The present application relates to ultrasound devices having an amplifier for amplifying received ultrasound signals.
Ultrasound probes often include one or more ultrasound sensors which sense ultrasound signals and produce corresponding electrical signals. The electrical signals are processed in the analog or digital domain. Sometimes, ultrasound images are generated from the processed electrical signals.
According to an aspect of the present application, an ultrasound apparatus is provided, comprising an ultrasound sensor and a multi-stage trans-impedance amplifier (TIA) coupled to the ultrasound sensor and configured to receive and amplify an output signal from the ultrasound sensor. The multi-stage TIA may include stages operating with different supply voltages, which may reduce power consumption in at least some situations.
According to an aspect of the present application, an ultrasound apparatus is provided, comprising an ultrasonic transducer and a multi-stage trans-impedance amplifier (TIA) having an input terminal coupled to the ultrasonic transducer. The multi-stage TIA is configured to receive and amplify an analog electrical signal from the ultrasonic transducer. The multi-stage TIA comprises a first stage configured to receive a first supply voltage and a second stage configured to receive a second supply voltage different than the first supply voltage.
According to an aspect of the present application, an ultrasound on a chip device is provided, comprising a substrate, a plurality of ultrasonic transducers integrated on the substrate, and analog processing circuitry integrated on the substrate and coupled to the plurality of ultrasonic transducers. The analog processing circuitry comprises a multi-stage trans-impedance amplifier coupled to an ultrasonic transducer of the plurality of ultrasonic transducers. The multi-stage TIA comprises multiple stages configured to receive different supply voltages.
According to an aspect of the present application, a method of operating an ultrasound circuit is provided, comprising receiving and amplifying, with a first stage of a multi-stage trans-impedance amplifier, an electrical signal output by a an ultrasonic transducer, the first stage of the multi-stage TIA operating at a first supply voltage value, and amplifying, with a second stage of the multi-stage TIA operating at a second supply voltage value different than the first supply voltage value, an output signal of the first stage.
Various aspects and embodiments of the application will be described with reference to the following figures. It should be appreciated that the figures are not necessarily drawn to scale. Items appearing in multiple figures are indicated by the same reference number in all the figures in which they appear.
Aspects of the present application relate to amplification circuitry for an ultrasound device. An ultrasound device may include one or more ultrasonic transducers configured to receive ultrasound signals and produce electrical output signals. Thus, the ultrasonic transducers may be operated as ultrasound sensors. The ultrasound device may include one or more amplifiers for amplifying the electrical output signals. In some embodiments, the amplifier(s) may be multi-stage amplifiers, with stages that operate at different supply voltage levels. In this manner, a lower supply voltage level may be used for at least one of the stages, thus facilitating lower power operation. In some embodiments, the first stage of the multi-stage amplifier may operate with a lower supply voltage than a following stage. The following stage may provide a desired output gain of the amplifier.
According to an aspect of the present application, a method of operating an ultrasound circuit is provided, comprising producing an electrical signal with an ultrasonic transducer and amplifying the electrical signal with a multi-stage TIA. The multi-stage TIA may include a first stage configured to operate at a lower supply voltage level than a following stage, and thus may provide power savings.
The aspects and embodiments described above, as well as additional aspects and embodiments, are described further below. These aspects and/or embodiments may be used individually, all together, or in any combination of two or more, as the application is not limited in this respect.
The circuit 100 further comprises N circuitry channels 104a . . . 104n. The circuitry channels may correspond to a respective ultrasonic transducer 102a . . . 102n. For example, there may be eight ultrasonic transducers 102a . . . 102n and eight corresponding circuitry channels 104a . . . 104n. In some embodiments, the number of ultrasonic transducers 102a . . . 102n may be greater than the number of circuitry channels.
The circuitry channels 104a . . . 104n may include transmit circuitry, receive circuitry, or both. The transmit circuitry may include transmit decoders 106a . . . 106n coupled to respective pulsers 108a . . . 108n. The pulsers 108a . . . 108n may control the respective ultrasonic transducers 102a . . . 102n to emit ultrasound signals.
