1. Field of the Invention
The present invention relates to vapor compression systems and, more particularly, to a transcritical multi-stage vapor compression system having an intermediate pressure vessel or receiver.
2. Description of the Related Art
Vapor compression systems are used in a variety of applications including heat pump, air conditioning, and refrigeration systems. Such systems typically employ refrigerants, or working fluids, that remain below their critical pressure throughout the entire vapor compression cycle. Some vapor compression systems, however, such as those employing carbon dioxide as the working fluid, typically operate as transcritical systems wherein the working fluid is compressed to a pressure exceeding its critical pressure and wherein the suction pressure of the working fluid is less than the critical pressure of the working fluid. The basic structure of such a system includes a compressor for compressing the working fluid to a pressure that exceeds its critical pressure, followed by removal of heat from the working fluid in a first heat exchanger, e.g., a gas cooler. The pressure of the working fluid discharged from the gas cooler is reduced in an expansion device and then converted to a vapor in a second heat exchanger, e.g., an evaporator, before being returned to the compressor.
The capacity and efficiency of such a transcritical system can be regulated by regulating the pressure of the high pressure portion, e.g., the pressure in gas cooler 18, of the system. The pressure of the high side gas cooler may, in turn, be regulated by regulating the mass of working fluid contained therein which is dependent upon the total charge of working fluid actively circulating through the system.
The present invention provides a vapor compression system that includes a multi-stage compressor assembly having first and second compression mechanisms wherein the first compression mechanism compresses the working fluid from a suction pressure to an intermediate pressure and the second compression mechanism compresses the working fluid from the intermediate pressure to a discharge pressure. The use of two stage compressors is advantageous when compressing a refrigerant, such as carbon dioxide, that must be compressed to a relatively high pressure and requires a relatively large pressure differential between the suction pressure and discharge pressure to function effectively as a refrigerant. An intermediate pressure vessel is in fluid communication with the system between the two compression mechanisms and stores a variable quantity of liquid phase working fluid. The system may be a transcritical system wherein the discharge pressure is above the critical pressure of the working fluid and the suction pressure is below the critical pressure of the working fluid as is typical when using carbon dioxide as a refrigerant. By controlling the quantity of liquid phase working fluid in the intermediate pressure vessel, the charge of working fluid present in the high pressure side of the system, including in the gas cooler, can be regulated and, thus, the efficiency and capacity of the system may also be regulated by controlling the quantity of liquid phase working fluid present in the intermediate pressure vessel.
The invention comprises, in one form thereof, a vapor compression system having a working fluid and including a first compression mechanism wherein the first compression mechanism compresses the working fluid from a first low pressure to a second intermediate pressure and a second compression mechanism wherein the second compression mechanism is in fluid communication with the first compression mechanism and compresses the working fluid from the second intermediate pressure to a third discharge pressure. A fluid circuit circulates the working fluid from the second compression mechanism to the first compression mechanism and includes, in serial order, a first heat exchanger, an expansion device and a second heat exchanger wherein the first heat exchanger is positioned in a high pressure side of the circuit between the second compression mechanism and the expansion device and the second heat exchanger is positioned in a low pressure side of the circuit between the expansion device and the first compression mechanism. Also included is an intermediate pressure vessel in fluid communication with the system between the first and second compression mechanisms. Intermediate pressure working fluid is communicated to and from the vessel and the vessel contains a variable quantity of liquid phase working fluid.
A single fluid conduit may be used to communicate working fluid between the vessel and the system wherein the single fluid conduit communicates both inflows and outflows of the working fluid between the vessel and the system between the first and second compression mechanisms. The fluid conduit providing communication of working fluid between the vessel and the system between the first and second compression mechanisms may also define an unregulated fluid passage, i.e., a passageway that does not include a valve for variably regulating the flow of working fluid therethrough during operation of the system.
At least one fluid conduit may also provide fluid communication between the vessel and the fluid circuit at a location between the second compression mechanism and the first compression mechanism and wherein at least one valve controls fluid flow through the at least one fluid conduit. An intermediate pressure heat exchanger, or intercooler, may also be positioned between the first and second compression mechanisms for cooling the intermediate pressure working fluid wherein the intermediate pressure vessel is in communication with the system between the intercooler and the second compression mechanism.
