1. Field of the Invention
This invention relates to a multi-storey building and a method of construction thereof wherein the building is constructed using insulated concrete forms. More particularly, this invention relates to buildings exceeding three stories.
2. Description of the Prior Art
Insulated concrete form (ICF) buildings have generally not been constructed with more than three stories because the building code requirements cannot be met in a cost effective manner. Also, great difficulty has been encountered in keeping the ICF walls sufficiently straight. As can be appreciated, it is difficult to keep the ICF walls straight as the concrete is being poured because the foam walls of the forms are lightweight and are preferably not supported by external supports. With some ICF buildings, the foam walls are supported by supplementary supports to keep the walls reasonably straight while the concrete is poured. The supplementary supports are located against the outer side surfaces of the inside and outside foam layers and are usually anchored to the ground. For example plywood supplementary supports are held against the outer side surfaces of the foam layers by wooden boards (e.g. 2×4's) that are anchored on the ground and extend at an angle. After the concrete has set, the supplementary supports, which are used on both the outside and inside foam walls, are removed. Also, the concrete is extremely heavy compared to the weight of the forms. For buildings of three stories or less, if the first wall for example, is not straight within a particular narrow tolerance, then the wall for the second storey will be more out of line and the wall for the third storey will be even further out of line. As can be appreciated, if there are four stories or eight stories or more in the building, the mistakes made on the lower floors are compounded to a point where the walls on the upper stories would be noticeably out of line. Supplementary supports are expensive and time consuming to install and remove. Also, supplementary supports are even more expensive and labour intensive on upper storeys of multi-storey buildings. For example, in some ICF buildings, the first storey of foam forms are supported inside and outside by supplementary supports that are anchored in the ground and extend at an angle to the foam forms. It is not cost effective to have removable supplementary supports in high rise buildings. It is not feasible to use supplementary forms that extend up from the ground in buildings exceeding three stories. It is extremely expensive, if not impossible, to correct an upper storey ICF wall on a high-rise building that is out of line. Repairs must be made to the outside surface of the misaligned wall from the outside of the building. Often an outer portion of the concrete wall must be removed in an attempt to straighten the wall as much as possible.
ICF buildings can be constructed having a masonry exterior. However, since the forms themselves are very expensive compared to other concrete forms, it becomes extremely expensive to add a masonry or brick exterior to an ICF building. ICF buildings can be cost competitive when the exterior surface of the building is a type of stucco. Many jurisdictions have fire regulations that become more stringent when buildings exceed three stories. In the Province of Ontario, Canada, for example, there is a building code requirement that provides that exterior cladding on a building must remain in place for the minimum time required by the code from the commencement of the fire. The purpose of this regulation is to prevent the exterior cladding of the building from falling onto people who are attempting to escape from the building or from falling onto fire personnel. With ICF buildings completed with a stucco exterior, the exterior foam layer can fall off the building during a fire. If a building will not meet the fire regulations in the jurisdiction where the building is to be constructed, no building permit will be issued. Further, insurers are not willing to insure any building that does satisfy all of the fire regulations.
Insulated concrete forms are known. The form walls are separated by a pre-determined distance by ties that are embedded in the foam. Most forms are designed to construct vertical walls at a 90° angle relative to one another. Some forms are angled to construct walls at a 45° angle to one another. Other forms are curved to allow curved walls to be constructed. Forms are specifically designed for use as corner forms. One ICF manufacturer is Nudura (a trademark). The Nudura forms have hinged ties so that the parallel foam walls can be collapsed together during transport and separated during use. The Nudura forms have a standard size of 8 feet by 1.5 feet and are made from expanded polystyrene foam with hinged polypropylene ties. The polystyrene foam is stated to have a density of 1.26 lbs/ft3, a flame spread index of less than 75 and a maximum smoke development index of less than 450 when tested under UL723. Nudura and other manufacturers produce numerous accessory forms. Insulated concrete forms can provide the formwork for foundation and basement load bearing walls and interior or exterior load bearing walls. Of course, ICF can be used on non-load bearing walls as well.
While it is common to construct ICF buildings up to three stories, buildings beyond three stories have generally not been constructed using insulated concrete forms. Free standing ICF buildings beyond three stories have not been constructed previously. An advantage of having an ICF building is that the completed building has a monolithic poured concrete wall installed between the two foam layers of the insulated concrete forms. Voids within the concrete are removed using agitators just after the concrete is poured. The foam layers provide the insulation for the building. Thus, the building is solidly constructed and it is well insulated making it less expensive to heat in the winter and less expensive to aircondition in the summer. The disadvantage is that the insulated concrete forms themselves are expensive relative to other types of construction.
