“Bunco” combination and six coins for all three dice matching the same point (“Bunco”). The fourth column indicates the number of occurrences of the specified combination out of the possible two hundred and sixteen combinations. The fifth column is the probability of that occurrence and is the quotient of the occurrences and the two hundred and sixteen possible combinations. The sixth column is called “Probability of Start Condition”. This is the probability of starting the second stage with the number of points shown in the first column. This number is taken directly from Table 21.




The seventh column is the probability of the specified “Result” occurring, which is the product of the fifth and sixth columns. This result is due to the need for the probability of the sixth column to start the stage with the number of points specified in the first column, as well as the need for the probability of the combination, which is given in the fifth column.




The eighth column is the expected value contribution from this combination which is computed as the product of the “Pay” value times the seventh column “Probability of this Result”. The sum of all values in the eighth column provides the expected return which is 92.28%.




The ninth column is the number of points still alive after the roll. This is represented by the number of unique capitalized letters in the second column combination.




The last four columns are used to determine the probability of the number of points alive at the end of the stage. The seventh column “Probability of This Result” value is copied to the column that corresponds to the ninth column “Points Alive” number. For example, for AAA there is one point alive which results in the 0.00013 value to be copied from the seventh column to the eleventh column, which is the column that calculates the “Probability that Points Left=1”.




The bolded numbers at the bottom of the last four columns of Table 22 tally the probability of ending the second round with the number of Points specified at the head of the column. For example, of the games that play a second stage (which is all games in this embodiment), 24.31% will finish the second stage with two points active.
























TABLE 22









Points


















Alive











Points




Prob.




Prob.




Prob.




Prob.






at








Probability




Prob. Of





Alive




That




That




That




That






Round







Probability of




of Start




This





After




Points




Points




Points




Points






Start




Comb.




Pay




Occur.




Occurrence




Condition




Result




EV




Roll




Left = 0




Left = 1




Left = 2




Left = 3











1




AAA




6




1




0.00462963




0.02777778




0.000129




0.000772




1





0.00013








1




AAx




1




15




0.06944444




0.02777778




0.001929




0.001929




1





0.00193






1




Axx




1




75




0.34722222




0.02777778




0.009645




0.009645




1





0.00965






1




xxx




0




125




0.5787037




0.02777778




0.016075




0




0




0.01608









216




1






2




AAA




6




1




0.00462963




0.41666667




0.001929




0.011574




1





0.00193






2




BBB




6




1




0.00462963




0.41666667




0.001929




0.011574




1





0.00193






2




AAB




2




3




0.01388889




0.41666667




0.005787




0.011574




2






0.00579






2




BBA




2




3




0.01388889




0.41666667




0.005787




0.011574




2






0.00579






2




AAx




1




12




0.05555556




0.41666667




0.023148




0.023148




1





0.02315






2




BBx




1




12




0.05555556




0.41666667




0.023148




0.023148




1





0.02315






2




ABx




1




24




0.11111111




0.41666667




0.046296




0.046296




2






0.0463






2




Axx




1




48




0.22222222




0.41666667




0.092593




0.092593




1





0.09259






2




Bxx




1




48




0.22222222




0.41666667




0.092593




0.092593




1





0.09259






2




xxx




0




64




0.2962963




0.41666667




0.123457




0




0




0.12346









216




1






3




AAA




6




1




0.00462963




0.55555556




0.002572




0.015432




1





0.00257






3




BBB




6




1




0.00462963




0.55555556




0.002572




0.015432




1





0.00257






3




CCC




6




1




0.00462963




0.55555556




0.002572




0.015432




1





0.00257






3




AAB




2




3




0.01388889




0.55555556




0.007716




0.015432




2






0.00772






3




AAC




2




3




0.01388889




0.55555556




0.007716




0.015432




2






0.00772






3




BBA




2




3




0.01388889




0.55555556




0.007716




0.015432




2






0.00772






3




BBC




2




3




0.01388889




0.55555556




0.007716




0.015432




2






0.00772






3




CCA




2




3




0.01388889




0.55555556




0.007716




0.015432




2






0.00772






3




CCB




2




3




0.01388889




0.55555556




0.007716




0.015432




2






0.00772






3




ABC




2




6




0.02777778




0.55555556




0.015432




0.030864




3







0.01543






3




ABx




1




18




0.08333333




0.55555556




0.046296




0.046296




2






0.0463






3




ACx




1




18




0.08333333




0.55555556




0.046296




0.046296




2






0.0463






3




BCx




1




18




0.08333333




0.55555556




0.046296




0.046296




2






0.0463






3




AAx




1




9




0.04166667




0.55555556




0.023148




0.023148




1





0.02315






3




BBx




1




9




0.04166667




0.55555556




0.023148




0.023148




1





0.02315






3




CCx




1




9




0.04166667




0.55555556




0.023148




0.023148




1





0.02315






3




Axx




1




27




0.125




0.55555556




0.069444




0.069444




1





0.06944






3




Bxx




1




27




0.125




0.55555556




0.069444




0.069444




1





0.06944






3




Cxx




1




27




0.125




0.55555556




0.069444




0.069444




1





0.06944






3




xxx




0




27




0.125




0.55555556




0.069444




0




0




0.06944









216




1














EV of second Stage:




0.92284

















Prob. Of Start Cond. For Next Stage




0.20898




0.53254




0.24306




0.01543







Total of 4 probability values above







1















Table 23 provides a similar analysis for the third stage of the game. The first two columns are the same. The third column has been modified to reflect the 2-2-5-14 (e.g.,

FIG. 31

) paytable values for the third stage. The fourth column is the same as Table 22.