The receive circuitry of the circuitry channels 104a . . . 104n may receive the (analog) electrical signals output from respective ultrasonic transducers 102a . . . 102n. In the illustrated example, each circuitry channel 104a . . . 104n includes a respective receive circuit 110a . . . 110n and an amplifier 112a . . . 112n. The receive circuit 110a . . . 110n may be controlled to activate/deactivate readout of an electrical signal from a given ultrasonic transducer 102a . . . 102n. An example of suitable receive circuits 110a . . . 110n are switches. That is, in one embodiment the receive circuits are controllable switches which are switched during transmit mode to disconnect the ultrasonic transducers from the receive circuitry and during receive mode to connect the ultrasonic transducers to the receive circuitry. Alternatives to a switch may be employed to perform the same function.
The amplifiers 112a . . . 112n may be multi-stage TIAs in some embodiments, outputting amplified analog signals. As will be described further below, in some embodiments one or more—and in some embodiments all—of the amplifiers 112a-112n may include a first stage operating at a lower supply voltage level than a subsequent stage. The use of multi-stage TIAs with multiple supply voltages may facilitate low power operation of the circuit 100 compared to the use of alternative amplifier designs.
The circuit 100 further comprises an averaging circuit 114, which is also referred to herein as a summer or a summing amplifier. In some embodiments, the averaging circuit 114 is a buffer or an amplifier. The averaging circuit 114 may receive output signals from one or more of the amplifiers 112a . . . 112n and may provide an averaged output signal. The averaged output signal may be formed in part by adding or subtracting the signals from the various amplifiers 112a . . . 112n. The averaging circuit 114 may include a variable feedback resistance. The value of the variable feedback resistance may be adjusted dynamically based upon the number of amplifiers 112a . . . 112n from which the averaging circuit receives signals. In some embodiments, the variable resistance may include N resistance settings. That is, the variable resistance may have a number of resistance settings corresponding to the number of circuitry channels 104a . . . 104n. Thus, the average output signal may also be formed in part by application of the selected resistance to the combined signal received at the input(s) of the averaging circuit 114.
The averaging circuit 114 is coupled to an auto-zero block 116, also referred to herein as a “DC block.” The auto-zero block 116 may filter the averaged signal provided by the averaging circuit 114, and thus may be considered a filter in at least some embodiments.
The auto-zero block 116 is coupled to a programmable gain amplifier 118 which includes an attenuator 120 and a fixed gain amplifier 122. The programmable gain amplifier 118 may perform time gain compensation (TGC), and thus may alternatively be referred to as a TGC stage or circuit. In performing TGC, the programmable gain amplifier 118 may increase the amplification provided during reception of an ultrasound signal by an ultrasonic transducer, thus compensating for the natural attenuation of the signal which occurs over time.
The programmable gain amplifier 118 is coupled to an ADC 126 via ADC drivers 124. In the illustrated example, the ADC drivers 124 include a first ADC driver 125a and a second ADC driver 125b. The ADC 126 digitizes the signal(s) from the averaging circuit 114.
While
The components of
According to an embodiment, the components of
As previously described, aspects of the present application provide a multi-stage TIA for an ultrasound device, in which at least two stages of the multi-stage TIA operate with different supply voltages. The inventors have appreciated that the stages of a multi-stage TIA may impact noise performance, linearity, and gain differently. For example, the first stage, electrically closest to the ultrasonic transducer, may dominate noise performance of the TIA, while following (or “subsequent” or “downstream”) stages of the TIA may have a greater impact on linearity. Moreover, the reduction of noise achievable with the first stage may depend, at least in part, on the amount of current used in the first stage, with greater current resulting in greater noise reduction. However, since greater current consumption also corresponds with greater power consumption, the inventors have recognized that operating the first stage of a multi-stage TIA at a lower supply voltage may be desirable to reduce the power consumption of that stage. Meanwhile, later stages of the TIA with a greater impact on the linearity of the TIA may be operated at a higher supply voltage level. By using distinct supply voltage levels for the multi-stage TIA, power consumption may be reduced compared to a scenario in which all stages of the multi-stage TIA operate with the same supply voltage level. The closed loop gain may be primarily controlled by the feedback resistance, so long as the open-loop gain bandwidth (the unity gain bandwidth) of the TIA is sufficient.