It is an object to the invention to provide a multi-storey ICF building and a method of construction thereof that can be suitably used for high-rises or building exceeding three stories or for any multi-storey building. It is a further object of the present invention to provide an ICF building and a method of construction thereof where the building satisfies all of the fire regulations for buildings exceeding three stories. It is a further object of the present invention to provide a multi-storey ICF building and a method of construction thereof where no removable supplementary supports are required on the outside of the sides of the foam layers for the insulated concrete forms to keep the walls straight while the concrete is poured, the supplementary supports being removed after the concrete sets. It is still a further object of the present invention to provide a multi-storey ICF building where the outside foam layer is periodically straightened and supported by supports that extend inward from the outside foam layer where there is no corresponding inside layer opposed to the outside layer and the supports are anchored directly or indirectly in the wall that has been previously formed. It is a further object of the present invention to provide a multi-storey ICF building and a method of construction thereof using guides at the beginning of each storey for the inside foam layer of the ICF forms, the guides for each storey being vertically aligned with one another.
A method of constructing a multi-storey building having at least one vertical wall made of insulated concrete forms uses forms each having two layers of foam spaced apart from one another by ties to define a core, said building to have multiple floors with ends that are embedded in said at least one vertical wall, said core to be filled with concrete except for openings through windows and doors, an uppermost row of forms of each storey having at least part of an outside foam layer with no corresponding inside foam layer to allow each floor to be partially embedded into said wall, said method comprising stacking said forms to form a vertical wall for one storey at a time with suitable openings for windows and doors, installing reinforcing rods, pouring concrete to fill said core substantially up to a top of said inside foam layer of said uppermost row of forms, installing supports that are affixed directly or indirectly to a portion of said concrete wall that has previously been poured to straighten and support said outside foam layer of said uppermost row of forms.
A method of constructing a building having multiple stores uses insulated concrete forms, said forms usually having two opposing layers of foam space apart from one another by ties to define a core. Each of the forms has an inside foam layer and an outside foam layer, the forms being stackable to form a vertical wall with at least part of an uppermost row of forms of each storey having an unopposed outside foam layer. The unopposed outside foam layer being at a higher level than an inside foam layer. The method comprises stacking said forms for an insulated concrete form storey with openings for any windows and doors, with at least part of said uppermost row of forms for each storey having an unopposed outside foam layer with said top being higher than a top of said inside foam layer for each storey, installing reinforcing rods and filling said core with fresh concrete substantially up to said top of said inside foam layer of said uppermost row of forms, allowing said concrete to cure sufficiently to enable said floor to be installed, installing supports to straighten and support said unopposed outside foam layer, said supports extending inward from said unopposed outside foam layer and being anchored directly or indirectly in said wall as previously formed, installing said floor and repeating said method for each subsequent storey, at least partially embedding said supports in said concrete and locating said supports to leave said supports in place when said vertical wall has been completed.
A method of constructing a building having multiple stories uses a plurality of insulated concrete forms. Each of the forms has two layers of foam spaced apart from one another by a pre-determined distance to define a core. The two layers are an inside layer and an outside layer. The building has a base and the forms are stackable to form a wall. The method comprises constructing the building in stages on the base, arranging the forms on the base and stacking the forms to form a vertical wall for a first insulated concrete foam storey with openings for any windows and doors, cutting away the inside layer of each form that is located just beneath a floor for a second storey, thereby creating cut forms. The method further includes installing reinforcing rods and filling the core with fresh concrete, removing voids and allowing the fresh concrete to cure, installing a floor for the second storey just above a cut line of the cut forms in such a manner that the floor can be partially embedded into the vertical wall, installing a plurality of adjustments between the floor for the second storey and the outside foam layer of the cut forms to allow the outside foam layer to be straightened, adjusting the adjustments to straighten and support the outside foam layer, stacking forms on the cut forms and the floor directly above the forms for the first storey with suitable openings for any doors and windows and installing reinforcing rods, and repeating the method described for the first insulated concrete form storey for subsequent stories and installing a roof on an uppermost storey.