The quantity of liquid phase working fluid contained within the vessel varies as a function of the temperature of the contents of the vessel and a means for regulating this temperature of the vessel may also be provided. The temperature of the vessel may be regulated by the selective exchange of thermal energy between the vessel and one of: working fluid diverted from the fluid circuit, a secondary fluid, a heating element and an external temperature reservoir. The mass of the working fluid contained within the vessel may also be regulated by controlling the available storage volume within the vessel for containing working fluid. By regulating the mass of working fluid contained within the vessel, the mass of working fluid, and pressure thereof, in the first heat exchanger in the high side of the circuit can also be regulated thereby providing a means for regulating the capacity and efficiency of the system.
The present invention comprises, in another form thereof, a transcritical vapor compression system having a working fluid that includes a first compression mechanism wherein the first compression mechanism compresses the working fluid from a low pressure to an intermediate pressure and a second compression mechanism wherein the second compression mechanism is in fluid communication with the first compression mechanism and compresses the working fluid from the intermediate pressure to a discharge pressure wherein the discharge pressure is above the critical pressure of the working fluid. A fluid circuit circulates the working fluid from the second compression mechanism to the first compression mechanism and includes, in serial order, a first heat exchanger, an expansion device and a second heat exchanger wherein the first heat exchanger is positioned in a high pressure side of the circuit between the second compression mechanism and the expansion device and the second heat exchanger is positioned in a low pressure side of the circuit between the expansion device and the first compression mechanism. Also included is an intermediate pressure vessel that is in fluid communication with the system between the first and second compression mechanisms. Intermediate pressure working fluid is communicated to and from the vessel and the vessel contains a variable quantity of liquid phase working fluid wherein the quantity of liquid phase working fluid varies as a function of the temperature of the vessel.
The present invention comprises, in yet another form thereof, a method of regulating a transcritical vapor compression system having a working fluid. The method includes compressing the working fluid from a low pressure to an intermediate pressure in a first compression mechanism and compressing the working fluid from the intermediate pressure to a discharge pressure in a second compression mechanism wherein the discharge pressure is greater than the critical pressure of the working fluid. The method also includes circulating working fluid discharged from the second compression mechanism through a fluid circuit having, in serial order, a first heat exchanger, an expansion device and a second heat exchanger and then returning the fluid to the first compression mechanism wherein the first heat exchanger is positioned in a high pressure side of the circuit between the second compression mechanism and the expansion device and the second heat exchanger is positioned in a low side of the circuit between the expansion device and the first compression mechanism. The method further includes providing fluid communication of the working fluid between an intermediate pressure vessel and the system at a location between the first and second compression mechanisms. Intermediate pressure working fluid is communicated to and from the vessel and the vessel contains a variable quantity of liquid phase working fluid, the quantity of liquid phase working fluid varying as a function of the temperature of the vessel. The pressure in the first heat exchanger is regulated by controlling the temperature of the vessel.
Controlling the temperature of the vessel may involve selectively exchanging thermal energy between the vessel and one of working fluid diverted from the fluid circuit, a secondary fluid, a heating element and an external temperature reservoir. Providing fluid communication of the working fluid between the vessel and the system may include providing a single fluid conduit between the vessel and the system wherein the single fluid conduit communicates both inflows and outflows of the working fluid between the vessel and the system between the first and second compression mechanisms.
The present invention comprises, in another form thereof, a method of regulating a transcritical vapor compression system having a working fluid wherein the method includes compressing the working fluid from a low pressure to an intermediate pressure in a first compression mechanism and compressing the working fluid from the intermediate pressure to a discharge pressure in a second compression mechanism wherein the discharge pressure is greater than the critical pressure of the working fluid. The working fluid discharged from the second compression mechanism is circulated through a fluid circuit having, in serial order, a first heat exchanger, an expansion device and a second heat exchanger. The working fluid is then returned to the first compression mechanism. The first heat exchanger is positioned in a high pressure side of the circuit between the second compression mechanism and the expansion device and the second heat exchanger is positioned in a low side of the circuit between the expansion device and the first compression mechanism. The method also includes providing fluid communication of the working fluid between an intermediate pressure vessel and the system at a location between the first and second compression mechanisms. Intermediate pressure working fluid is communicated to and from the vessel and the vessel contains a variable quantity of liquid phase working fluid. All communication of working fluid to and from the vessel is communicated from and to the system between the first and second compression mechanisms. The pressure in the first heat exchanger is regulated by controlling the quantity of liquid phase working fluid within the vessel.
An advantage of the present invention is that by providing an intermediate pressure vessel located between two compression mechanisms of a multi-stage compressor, the vessel may be used to store a variable quantity of liquid phase working fluid wherein changing the stored quantity changes the capacity and efficiency of the system.