The fifth column uses the “Probability of Start Condition” for the specified number of points taken from the bottom of Table 22. Those numbers at the bottom of Table 22 show the probability of ending the second stage with zero, one, two or three points. The values in the rest of the columns are calculated in the same manner as was described for Table 22.




Looking at the sum of the “EV” column, it is clear that the expected return for the third stage of the game is 90.24%. The right four columns are used to compute the probability of zero, one, two or three points remain alive after the third stage. Note that the sum of these probability values does not total 1.0, but rather 0.79102. The additional component is the 0.20898 found at the bottom of Table 22 under “Probability that Points Left=0”. This represents games that ended after two stages and thus are not reflected in the stage three ending breakdown. In the same manner, the 0.3821 probability of ending the game in the third stage will not be included in the stage four ending breakdown.




The analysis for stages four through seven is done in a manner identical to stage three. The comparable tables for these stages are therefore not shown.
























TABLE 23









Points


















Alive











Points




Prob.




Prob.




Prob.




Prob.






at








Probability




Prob. Of





Alive




That




That




That




That






Round







Probability of




of Start




This





After




Points




Points




Points




Points






Start




Comb.




Pay




Occur.




Occurrence




Condition




Result




EV




Roll




Left = 0




Left = 1




Left = 2




Left = 3











1




AAA




14




1




0.00462963




0.532536




0.0024654




0.0345162




1





0.0025








1




AAx




2




15




0.06944444




0.532536




0.0369817




0.0739633




1





0.037






1




Axx




2




75




0.34722222




0.532536




0.1849083




0.3698167




1





0.1849






1




xxx




0




125




0.5787037




0.532536




0.3081806




0




0




0.3082









216




1






2




AAA




14




1




0.00462963




0.2430556




0.0011253




0.0157536




1





0.0011






2




BBB




14




1




0.00462963




0.2430556




0.0011253




0.0157536




1





0.0011






2




AAB




5




3




0.01388889




0.2430556




0.0033758




0.0168789




2






0.0034






2




BBA




5




3




0.01388889




0.2430556




0.0033758




0.0168789




2






0.0034






2




AAx




2




12




0.05555556




0.2430556




0.0135031




0.0270062




1





0.0135






2




BBx




2




12




0.05555556




0.2430556




0.0135031




0.0270062




1





0.0135






2




ABx




2




24




0.11111111




0.2430556




0.0270062




0.0540123




2






0.027






2




Axx




2




48




0.22222222




0.2430556




0.0540123




0.1080247




1





0.054






2




Bxx




2




48




0.22222222




0.2430556




0.0540123




0.1080247




1





0.054






2




xxx




0




64




0.2962963




0.2430556




0.0720165




0




0




0.072









216




1






3




AAA




14




1




0.00462963




0.0154321




7.144E−05




0.0010002




1





7E−05






3




BBB




14




1




0.00462963




0.0154321




7.144E−05




0.0010002




1





7E−05






3




CCC




14




1




0.00462963




0.0154321




7.144E−05




0.0010002




1





7E−05






3




AAB




5




3




0.01388889




0.0154321




0.0002143




0.0010717




2






0.0002






3




AAC




5




3




0.01388889




0.0154321




0.0002143




0.0010717




2






0.0002






3




BBA




5




3




0.01388889




0.0154321




0.0002143




0.0010717




2






0.0002






3




BBC




5




3




0.01388889




0.0154321




0.0002143




0.0010717




2






0.0002






3




CCA




5




3




0.01388889




0.0154321




0.0002143




0.0010717




2






0.0002






3




CCB




5




3




0.01388889




0.0154321




0.0002143




0.0010717




2






0.0002






3




ABC




5




6




0.02777778




0.0154321




0.0004287




0.0021433




3







0.00043






3




ABx




2




18




0.08333333




0.0154321




0.001286




0.002572




2






0.0013






3




ACx




2




18




0.08333333




0.0154321




0.001286




0.002572




2






0.0013






3




BCx




2




18




0.08333333




0.0154321




0.001286




0.002572




2






0.0013






3




AAx




2




9




0.04166667




0.0154321




0.000643




0.001286




1





0.0006






3




BBx




2




9




0.04166667




0.0154321




0.000643




0.001286




1





0.0006






3




CCx




2




9




0.04166667




0.0154321




0.000643




0.001286




1





0.0006






3




Axx




2




27




0.125




0.0154321




0.001929




0.003858




1





0.0019






3




Bxx




2




27




0.125




0.0154321




0.001929




0.003858




1





0.0019






3




Cxx




2




27




0.125




0.0154321




0.001929




0.003858




1





0.0019






3




xxx




0




27




0.125




0.0154321




0.001929




0




0




0.0019









216




1














EV of third Stage:




0.9023574

















Prob. Of Start Cond. For Next Stage




0.3821




0.3696




0.0389




0.00043







Total of 4 probability values above







0.79102















The analysis provided thus far does not include the bonuses for two “Buncos” and three “Buncos” occurring in the same game. The probability of getting a second or third “Bunco” in a game must be analyzed on a stage by stage basis, with the expected value of such awards added to the EV of the stage in which the bonus occurs.