A method of constructing a building having multiple stories using insulated concrete forms having two parallel foam layers separated by ties that are embedded in the foam layers to define a core for receiving poured concrete, the forms being stackable to form a wall or walls, a method comprising:
A method of constructing a building using a plurality of insulated concrete forms, each of the forms having two layers of foam spaced apart from one another by a pre-determined distance to define a core, said two layers having an inside layer and an outside layer, the buildings having a base, the forms being stackable to form a vertical wall with openings for windows and doors therein, the method comprising constructing the building in stages on the base, arranging the forms on the base and stacking the forms to form a vertical wall with openings for any windows and doors, installing a frame for each window and door, installing retention means on an exterior surface on each frame in such a manner that the retention means is embedded in concrete when concrete is poured, installing mesh on an exterior surface of each frame in such a manner that the mesh is embedded in concrete when the concrete is poured, the mesh being wide enough to extend along an exterior of the frame along the outside foam layer and partially along the front of the outside foam layer, installing each frame containing retention means and the mesh before the forms are stacked around each frame, pouring the concrete to fill the core and finishing an exterior surface of the building by embedding an exterior section of mesh in a stucco mixture on the exterior surface.
Preferably, the method includes the steps of constructing the building until the building is greater than three storeys.
A multi-storey building has exterior vertical walls formed using a plurality of insulated concrete forms, the forms each having two layers of foam spaced apart from one another by a pre-determined distance to form a core. The vertical walls include doors and windows. The building comprises a guide for an inside foam layer of said forms located on a floor for each storey. The building has floors embedded in the vertical walls, the forms having part of the inside foam layer that is cut away at a cut level for each floor that is embedded in the vertical wall to create cut forms, with adjustments extending between each floor and an outside foam layer of the cut forms. The core is filled with concrete and the adjustments extend through the concrete at each floor that is embedded in the vertical wall.
Preferably, the guide is a track.
A multi-storey building has vertical walls formed using a plurality of insulated concrete forms. The forms each have two layers of foam spaced apart from one another by a pre-determined distance to form a core for receiving fresh concrete. The vertical walls include doors and windows and the building has a guide for an inside foam layer of the two layers of the two layers of the forms located at an upper surface of a floor of each storey.
A multi-storey building has vertical walls formed using a plurality of insulated concrete forms, the forms each having two layers of foam spaced apart from one another by a pre-determined distance to form a core. The vertical walls include doors and windows. The building comprises floors embedded in the vertical walls. Each form has an inside foam layer and an outside foam layer comprising the two layers of foam. The forms have part of the inside foam layer cut away at a cut level to form cut forms for each floor that is embedded in the vertical wall with adjustments extending between the floor and the outside layers of the cut forms. The core is filled with concrete and the adjustments extend through the concrete in each floor that is embedded in the vertical wall.
Preferably, the building is greater than three storeys.
A multi-storey building has vertical walls formed using a plurality of insulated concrete forms, the forms each having two layers of foam as spaced apart from one another by ties to form a core. The vertical walls include openings for doors and windows. The building comprises a guide for an inside foam layer of the forms located on a floor for each storey, the building having floors embedded in the vertical walls. The forms have a channel located at an uppermost level of each storey that is embedded in the wall at each channel, the core containing reinforcing rods. The core is filled with concrete with supports extending directly or indirectly between the concrete and the outside foam layer at each channel. The supports are at least partially embedded in the vertical wall.
A multi-storey building has vertical walls formed using a plurality of insulated concrete forms. The forms each have two layers of foam spaced apart from one another by a predetermined distance to form a core therebetween. The vertical walls include openings for doors and windows with frames thereon. The frames for the windows are constructed of foam pieces that are inserted between the two layers of foam and held in place by adhesive.
A multi-storey building has vertical walls formed using a plurality of insulated concrete forms. The forms each have two layers of foam spaced apart from one another by a predetermined distance to form a core therebetween. The vertical walls include openings for doors and windows having frames thereon. The building comprises retention means located in an exterior surface of each frame in such a manner that the retention means is embedded in concrete when the concrete is poured. A mesh is located on an outer surface of each frame in such a manner that the mesh is embedded in concrete when the concrete is poured. The mesh is wide enough to extend along an outside of the frame around the outside foam layer and partially along a front of the exterior foam layer. The concrete fills the core, the mesh having an interior section that is embedded in the concrete and an exterior section that is embedded in a stucco mixture.