As shown, the multi-stage TIA 200 in this non-limiting example includes a first stage 202 and a second stage 204. The first stage 202 may have an input terminal 206 configured to receive an output signal of an ultrasonic transducer. For example, the input terminal 206 may be coupled directly to an ultrasonic transducer or coupled through one or more additional components, such as a receive switch.
The output of the first stage 202 may couple to the input of the second stage 204, and an output signal of the TIA 200 may be provided at the output terminal 208 of the second stage 204.
The multi-stage TIA 200 of
As shown, the first stage 202 and second stage 204 may have respective supply voltages, Vdd1 and Vdd2. The supply voltages Vdd1 and Vdd2 may differ, with Vdd2 greater than Vdd1 in at least some embodiments. As described above, the first stage of the TIA, that is stage 202, may have a greater impact on noise performance of the TIA than the second stage 204, while the second stage 204 may have a greater impact on the linearity of the TIA. Thus, operating the first stage 202 at a lower supply voltage Vdd1 may not negatively impact the linearity of the TIA, but may allow for the first stage 202, and thus the TIA 200, to consume less power for a given level of noise performance.
As should be appreciated from
As shown, the first stage of the multi-stage TIA 300 may receive a first supply voltage Vdd1, while the second stage may receive a second supply voltage Vdd2. In at least some embodiments, Vdd1 may be less than Vdd2, and in some embodiments is significantly less than Vdd2. For example, Vdd1 may be less than three-quarters of the value of Vdd2, less than half of Vdd2, less than one-quarter of Vdd2, between 25% and 90% of Vdd2, or any other suitable value.
The second stage of the multi-stage TIA 300 may be the dominant factor in controlling the linearity of the TIA. In at least some embodiments, it may be desirable for the TIA to provide a high degree of linearity. The voltage Vdd2 may be selected at least in part to provide a desired degree of linearity.
Having thus described several aspects and embodiments of the technology of this application, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those of ordinary skill in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the technology described in the application. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described.
As described, some aspects may be embodied as one or more methods. The acts performed as part of the method(s) may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
As used herein, the term “between” used in a numerical context is to be inclusive unless indicated otherwise. For example, “between A and B” includes A and B unless indicated otherwise.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively.
This Application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 62/522,597, filed Jun. 20, 2017 and entitled “MULTI-STAGE TRANS-IMPEDANCE AMPLIFIER (TIA) FOR AN ULTRASOUND DEVICE,” which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4829491 | Saugeon et al. | May 1989 | A |
5585626 | Beck et al. | Dec 1996 | A |
5610709 | Arrington | Mar 1997 | A |
5684431 | Gilbert | Nov 1997 | A |
5844445 | Takeyari | Dec 1998 | A |
6356152 | Jezdic et al. | Mar 2002 | B1 |
6404281 | Kobayashi | Jun 2002 | B1 |
6806744 | Bell | Oct 2004 | B1 |