A double “Bunco” award is given on a particular stage when the second “Bunco” in a game is achieved in that stage. It is not possible to get a double “Bunco” in the first stage. In the second stage, the only way to achieve a double “Bunco” bonus is to roll a “Bunco” on each of the first two stages. On the third stage, one could get “Bunco” on the first and third stage, or the second and third stage (the first and second stage is the case noted above of getting a double “Bunco” on the second stage). The shorthand xBB is used to indicate no “Bunco” on the first stage followed by “Bunco” on the second and third stages, while similarly BxB indicates “Bunco” on the first and third stages with no “Bunco” on the second stage.




Table 24 shows the combinations that will result in a double “Bunco” on the seventh stage. Note that all combinations must have the second “Bunco” occur as the seventh stage because if the second “Bunco” occurred earlier then it would be attributed to the earlier stage.














TABLE 24













BxxxxxB







xBxxxxB







xxBxxxB







xxxBxxB







xxxxBxB







xxxxxBB















Working through the cases in Table 24, it is found that as a result of symmetry, the probability of each of these components to a seventh level double “Bunco” is identical. Likewise, there are five ways of identical probability to achieve a sixth level double “Bunco” bonus and the two ways mentioned above to achieve a third level double “Bunco” bonus have identical probability.




In order to compute the probability of the required components, there is a need to use three values that were computed earlier. In Table 21, the probability of a “Bunco” on the first roll is shown to be 0.027777778. The “x” components in the first line of Table 24 is the probability of staying alive in a game that has established one point, by rolling anything but a “Bunco”. This is found by taking the second and third lines of Table 22 (AAx and Axx) and adding the probability of those rolls (fourth column), which results in a total of 0.416666667. Finally, there is the probability of rolling a “Bunco” while one point is alive. This is shown in the first line of Table 22 (AAA) as 0.00462963. Using these values, one may construct the double “Bunco” probability table of Table 25.




The first column of Table 25 shows the game “Stage” for which the probability of double “Bunco” is being computed. The second column is the “Number of Forms” a double “Bunco” may take on that stage (such as the six forms shown for the seventh stage in Table 24). The third column shows the “Sample Form” being computed for the stage. The fourth through tenth columns are the probability components matching the respective letters in the third column forms. The eleventh column is the “Probability” of getting a double “Bunco” on that level which is the product of the second column form count and all probability components (“Comp.” 1 through 7).






















TABLE 25










Number












Double







of




Sample











Bunco






Stage




Forms




Form




Comp. 1




Comp. 2




Comp. 3




Comp. 4




Comp. 5




Comp. 6




Comp. 7




Probability











1




0












0






2




1




BB




0.027778




0.00463









0.000128601






3




2




BxB




0.027778




0.416667




0.00463








0.000107167






4




3




BxxB




0.027778




0.416667




0.416667




0.00463







6.69796E−05






5




4




BxxxB




0.027778




0.416667




0.416667




0.416667




0.00463






3.72109E−05






6




5




BxxxxB




0.027778




0.416667




0.416667




0.416667




0.416667




0.00463





1.93807E−05






7




6




BxxxxxB




0.027778




0.416667




0.416667




0.416667




0.416667




0.416667




0.00463




9.69033E−06














The analysis for the “Triple Bunco Bonus” is similar to the “Double Bunco Bonus.” Table 26 shows all of the possible forms of a seventh level “Triple Bunco Bonus.”














TABLE 26













BBxxxxB







BxBxxxB







BxxBxxB







BxxxBxB







BxxxxBB







xBBxxxB







xBxBxxB







xBxxBxB







xBxxxBB







xxBBxxB







xxBxBxB







xxBxxBB







xxxBBxB







xxxBxBB







xxxxBBB















Using the same symmetry that was used for the double “Bunco” calculation, one arrives at Table 27.






















TABLE 27










Number












Triple







of




Sample











Bunco






Stage




Forms




Form




Comp. 1




Comp. 2




Comp. 3




Comp. 4




Comp. 5




Comp. 6




Comp. 7




Probability











1




0












0






2




0












0






3




1




BBB




0.027778




0.00463




0.00463








5.95374E−07






4




3




BBxB




0.027778




0.00463




0.416667




0.00463







7.44218E−07






5




6




BBxxB




0.027778




0.00463




0.416667




0.416667




0.00463






6.20181E−07






6




10




BBxxxB




0.027778




0.00463




0.416667




0.416667




0.416667




0.00463





4.30682E−07






7




15




BBxxxxB




0.027778




0.00463




0.416667




0.416667




0.416667




0.416667




0.00463




2.69176E−07














Table 28 shows the expected return from the double “Bunco” and triple “Bunco” awards. The first column shows the game “Stage”. The second column shows the “75” coin pay for the “Double Bunco Bonus”. The third column shows the “Double Bunco Probability” computed in Table 25 for each stage. The fourth column computes the expected return“(EV) for double “Buncos” on the given stage by multiplying the “Pay” (second column) times the “Probability” (third column). The fifth through seventh columns compute the triple “Bunco” expected return in the same manner as was used for “Double Bunco” in the second through fourth columns.


