Another advantage is that by regulating the stored quantity of liquid phase working fluid in the intermediate pressure vessel, such as by regulating the temperature or available volume of the vessel, the capacity and efficiency of the system may be regulated.
The above mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the exemplification set out herein illustrates an embodiment of the invention, the embodiment disclosed below is not intended to be exhaustive or to be construed as limiting the scope of the invention to the precise form disclosed.
A vapor compression system 30 in accordance with the present invention is schematically illustrated in
After the pressure of the working fluid is reduced by expansion device 42, the working fluid enters evaporator 44 where it is absorbs thermal energy as it is converted from a liquid phase to a gas phase. The suction line heat exchanger 40, expansion device 42 and evaporator 44 may all be of a conventional construction well known in the art. After being discharged from evaporator 44, the low or suction pressure working fluid passes through heat exchanger 40 to cool the high pressure working fluid before it is returned to first compression mechanism 32 and the cycle is repeated. Also included in system 30 is an intermediate pressure vessel 50 that is in fluid communication with system 30 between first compression mechanism 32 and second compression mechanism 34 and stores both liquid phase working fluid 46 and gaseous phase working fluid 48 as discussed in greater detail below.
As shown in
In operation, the illustrated embodiment of system 30 is a transcritical system utilizing carbon dioxide as the working fluid wherein the working fluid is compressed above its critical pressure and returns to a subcritical pressure with each cycle through the vapor compression system. Capacity control for such a transcritical system differs from a conventional vapor compression system wherein the working fluid remains at subcritical pressures throughout the vapor compression cycle. In such subcritical systems, capacity control is often achieved using thermal expansion valves to vary the mass flow through the system and the pressure within the condenser is primarily determined by the ambient temperature. In a transcritical system, the capacity of the system may be regulated by controlling the vapor/liquid ratio of the working fluid exiting the expansion device which is, in turn, a function of the pressure within the high pressure gas cooler. The pressure within the gas cooler may be regulated by controlling the total charge of working fluid circulating in the system wherein an increase in the total charge results in an increase in the pressure in the gas cooler, e.g., cooler 38, a reduction in the vapor/liquid ratio exiting expansion device 42 and an increase in the capacity of the system and a decrease in the total charge results in an increase in the vapor/liquid ratio exiting expansion device 42 and a decrease in the capacity of the system. The efficiency of the system will also vary with changes in the pressure in gas cooler 38, however, gas cooler pressures that correspond to the optimal efficiency of system 30 and the maximum capacity of system 30 will generally differ.
By regulating the mass of the working fluid contained within intermediate pressure vessel 50, the total charge of the working fluid that is actively circulating within system 30 can be controlled and, thus, the capacity and efficiency of system 30 can be controlled. The mass of working fluid contained within vessel 50 may be controlled by various means including the regulation of the temperature of vessel 50 or the regulation of the available storage volume within vessel 50 for containing working fluid.
The thermodynamic properties of carbon dioxide are shown in the graph of
The area below lines 82, 84 represents the two phase subcritical region where boiling of carbon dioxide takes place at a constant pressure and temperature. The area above point 86 represents the supercritical region where cooling or heating of the carbon dioxide does not change the phase (liquid/vapor) of the carbon dioxide. The phase of a carbon dioxide in the supercritical region is commonly referred to as “gas” instead of liquid or vapor.
The lines Qmax and COPmax represent gas cooler discharge values for maximizing the capacity and efficiency respectively of the system. The central line positioned therebetween represents values that provide relatively high, although not maximum, capacity and efficiency. Moreover, when the system fails to operate according to design parameters defined by this central line, the system will suffer a decrease in either the capacity or efficiency and an increase in the other value unless such variances are of such magnitude that they represent a point no longer located between the Qmax and COPmax lines.