6826369 | Bondarev | Nov 2004 | B1 |
7313053 | Wodnicki | Dec 2007 | B2 |
7449958 | Voo | Nov 2008 | B1 |
7605660 | Kobayashi | Oct 2009 | B1 |
8662395 | Melandso et al. | Mar 2014 | B2 |
8852103 | Rothberg et al. | Oct 2014 | B2 |
9087223 | Tualle | Jul 2015 | B2 |
9229097 | Rothberg et al. | Jan 2016 | B2 |
9473136 | Chen et al. | Oct 2016 | B1 |
9492144 | Chen et al. | Nov 2016 | B1 |
9521991 | Rothberg et al. | Dec 2016 | B2 |
9592030 | Rothberg et al. | Mar 2017 | B2 |
9705518 | Chen et al. | Jul 2017 | B2 |
9933516 | Chen et al. | Apr 2018 | B2 |
9958537 | Chen et al. | May 2018 | B2 |
10014871 | Chen et al. | Jul 2018 | B2 |
10082488 | Chen et al. | Sep 2018 | B2 |
10082565 | Chen et al. | Sep 2018 | B2 |
10116263 | Broekaert | Oct 2018 | B1 |
10187020 | Chen | Jan 2019 | B2 |
10231713 | Chen et al. | Mar 2019 | B2 |
10263031 | Wang | Apr 2019 | B2 |
10340866 | Singh | Jul 2019 | B2 |
10340867 | Singh et al. | Jul 2019 | B2 |
10840864 | Singh et al. | Nov 2020 | B2 |
10857567 | Singh et al. | Dec 2020 | B2 |
20010038450 | McCaffrey | Nov 2001 | A1 |
20030025562 | Andreou | Feb 2003 | A1 |
20040119587 | Davenport | Jun 2004 | A1 |
20040260214 | Echt | Dec 2004 | A1 |
20050148878 | Phelps et al. | Jul 2005 | A1 |
20050175350 | Hartzell | Aug 2005 | A1 |
20060161359 | Lalla | Jul 2006 | A1 |
20060164169 | Meek | Jul 2006 | A1 |
20060273805 | Peng | Dec 2006 | A1 |
20070001764 | Huang | Jan 2007 | A1 |
20070038091 | Shiki | Feb 2007 | A1 |
20070086311 | Higashiyama | Apr 2007 | A1 |
20070232917 | Bae et al. | Oct 2007 | A1 |
20070242567 | Daft et al. | Oct 2007 | A1 |
20070287923 | Adkins et al. | Dec 2007 | A1 |
20080272848 | Sutardja | Nov 2008 | A1 |
20090002073 | Kim | Jan 2009 | A1 |
20090157130 | Ideker | Jun 2009 | A1 |
20090250729 | Lemmerhirt et al. | Oct 2009 | A1 |
20100152587 | Haider et al. | Jun 2010 | A1 |
20100166228 | Steele | Jul 2010 | A1 |
20100234736 | Corl | Sep 2010 | A1 |
20100237807 | Lemmerhirt | Sep 2010 | A1 |
20100246648 | Rocamora | Sep 2010 | A1 |
20100254547 | Grosh | Oct 2010 | A1 |
20100317972 | Baumgartner et al. | Dec 2010 | A1 |
20110115562 | Gilbert | May 2011 | A1 |
20110130109 | Ogasawara | Jun 2011 | A1 |
20120163129 | Antoine et al. | Jun 2012 | A1 |
20120265491 | Drummy | Oct 2012 | A1 |
20130056622 | Tualle | Mar 2013 | A1 |
20130064043 | Degertekin et al. | Mar 2013 | A1 |
20140240482 | Ikeda et al. | Aug 2014 | A1 |
20140288428 | Rothberg et al. | Sep 2014 | A1 |
20150032002 | Rothberg | Jan 2015 | A1 |
20150086221 | Shringarpure | Mar 2015 | A1 |
20150145597 | Huang et al. | May 2015 | A1 |
20150280662 | Nimran et al. | Oct 2015 | A1 |
20150297193 | Rothberg et al. | Oct 2015 | A1 |
20150298170 | Rothberg et al. | Oct 2015 | A1 |
20150374335 | Brown et al. | Dec 2015 | A1 |
20160228099 | Matsumura | Aug 2016 | A1 |
20170026011 | Khaw | Jan 2017 | A1 |
20170143306 | Rothberg et al. | May 2017 | A1 |
20170160239 | Chen et al. | Jun 2017 | A1 |
20170160387 | Chen et al. | Jun 2017 | A1 |
20170160388 | Chen et al. | Jun 2017 | A1 |
20170163225 | Chen et al. | Jun 2017 | A1 |
20170163276 | Chen et al. | Jun 2017 | A1 |
20170202541 | Ralston | Jul 2017 | A1 |
20170264307 | Chen et al. | Sep 2017 | A1 |
20170279423 | Ko | Sep 2017 | A1 |
20170296145 | Rothberg et al. | Oct 2017 | A1 |
20170307739 | Chen et al. | Oct 2017 | A1 |
20180070925 | Chen et al. | Mar 2018 | A1 |
20180210073 | Chen et al. | Jul 2018 | A1 |