TABLE 28










Double




Double




Double




Triple




Triple




Triple







Bunco




Bunco




Bunco




Bunco




Bunco




Bunco






Stage




Pay




Prob.




EV




Pay




Prob.




EV











1




75




0




0




2500




0




0






2




75




0.000129




0.009645




2500




0




0






3




75




0.000107




0.008038




2500




5.95E−07




0.001488






4




75




6.7E−05




0.005023




2500




7.44E−07




0.001861






5




75




3.72E−05




0.002791




2500




6.2E−07




0.00155






6




75




1.94E−05




0.001454




2500




4.31E−07




0.001077






7




75




9.69E−06




0.000727




2500




2.69E−07




0.000673














Finally, the overall EV of each stage and the overall EV of multi-stage games is shown in Table 29. The first column indicates the “Stage” number. The second column shows the expected return for the base game stage which was generated for the first three stages in Table 21, Table 22, and Table 23. The third and fourth column show the “Double” and “Triple Bunco” bonus EV components generated in Table 28. The fifth column is the total EV for the stage, which is created by adding the EV components in the second, third and fourth columns. The sixth column is the EV of an entire multi-stage game that bet on the number of stages in the first column. This is the average of the fifth column in the current row and all rows above (i.e., the average EV of all stages in the multi-stage game). The expected return of the entire game when a player plays all seven stages is 0.927423292 or 92.74%.

















TABLE 29










Base




Double




Triple





EV of Game







Game




Bunco




Bunco




Total EV




Playing this






Stage




EV




EV




EV




For Stage




many stages











1




0.888889




0




0




0.888889




0.888888889






2




0.92284




0.009645




0




0.932485




0.910686728






3




0.902357




0.008038




0.001488




0.911883




0.911085629






4




0.921469




0.005023




0.001861




0.928353




0.915402545






5




0.953178




0.002791




0.00155




0.957519




0.923825811






6




0.937292




0.001454




0.001077




0.939822




0.92649184






7




0.931612




0.000727




0.000673




0.933012




0.927423292














It will additionally be noted that the invention further contemplates a training program for players of these games, particularly in the video game versions. Such training programs are designed to teach players not only the fundamentals of game play, but to optimize game playing strategy, as with visual and aural cues for the player, replay options, and the like. Representative training programs are disclosed in applicants' co-pending patent application Ser. No. 09/539,286, filed Mar. 30, 2000, and that disclosure is hereby incorporated by reference.




Thus, while the invention has been disclosed and described with respect to certain embodiments, those of skill in the art will recognize modifications, changes, other applications and the like which will nonetheless fall within the spirit and ambit of the invention, and the following claims are intended to capture such variations.