Point A represents the working fluid properties as discharged from second compression mechanism 34 (and at the inlet of gas cooler 38). Point B represents the working fluid properties at the inlet to expansion device 42 (if systems 30, 30a did not include heat exchanger 40, point B would represent the outlet of gas cooler 38). Point C represents the working fluid properties at the inlet of evaporator 44 (or outlet of expansion device 42). Point D represents the working fluid at the inlet to first compression mechanism 32 (if systems 30, 30a did not include heat exchanger 40, point C would represent the outlet of evaporator 44). Movement from point D to point A represents the compression of the working fluid. (Line D–A is a simplified representation of the net result of compressing the working fluid which does not graphically depict the individual results of each compressor stage and intercooler 36.) As can be seen, compressing the working fluid both raises its pressure and its temperature. Moving from point A to point B represents the cooling of the high pressure working fluid at a constant pressure in gas cooler 38 (and heat exchanger 40). Movement from point B to point C represents the action of expansion device 42 which lowers the pressure of the working fluid to a subcritical pressure. Movement from point C to point D represents the action of evaporator 44 (and heat exchanger 40). Since the working fluid is at a subcritical pressure in evaporator 44, thermal energy is transferred to the working fluid to change it from a liquid phase to a gas phase at a constant temperature and pressure. The capacity of the system (when used as a cooling system) is determined by the mass flow rate through the system and the location of point C and the length of line C–D which in turn is determined by the specific enthalpy of the working fluid at the evaporator inlet. Thus, reducing the specific enthalpy at the evaporator inlet without substantially changing the mass flow rate and without altering the other operating parameters of system 30, will result in a capacity increase in the system. This can be done by decreasing the mass of working fluid contained in intermediate pressure vessel 50, thereby increasing both the mass and pressure of working fluid contained in gas cooler 38. If the working fluid in gas cooler 38 is still cooled to the same gas cooler discharge temperature, this increase in gas cooler pressure will shift line A–B upwards and move point B to the left (as depicted in
During compression of the working fluid, vapor at a relatively low pressure and temperature enters first compression mechanism 32 and is discharged therefrom at a higher pressure and temperature. Working fluid at this intermediate pressure is then passed through intercooler 36 to reduce the temperature of the intermediate pressure working fluid before it enters second compression mechanism and is compressed to a supercritical discharge pressure and relatively high temperature. When vessel 50 relies upon temperature regulation to control the mass of working fluid contained therein, vessel 50 is advantageously positioned to receive working fluid at an intermediate pressure between the first and second compression mechanisms 32, 34 at a point after the intermediate pressure working fluid has been cooled in intercooler 36. The mass of working fluid contained within vessel 50 is dependent upon the relative amounts of the liquid phase fraction 46 and the gaseous phase fraction 48 of the working fluid that is contained within vessel 50 and the available storage volume within vessel 50. By increasing the quantity of the liquid phase working fluid 46 in vessel 50, the mass of the working fluid contained therein is also increased. Similarly, the mass of the working fluid contained in vessel 50 may be decreased by decreasing the quantity of liquid phase working fluid 46 contained therein. By reducing the temperature of the working fluid within vessel 50 below the saturation temperature of the working fluid at the intermediate pressure, the quantity of liquid phase working fluid 46 contained within vessel 50 may be increased. Similarly, by raising the temperature of vessel 50, and the working fluid contained therein, some of the liquid phase working fluid 46 can be evaporated and the quantity of the liquid phase working fluid 46 contained therein may be reduced. By positioning vessel 50 to receive intermediate pressure working fluid after the working fluid has been cooled in intercooler 36, the incoming working fluid will be nearer its saturation temperature than if vessel 50 were positioned between first compression mechanism 32 and intercooler 36 and the transfer of thermal energy at vessel 50 during operation of system 30 may be relatively smaller. Various embodiments of vessel 50 are discussed in greater detail below.
In the embodiment of
Second embodiment 30a of a vapor compression system in accordance with the present invention is schematically represented in
Several exemplary embodiments of the intermediate pressure vessel 50 are represented in
Embodiment 50b regulates the temperature of vessel 50b by providing a means of imparting heat to the contents of vessel 50b. In embodiment 50b schematically represented in
Embodiment 50c is schematically represented in
Embodiment 50d is schematically represented in
An electronic controller (not shown) may be used to control the operation of the intermediate pressure vessel based upon temperature and pressure sensor readings obtained at appropriate locations in the system, e.g., temperature and pressure data obtained at the inlet and outlet of gas cooler 38 and evaporator 44 and in intermediate pressure vessel 50 and thereby determine the current capacity of the system and load being placed on the system. As described above intermediate pressure vessel 50 is controllable such that working fluid may be accumulated or released in or from the intermediate pressure vessel 50 to thereby increase or decrease the capacity of the system to correspond to the load placed on the system.