20180360426 | Singh | Dec 2018 | A1 |
20180361431 | Singh et al. | Dec 2018 | A1 |
20180367110 | Singh | Dec 2018 | A1 |
20180367111 | Singh et al. | Dec 2018 | A1 |
20190050618 | Khuri-Yakub | Feb 2019 | A1 |
20190131939 | Shapoury | May 2019 | A1 |
20190140603 | Chen | May 2019 | A1 |
20190142389 | Singh | May 2019 | A1 |
20190149109 | Singh | May 2019 | A1 |
20190149110 | Singh et al. | May 2019 | A1 |
20200195210 | Tanaka | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
103607130 | Feb 2014 | CN |
104242937 | Dec 2014 | CN |
105555199 | May 2016 | CN |
201445554 | Dec 2014 | TW |
WO 2007096636 | Aug 2007 | WO |
WO 2010064000 | Jun 2010 | WO |
WO 2017048549 | Mar 2017 | WO |
WO 2018236778 | Dec 2018 | WO |
WO 2018236779 | Dec 2018 | WO |
WO 2018236786 | Dec 2018 | WO |
WO 2018236799 | Dec 2018 | WO |
Entry |
---|
Jiajian, Yao. “Time-gain-compensation amplifier for ultrasonic echo signal processing.” Thesis Report. (2010). (Year: 2010). |
International Preliminary Report on Patentability dated Jan. 2, 2020 in connection with International Application No. PCT/US2018/038147. |
Jiajian, Time-gain-compensation amplifier for ultrasonic echo signal processing. Faculty of EEMCS, Delft University of Technology, in partial fulfillment of MSc. Degree 2010: 1-81. |
Kim, Fully Integrated CMOS Ultrasound Transceiver Chip for High-Frequency High-Resolution Ultrasonic Imaging Systems. PhD Dissertation. The Pennsylvania State University College of Engineering. Dec. 2009; 157 pages. |
Wygant et al. A miniature real-time volumetric ultrasound imaging system. Medical Imaging 2005: Ultrasonic Imaging and Signal Processing. vol. 5750. International Society for Optics and Photonics, 2005; 12 pages. |
International Search Report and Written Opinion dated Feb. 7, 2017 for Application No. PCT/US2016/064314. |
International Preliminary Report on Patentability dated Jun. 14, 2018 in connection with International Application No. PCT/US2016/064314. |
International Search Report and Written Opinion dated Aug. 30, 2018 in connection with International Application No. PCT/US2018/038147. |
International Search Report and Written Opinion dated Sep. 6, 2018 in connection with International Application No. PCT/US2018/038180. |
Taiwanese Office Action dated Jan. 19, 2018 in connection with Taiwanese Application No. 105139662. |
Agarwal et al., Single-Chip Solution for Ultrasound Imaging Systems: Initial Results. 2007 IEEE Ultrasonics Symposium. Oct. 1, 2007;1563-6. |
Chen et al., Ultrasonic Imaging Front-End Design for CMUT: A 3-Level 30Vpp Pulse-Shaping Pulser with Improved Efficiency and a Noise-Optimized Receiver. IEEE Asian Solid-State Circuits Conference. Nov. 12-14, 2012; 173-6. |
Cheng et al., An Efficient Electrical Addressing Method Using Through-Wafer Vias for Two-Dimensional Ultrasonic Arrays. 2000 IEEE Ultrasonics Symposium. 2000;2:1179-82. |
Cheng et al., CMUT-in-CMOS ultrasonic transducer arrays with on-chip electronics. Transducers 2009. IEEE. Jun. 21, 2009;1222-5. |
Cheng et al., Electrical Through-Wafer Interconnects with Sub-PicoFarad Parasitic Capacitance. 2001 Microelectromechan Syst Conf. Aug. 24, 2001;18-21. |
Daft et al., A Matrix Transducer Design with Improved Image Quality and Acquisition Rate. 2007 IEEE Ultrasonics Symposium. Oct. 1, 2007;411-5. |