Claims
  • 1. A method of playing a wagering game having a number of stages to be wagered on, comprising:a player making a wager according to a number of sequential stages desired to be played; initiating play of a first stage of the game, wherein if a win is experienced on the first stage and if the second stage was wagered, play of the game advances to the second stage and a payout is earned, and wherein if a win is not experienced, the game is over and all wagers are lost; initiating play of a second stage of the game, wherein if a win is experienced on the second stage and if the third stage was wagered, play of the game advances to a third stage and a payout is earned, wherein if a win on the second stage is not experienced, the game is over and all wagers, except the payout on the first stage win, are lost; sequentially initiating play of any number of respective stages of the game after the second stage, the any number of stages comprising one of a final stage which is a pre-set maximum stage for the game, and a desired stage, the desired stage being a stage between the final and the second stage optionally selected by the player to be the utmost wagered stage, wherein if a win is sequentially experienced on each sequentially succeeding stage up to and including one of the final and desired stage, and if each succeeding stage up to and including the one of the final and desired stage was wagered, then a payout is earned on each sequential stage and play of the game advances sequentially up to and including one of the final and desired stage, wherein after the play of one of the final and desired stage, the game is then over, and wherein if a win is not experienced on any played stage after the first stage, the game is over and all wagers, except the payouts from any of the preceding stages, are lost.
  • 2. The method of claim 1, wherein the game is a slots game, and each stage is a slot machine device having one or more betting lines.
  • 3. The method of claim 2, wherein the game has at least three stages.
  • 4. The method of claim 3, wherein each stage uses the same paytable, and each stage has a respective payout multiplier, each stage multiplier being different from another stage multiplier and increasing with successive stages.
  • 5. The method of claim 4, wherein a final stage multiplier is based upon a random number generator.
  • 6. The method of claim 1 wherein a win comprises a net positive result of a payout for a given stage relative to a respective wager for that stage.
  • 7. The method of claim 1, wherein the game is comprised of a multi-stage “Five-Card Stud” poker game, the game having at least three stages, each stage having a respective poker betting hand.
  • 8. The method of claim 7, wherein a win includes a “Free Ride” feature, wherein the game will automatically advance a player from a current stage to a succeeding stage, independently of whether the current stage includes a winning hand, if the “Free Ride” feature is dealt in the current stage.
  • 9. The method of claim 8, wherein one paytable is used for the game, and each stage has a respective payout multiplier, each stage multiplier being different from another stage multiplier and increasing with successive stages.
  • 10. The method of claim 1, wherein the game is comprised of a “Five-Card Draw” poker game.
  • 11. The method of claim 10, further comprising dealing at each stage a hand of at least five cards, all face up, in a first deal;selecting none, one, or more than one of the face up cards as cards to be held; discarding from the first deal the non-held cards and replacing those cards with a face-up card to arrive at a resultant five cards; determining a poker hand ranking of the resultant cards of the hand.
  • 12. The method of claim 11, wherein each stage uses the same paytable, and each stage has a respective payout multiplier, each stage multiplier being different from another stage multiplier and increasing with successive stages.
  • 13. A video machine configured as a wagering game, comprising:a first, a second, and up to predetermined nth stage to be wagered upon; a wager input mechanism for wagering an amount; a microprocessor receiving signals from the wager input mechanism for determining the number of stages to be wagered, and including a program for controlling the play of the game as a function of the stages wagered wherein, a player makes a wager according to a number of stages desired to be played; play of a first stage of the game is initiated, and if a win is experienced on the first stage and if the second stage was wagered, play of the game advances to the second stage, a payout is earned, but if a win is not experienced, the game is over and all wagers are lost; play of a second stage of the game is initiated if wagered and the first stage resulted in a win, and if a win is experienced on the second stage and the next successive stage was wagered, play of the game advances to the succeeding stage, a payout is earned, but if a win on the second stage is not experienced, the game is over and all wagers, except the payout on the first stage win, are lost; play of each successive stage up to the nth stage of the game is initiated, and if a win is experienced on each successive stage, a payout is earned and the game continues to a subsequent stage, but if a win is not experienced, the game is over and only payouts from the preceding stages are retained.
  • 14. The machine of claim 13, wherein the game is a multi-stage slot machine.
  • 15. The machine of claim 13, wherein the game is “Five Card Stud” poker.
  • 16. The machine of claim 13, wherein the game is “Draw” poker.
  • 17. The machine of claim 13, wherein the game is a dice game.
  • 18. A method of playing a game, comprising the steps of:(a) providing a player with a first stage game of chance upon which a first wager is placed by the player; (b) providing the player with a second stage game of chance upon which a second wager is placeable; each said stage having an advancement condition and a terminating condition; (c) playing said first stage game; (d) determining which of said advancement and terminating conditions is presented by said first stage game as played; (e) if an advancement condition is presented by said first stage game as played, then advancing to said second stage game, but if a terminating condition is presented by said first stage game as played, the game is over and at least part of said second wager is lost; (f) playing said second stage game if an advancement condition is presented at step (e) and a second wager has been placed; and (g) determining which of said advancement and terminating conditions is presented by said second stage game as played.
  • 19. The method of playing a game of claim 18 further including the step of providing a payout for an advancement condition at the second stage.
  • 20. The method of playing a game of claim 19 further including the step of providing a payout for an advancement condition at each stage.
  • 21. The method of playing a game of claim 20 wherein said payout is based upon the amount of a respective wager at a respective stage.