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
Number | Name | Date | Kind |
---|---|---|---|
933682 | Vorhees | Sep 1909 | A |
1408453 | Goosmann | Mar 1922 | A |
1591302 | Franklin | Jul 1926 | A |
1867748 | MacCabee | Jul 1932 | A |
1976079 | Mallinckrodt | Oct 1934 | A |
2133960 | McCloy | Oct 1938 | A |
2219815 | Jones | Oct 1940 | A |
2482171 | Gygax | Sep 1949 | A |
2617265 | Ruff | Nov 1952 | A |
2778607 | Leoni | Jan 1957 | A |
2901894 | Zearfoss, Jr. | Sep 1959 | A |
3022642 | Long | Feb 1962 | A |
3234738 | Cook | Feb 1966 | A |
3365905 | Barbier | Jan 1968 | A |
3400555 | Granryd | Sep 1968 | A |
3413815 | Granryd | Dec 1968 | A |
3423954 | Hamish et al. | Jan 1969 | A |
3513663 | Martin, Jr. et al. | May 1970 | A |
3597183 | Murphy et al. | Aug 1971 | A |
3638446 | Palmer | Feb 1972 | A |
3828567 | Lesczynski | Aug 1974 | A |
3858407 | Schumacher | Jan 1975 | A |
3872682 | Shook | Mar 1975 | A |
3919859 | Ross | Nov 1975 | A |
4009596 | Morse | Mar 1977 | A |
4019679 | Vogt et al. | Apr 1977 | A |
4048814 | Quack | Sep 1977 | A |
4136528 | Vogel et al. | Jan 1979 | A |
4182136 | Morse | Jan 1980 | A |
4205532 | Brenan | Jun 1980 | A |
4439996 | Frohbieter | Apr 1984 | A |
4631926 | Goldshtein et al. | Dec 1986 | A |
4679403 | Yoshida et al. | Jul 1987 | A |
4702086 | Nunn, Sr. et al. | Oct 1987 | A |
4811568 | Horan et al. | Mar 1989 | A |
5042262 | Gyger et al. | Aug 1991 | A |
5062274 | Shaw | Nov 1991 | A |
5142884 | Scaringe et al. | Sep 1992 | A |
5167128 | Bottum | Dec 1992 | A |
5174123 | Erickson | Dec 1992 | A |
5245836 | Lorentzen et al. | Sep 1993 | A |
5394709 | Lorentzen | Mar 1995 | A |
5431026 | Jaster | Jul 1995 | A |
5497631 | Lorentzen et al. | Mar 1996 | A |
5611547 | Baugh et al. | Mar 1997 | A |
5655378 | Pettersen | Aug 1997 | A |
5685160 | Abersfelder et al. | Nov 1997 | A |
5692389 | Lord et al. | Dec 1997 | A |
5806324 | Shaw | Sep 1998 | A |
5829262 | Urata et al. | Nov 1998 | A |
6042342 | Orian | Mar 2000 | A |
6044655 | Ozaki et al. | Apr 2000 | A |
6073454 | Spauschus et al. | Jun 2000 | A |
6085544 | Sonnekalb et al. | Jul 2000 | A |
6105386 | Kuroda et al. | Aug 2000 | A |
6112532 | Bakken | Sep 2000 | A |
6112547 | Spauschus et al. | Sep 2000 | A |
6182456 | Yamaguchi et al. | Feb 2001 | B1 |
6185955 | Yamamoto | Feb 2001 | B1 |
6250099 | Furuya et al. | Jun 2001 | B1 |
6298674 | Finkenberger et al. | Oct 2001 | B1 |
6343486 | Mizukami | Feb 2002 | B1 |
6349564 | Lingelbach et al. | Feb 2002 | B1 |
6385980 | Sienel | May 2002 | B1 |
6385981 | Vaisman | May 2002 | B1 |
6418735 | Sienel | Jul 2002 | B1 |
6460358 | Hebert | Oct 2002 | B1 |
20020050143 | Watanabe et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
278095 | Jun 1912 | DE |
1021868 | Oct 1958 | DE |
2401120 | Jul 1975 | DE |
2604043 | Aug 1976 | DE |
2660122 | May 1978 | DE |
174027 | Mar 1986 | EP |
0 604 417 | Apr 1996 | EP |
0 617 782 | May 1997 | EP |
0 424 474 | Nov 1997 | EP |
0 672 233 | Nov 1997 | EP |
1 043 550 | Oct 2000 | EP |
1042975 | Sep 1966 | GB |
11-63694 | Mar 1999 | JP |
2000-46420 | Feb 2000 | JP |
2001-221517 | Aug 2001 | JP |
146882 | Sep 1982 | NO |
1521998 | Nov 1989 | RU |
463533 | Oct 1988 | SE |
9007683 | Jul 1990 | WO |
Number | Date | Country | |
---|---|---|---|
20050044865 A1 | Mar 2005 | US |