Daft et al., Microfabricated Ultrasonic Transducers Monolithically Integrated with High Voltage Electronics. 2004 IEEE Ultrasonics Symposium. Aug. 23, 2004;1:493-6. |
Doody et al., Modeling and Characterization of CMOS-Fabricated Capacitive Micromachined Ultrasound Transducers. J Microelectromechan Sys. Feb. 2011;20(1):104-118. |
Gurun et al., Front-end CMOS electronics for monolithic integration with CMUT arrays: circuit design and initial experimental results. Proc Ultrason Symp. 2008;390-3. |
Khuri-Yakub et al., Miniaturized Ultrasound Imaging Probes Enabled by CMUT Arrays with Integrated Frontend Electronic Circuits. Conf Proc IEEE Eng Med Biol Soc. 2010;1:5987-90. doi:10.1109/IEMBS.2010.5627580. Epub Dec. 6, 2010. 13 pages. |
Kim et al., Design and Test of A Fully Controllable 64×128 2-D CMUT Array Integrated with Reconfigurable Frontend ASICs for Volumetric Ultrasound Imaging. IEEE. International Ultrasonics Symposium Proceedings. Oct. 7-10, 2012;77-80. doi: 10.1109/ULTSYM.2012.0019. |
Kupnik et al., Wafer-bonded CMUT meets CMOS. MEMS-based Ultrasonic Transducer Arrays including Electronics Integration. 2010 CMOS Emerging Technology Workshop. Whistler, Canada. May 21, 2010. 22 pages. |
Orozco, Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems. Analog Dialogue. May 2013;47(05):1-5. |
Extended European Search Report dated Feb. 11, 2021 in connection with European Application No. 18821113.0. |
Extended European Search Report dated Jan. 27, 2021 in connection with European Application No. 18829732.8. |
Extended European Search Report dated Feb. 15, 2021 in connection with European Application No. 18820523.1. |
Extended European Search Report dated Feb. 12, 2021 in connection with European Application No. 18820178.4. |
Cenkeramaddi et al., Inverter-based 1V Transimpedance Amplifier in 90nm CMOS for Medical Ultrasound Imaging. NORCHIP. Nov. 16, 2009; pp. 1-4. |
Gurun et al., Front-End Receiver Electronics for High-Frequency Monolithic CMUT-on-CMOS Imaging Arrays. IEEE Transactions of Ultrasonics, Ferroelectrics, and Frequency Control. Aug. 1, 2011; 58(8): 1658-68. |
Huang et al., A High-frequency Transimpedance Amplifier for CMOS Integrated 2D CMUT Array towards 3D Ultrasound Imaging. Engineering in Medicine and Biology Society (EMBC). 2013 34th annual International Conference of the IEEE. Jul. 3, 2013; pp. 101-104. |
Lim et al., Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems. IEEE Transacitons on Biomedical Circuits and Systems. Apr. 1, 2017; 11(2):400-410. |
Wygant et al., An Integrated Circuit With Transmit Beamforming Flip-Chip Bonded to a 2-D CMUT Array for 3-D Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. Oct. 1, 2009; 56(10):2145-2156. |
Wygant et al., Integration of 2D CMUT arrays with Front-End Electronics for Volumetric Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. Feb. 1, 2008; 55(2):327-342. |
Office Action issued in Chinese Application No. 201880040114.5, dated Dec. 23, 2021 (13 pages). |
E. Säckinger et al., “The Transimpedance Limit”, IEEE Transactions on Circuits and Systems, Aug. 2010, vol. 57, No. 8, pp. 1848-1856 (9 pages). |
E. Kang et al., “A Variable-Gain Low-Noise Transimpedance Amplifier for Miniature Ultrasound Probes”, IEEE Journal of Solid-State Circuits, Dec. 2020, vol. 55, No. 12, pp. 3157-3168 (12 pages). |
Number | Date | Country | |
---|---|---|---|
20180360426 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62522597 | Jun 2017 | US |