  • 22. The method of playing a game of claim 21 wherein said payout is increased by a multiplier for a respective stage.
  • 23. The method of playing a game of claim 22 wherein said multiplier increases for each successive stage.
  • 24. The method of playing a game of claim 18 wherein said first and second games of chance are the same type of game.
  • 25. The method of playing a game of claim 24 wherein said type of game is a slot machine device.
  • 26. The method of playing a game of claim 25 wherein said slot machine device is a video slot machine having visual representations of plural slot reels.
  • 27. The method of playing a game of claim 24 wherein said type of game is a card game.
  • 28. The method of playing a game of claim 24 wherein said card game is selected from one of “Draw” and “Stud” poker.
  • 29. The method of playing a game of claim 18 wherein said type of game is a dice game.
  • 30. The method of playing a game of claim 18 wherein said first and second games of chance are different types of games.
  • 31. A method of playing a game, comprising the steps of:(a) providing a player with a first stage game of chance upon which a first wager is placed by the player; (b) providing the player with a successive stage game of chance (n1) up to a predetermined nth stage (nx) game of chance upon which respective n1 to nx wagers are placeable; each said stage having a winning condition and a losing condition; (d) playing said first stage game; (e) determining which of said winning and losing conditions is presented by said first stage game as played; (f) if a winning condition is presented by said first stage game as played, then advancing to said successive stage game, but if a losing condition is presented by said first stage game as played, the game is over and any wager at a stage higher than the first game stage is lost; (g) playing said successive stage game if a winning condition is presented by said first stage game as played, and a wager has been placed on said successive stage game; (h) determining which of said winning and losing conditions is presented by said successive stage game as played, and if a winning condition is presented, then advancing through additional stage games up through said nth stage game if at each respective additional stage game a wager has been placed on that stage game and its preceding stage game presents a winning condition, but if a losing condition is presented at an additional stage game, the game is over and any wager at a stage higher is lost.
  • 32. The method of playing a game of claim 31 further including the step of providing a payout for a winning condition at each stage.
  • 33. The method of playing a game of claim 32 wherein said payout is based upon the amount of a respective wager at a respective stage, said payout is increased by a multiplier for a respective stage, and said multiplier increases at each stage reached.
  • 34. A method for operating a processor-controlled gaming machine comprising the steps of:(a) providing gameplay elements in a manner that can be visualized by a player; (b) providing a mechanism for a wager input from the player; (c) providing a mechanism for game operational input from the player; (d) providing a first stage game of chance upon which a first wager is placed by the player; (e) providing the player with a second stage game of chance upon which a second wager is placeable; each said stage having an advancement condition and a terminating condition; (f) displaying at least said first stage game using at least some of said gameplay elements; (g) playing said first stage game; (h) determining which of said advancement and terminating conditions is presented by said first stage game as played; (i) if an advancement condition is presented by said first stage game as played, then advancing to said second stage game, but if a terminating condition is presented by said first stage game as played, the game is over and at least part of said second wager is lost; (j) displaying said second stage game of chance using at least some of said gameplay elements if said second stage game is not already displayed and playing said second stage game if an advancement condition is presented at step (i) and a second wager has been placed; (k) determining which of said advancement and terminating conditions is presented by said second stage game as played; and (l) providing a payout for an advancement condition.
  • 35. The method of claim 34 further including the step of providing a payout for an advancement condition at each stage.
  • 36. The method of claim 34 further including the steps of:(m) providing the player with a third stage game of chance and up to an nth stage game of chance upon which a third wager and up to an nth wager are respectively placeable; (n) displaying said third stage game of chance using at least some of said gameplay elements if said third stage game is not already displayed and playing said third stage game if an advancement condition is presented at step (k) and a third wager has been placed; (o) determining which of said advancement and terminating conditions is presented by said third stage game as played; and (p) displaying if not already displayed, using at least some of said gameplay elements, and playing seriatim each successive stage after said third stage game up to said nth stage game, if said third stage game and successive stages thereafter respectively present an advancement condition and a successive respective wager has been placed.
  • 37. The method of claim 36 wherein said payout is based upon the amount of wager at a respective stage, and said payout is increased by a multiplier for a respective stage, with said multiplier increasing as at least some stages are reached.
  • 38. The method of claim 36 wherein said gameplay elements comprise a slot machine device having visual representations of plural slot reels.
  • 39. The method of claim 38 wherein a separate slot machine device is visually displayed for each stage, with a plurality of stages being displayed together on a visual display.
  • 40. The method of claim 36 wherein said gameplay elements are cards for a card game of chance.
  • 41. The method of claim 40 wherein a hand of cards is visually displayed for each stage, with a plurality of stages being displayed together on a visual display.
  • 42. The method of claim 36 wherein said gameplay elements are dice.
  • 43. The method of claim 42 further including the steps of:providing a set of differing gameplay element indicia, and establishing from said set of gameplay element indicia a subset of at least one match indicia against which said dice are to be matched in the course of play, said dice having a plurality of said gameplay element indicia represented thereon as facets of each die; displaying said first, second, third and successive stages up to said nth stage together as discrete arrays on a visual display; tossing said dice and beginning with at least said second stage game, determining any match between said match indicia and said die indicia, with at least one match comprising an advancement condition for a stage being played; and removing from further play any match indicium which is not matched at a stage.
  • 44. The method of claim 43 further including the steps of:providing a visual representation of said die indicia resulting from a respective toss on a respective array of said visual display; and providing a visual representation of each said match indicia remaining in play.
  • 45. The method of claim 36 wherein said payout is based upon a table which increases the amount of payout for a given wager as at least some stages are reached.
  • 46. The method of claim 36 further including the step of:providing a feature which is subject to random allocation to a stage in the course of play, said feature if allocated constituting an advancement condition enabling a next stage to be played, provided a wager has been placed on said next stage which is subject to being so enabled for play.
  • 47. A video card game comprising:a video display device; a cpu having a program; a wager input mechanism which registers a wager placed by a player, said wager including an ability to register bets upon successive stages of the game; a first deck of playing cards comprised of cards of suit and rank generated by said program, said program establishing a first array for display of a subset of said deck, said subset comprising a hand of cards randomly selected from said deck; said program dealing a first stage hand of cards, and determining whether said hand of cards presents a winning condition based upon a preset hierarchical ranking of card arrangements relating to suit and rank; said program dealing a second stage hand of cards provided a bet has been registered for said second stage and a winning condition is presented by said first stage hand as played, but if a losing condition is presented by said first stage hand as played, the game is over and at least a portion of bets on said first and second stage hands are lost; said program including a payout output based upon said wager and predetermined values for said first and second stage hands according to a preset hierarchical ranking of card arrangements relating to suit and rank.
  • 48. The video game of claim 47 further comprising a second deck of playing cards from which said second stage hand of cards is dealt and successive decks of playing cards for a respective successive stage hand of cards, and wherein said program deals a successive stage hand of cards provided a bet has been registered for a respective successive stage hand of cards and a winning condition is presented by a next preceding stage hand as played, up to a predetermined nth stage.
  • 49. The video game of claim 48 wherein said payout output includes a payout for a bet on any stage hand of cards presenting a winning condition as played.
  • 50. The video game of claim 49 wherein said payout output includes payout tables which are different for at least some of said stages.
  • 51. The video game of claim 49 wherein said payout output includes a payout table which is the same for each stage, but includes a multiplier for at least some of said stages, said multiplier increasing for successively higher stages.
  • 52. The video game of claim 51 wherein said multiplier for said nth stage is randomly selected by said program from a predetermined table of multipliers, at least most of said multipliers being greater than a multiplier for a successive stage next preceding said nth stage.
  • 53. The video game of claim 52 wherein selection of said multiplier for said nth stage is displayed by said program as a wheel having segments with said predetermined multipliers displayed in respective segments, and said wheel is caused to appear to rotate and come to a stop with said random multiplier at a designated stop point.
  • 54. The video game of claim 49 further including a feature generated by said program which is subject to random allocation to a stage in the course of play, said feature if allocated constituting a winning condition enabling said second and any successive stage to be played regardless of a winning condition otherwise being presented at said first, second and a next preceding stage, respectively, provided a bet has been placed on said respective second, successive and next successive stage, respectively, which is subject to being so enabled for play.
  • 55. The video game of claim 48 wherein said first stage hand of cards is visually displayed in said first array, a second array is provided for display of said second stage hand of cards, and successive arrays are provided for display of respective successive stage hands of cards, with a plurality of arrays being displayed together on said visual display.
  • 56. The video game of claim 55 wherein the card game is “Draw” poker,and said game further includes a mechanism for inputting player command selections for indicating one or more cards to be held in a hand being played, said program dealing cards from those remaining in a respective deck to replace any card not held to complete play of a stage hand of cards.
  • 57. A gaming machine comprising:a gaming unit having at least first and second stages of play, each said stage having an advancement condition and a non-advancement condition; an interface mechanism with said gaming unit allowing gameplay input for a player, said gameplay input including wagering input allowing the player to register a bet upon one or more stages of play; an operational device operating said gaming unit upon player input including an operational command, said operational device determining which of said conditions is presented by a first stage as played, and if an advancement condition is presented by said first stage as played, then advancing said gaming unit to said second stage, but if a non-advancement condition is presented by said first stage as played, the game is over and at least a portion of any second stage bet registered is lost; said operational device operating said gaming unit for said second stage if an advancement condition is determined for said first stage and a bet has been registered for said second stage, and determining which of said conditions is presented by said second stage as played.
  • 58. The gaming machine of claim 57 wherein said operational device operates said gaming unit for a successive stage up to a predetermined nth stage if an advancement condition is determined for said second stage and thereafter for a next preceding stage to said successive stage, and a bet has been registered for said successive stage, and determining which of said conditions is presented by said successive stage as played.
  • 59. The gaming machine of claim 58 further including a payout device which calculates a payout according to a preset schedule.
  • 60. The gaming machine of claim 59 wherein said payout device provides a payout for each stage for which an advancement condition has been determined.
  • 61. The gaming machine of claim 60 wherein said payout device provides a payout multiplier which increases for at least some of said second and successive stages.
  • 62. The gaming machine of claim 57 wherein said first and second stages of play are games which are of the same type of game.
  • 63. The gaming machine of claim 62 wherein said type of game is a slot machine device.
  • 64. The gaming machine of claim 63 wherein said slot machine device is a video slot machine having visual representations of plural slot reels.
  • 65. The gaming machine of claim 62 wherein said type of game is a card game.
  • 66. The gaming machine of claim 65 wherein said card game is selected from one of “Draw” and “Stud” poker.
  • 67. The gaming machine of claim 62 wherein said type of game is a dice game.
  • 68. The gaming machine of claim 57 wherein said first and second stages of play are different types of games.
  • 69. A gaming machine comprising:a gaming unit having first and successive stages of play up to a predetermined nth stage, each said stage having a winning condition and a losing condition; an interface mechanism with said gaming unit allowing gameplay input for a player, said gameplay input including wagering input allowing the player to register a bet upon one or more stages of play; an operational device operating said gaming unit upon player input including an operational command, said operational device determining which of said winning and losing conditions is presented by a first stage as played, and if a winning condition is presented by said first stage as played, then advancing said gaming unit to a successive stage, but if a losing condition is presented by said first stage as played, the game is over and at least any successive stage bet registered is lost; said operational device operating said gaming unit for said successive stage if a winning condition is determined for a preceding stage and a bet has been registered for said successive stage, and determining which of said winning and losing conditions is presented by said successive stage as played, up to said nth stage.
  • 70. The gaming machine of claim 69 wherein said gaming unit comprises a slot machine device having visual representations of plural slot reels.
  • 71. The gaming machine of claim 70 wherein a separate slot machine device is visually displayed for each stage, with a plurality of stages being displayed together.
  • 72. The gaming machine of claim 69 wherein said gaming unit comprises a hand of cards which is visually displayed for each stage, with a plurality of stages being displayed together.
  • 73. The gaming machine of claim 69 wherein said gaming unit comprises a toss of dice.
  • 74. The gaming machine of claim 73 further including a set of differing gameplay element indicia, and a subset of said set comprising at least one match indicia against which said dice are to be matched in the course of play, said dice having a plurality of said gameplay element indicia represented thereon as facets of each die, and said first and successive stages up to said nth stage are displayed together as discrete arrays.
  • 75. The gaming machine of claim 74 wherein said operational device tosses said dice and beginning with at least said second stage, determines any match between said match indicia and said die indicia, with at least one match comprising a winning condition for a stage being played, and said operational device removes from further play any match indicium which is not matched at a stage.
  • 76. The gaming machine of claim 75 further including a video display device, said gaming unit generating a visual representation of said die indicia resulting from a respective toss on a respective array of said visual display, and generating a visual representation of said match indicia remaining in play.
  • 77. The gaming machine of claim 73 wherein said operational device tosses said dice and determines whether said toss presents a winning condition based upon a predetermined game format.
  • 78. The gaming machine of claim 69 further including a payout device which provides a payout based upon a table which increases the amount of payout for a given bet as at least some stages are reached.
  • 79. The gaming machine of claim 69 further including a feature which is subject to random allocation to a stage in the course of play by said operational device, said feature constituting a winning condition enabling a successive stage to be played regardless of any other winning condition being presented by a next preceding stage, provided a bet has been placed on said successive stage which is subject to being so enabled for play.
US Referenced Citations (46)
Number Name Date Kind
3628259 Kahn Dec 1971 A
4156976 Mikun Jun 1979 A
4448419 Telnaes May 1984 A
5011159 Fortunato et al. Apr 1991 A
5100137 Fulton Mar 1992 A
5167413 Fulton Dec 1992 A
5224706 Bridgeman et al. Jul 1993 A
5294120 Schultz Mar 1994 A
5294128 Marquez Mar 1994 A
5401023 Wood Mar 1995 A
5489101 Moody Feb 1996 A
5511781 Wood et al. Apr 1996 A
5531448 Moody Jul 1996 A
5570885 Ornstein Nov 1996 A
5584486 Franklin Dec 1996 A
5593161 Boylan et al. Jan 1997 A
5678001 Nagel et al. Oct 1997 A
5707285 Place et al. Jan 1998 A
5711715 Ringo et al. Jan 1998 A
5718431 Ornstein Feb 1998 A
5722891 Inoue Mar 1998 A
5732950 Moody Mar 1998 A
5775692 Watts et al. Jul 1998 A
5791987 Chen et al. Aug 1998 A
5816916 Moody Oct 1998 A
5823873 Moody Oct 1998 A
5823874 Adams Oct 1998 A
5848932 Adams Dec 1998 A
5868619 Wood et al. Feb 1999 A
5882258 Kelly et al. Mar 1999 A
5954335 Moody Sep 1999 A
5976016 Moody et al. Nov 1999 A
6007066 Moody Dec 1999 A
6007424 Evers et al. Dec 1999 A
6012720 Webb Jan 2000 A
6012981 Fujioka et al. Jan 2000 A
6062980 Luciano May 2000 A
6098985 Moody Aug 2000 A
6120378 Moody et al. Sep 2000 A
6126541 Fuchs Oct 2000 A
6126542 Fier Oct 2000 A
6149521 Sanduski Nov 2000 A
6190255 Thomas et al. Feb 2001 B1
6196547 Pascal et al. Mar 2001 B1
6203429 Demar et al. Mar 2001 B1
6312334 Yoseloff Nov 2001 B1
Foreign Referenced Citations (5)
Number Date Country
753 331 Jan 1997 EP
874 337 Oct 1998 EP
945 837 Sep 1999 EP
984 407 Mar 2000 EP
989 531 Mar 2000 EP
Non-Patent Literature Citations (10)
Entry
“A Salute to Game Shows”, The Price is Right—Pricing Games. Retrieved from the Internet on Aug. 16, 2000. URL:<http://www.ben-schumin.simplenet.com/game-shows/price-is-right/pricing-games.htm>.*
Play It Again Poker Brochre, IGT, 1999.
Bunco Dice History and Rules, website article, http://worldbunco.com/history.html, May 22, 2000.
Super Bonus Poker by Bally Gaming, described in Strictly Slots, Apr. 2000, p. 51.
Multi-Play Poker by Bally Gaming, described in Strictly Slots, Dec. 2000, p. 62.
Multi-Play Poker by Bally Gaming, website article,. http://ballygaming.com/products/multi-play-poker.html, Apr. 25, 2001.
Wheel of Madness Game, described in AC Coin & Slot brochure,2000, p. 9.
STEEMROLLER Dice Game, described in brochure of Steehn Gaming Systems, Inc., date unknown.
Monopoly Blackjack Edition Game, described in Mikohn brochure, 2000.
Multi-Action Blackjack, website article, http://conjelco.com/faq/bj.html, Apr. 25, 2001, printed on Jul. 30, 2001.