A method of constructing a multi-storey building has at least one vertical wall made of insulated concrete forms, said forms each having two layers of foam spaced apart from one another by ties to define a core. The two layers of foam are an inside foam layer and an outside foam layer. The building is to have multiple floors with ends that are embedded in the at least one vertical wall. The core is to be filled with concrete except for openings for windows and doors. The method comprises installing an alignment guide for the inside foam layer on an upper surface of each floor for each storey. There are a plurality of alignment guides, said guides being vertically aligned with one another for each wall of the at least one vertical wall.
A method of constructing a multi-storey building uses at least one vertical wall made of insulated concrete forms. The forms each have two layers of foam spaced apart from one another by ties to define a core, said two layers of foam being an inside foam layer and an outside foam layer. The building is to have a stucco exterior with the core to be filled with concrete except for openings for windows and doors. There are frames around an outside of the windows and doors with retention means extending beyond an outer surface of each frame. The method comprises installing the retention means to extend from the core to an outside of the frame around the outside foam layer and partially along a front of the outside foam layer, embedding an inner portion of the retention means in concrete poured into the core, and embedding an outer portion of the retention means in a stucco mixture when installing stucco on the building. Preferably, the building exceeds three storeys.
In the drawings:
The present invention can be used with insulated concrete forms of various manufacturers and is not in any way restricted to Nudura forms. The forms must have sufficiently strong ties to hold the two foam layers together and a high enough density and chemical formula to meet the fire requirements. Various types of insulated concrete forms can be used on the same building. For example, the forms can be straight forms where the two foam layers are flat and are rectangles of substantially the same size. The forms can be curved forms for forming a curved wall. When curved forms are used, the inner foam layer will be smaller than the outer foam layer simply because the inside of a curve is a shorter distance than an outside of a curve. Corner forms can be used where the outside foam layer has a 90° angle and the inside foam layer has a corresponding 90° angle. The inside foam layer will be smaller than the outside foam layer to compensate for the difference in distance around the outside of a corner compared to the inside of a corner of a corner form. Angled forms can also be used. Angled forms, for example, will be similar to corner forms except that the angle between the two planes of the form would not be 90°. The angled forms could be 45° in order to construct a wall that is at an angle of 45° to another wall. Special forms can also be used. Special forms can have, for example, unique shapes for specific purposes. Also, the forms can be supplied as components of forms that are assembled on site. The forms can also be non-symmetrical forms where the inside foam layer does not correspond to the outside foam layer. For example, the inside foam layer can have a shorter height than the outside foam layer of the same form. Forms of any of the types described can be cut on site to fit the particular location where the form is to be installed.
In
In
Preferably, in constructing a building, the insulated concrete forms are stacked and arranged on the base of the building in such a manner that the building can be constructed one storey at a time. The forms are placed on the base and stacked up to the level where the floor of the second storey is to be installed. The forms along the top of the first storey are then partially cut away to create the cut forms 36 as shown in
As shown in
Insulated concrete forms 32 (not shown in
Instead of cutting the forms on site or installing the forms on site and then cutting them, non-symmetrical forms can be manufactured for use as the uppermost foam layer of each storey where the inside foam layer is shorter than the outside foam layer by a distance that is substantially equal to the thickness of a floor to be installed at the top of that storey. These non-symmetrical forms can be manufactured in that manner or can be supplied as components to be assembled at the site. When the forms are cut on site, the inside foam layer is cut away and much of that foam layer is wasted. That waste can be eliminated by manufacturing the forms with the lower height inside foam layer, but non-symmetrical forms are also more expensive than straight forms because they are not produced in the same quantity.
In
From
In
In
In
In
In
While the present invention can be used to improve any construction of all ICF buildings, it is preferably used for buildings exceeding three stories in height. ICF buildings constructed in accordance with the present invention will be constructed with a much narrower tolerance for straightness and squareness than previous ICF buildings. In addition, substantial cost savings can be achieved over the construction costs of conventional buildings. With buildings constructed in accordance with the present invention, there is no need to be on the outside of the building during the construction of the outside walls except for the masonry or stucco exterior. ICF buildings constructed in accordance with the present invention are fast and easy to construct relative to conventional buildings and relative to previous ICF buildings. Conventional high-rise buildings require a crane to be available on the building site almost from the start of construction until construction has been almost completely finished. With the method of construction of the present invention, it may be desirable to have a crane on site sometimes during construction, but a tower crane is generally not required and construction cost savings of 20 percent or higher can be achieved. Site size restrictions may make it necessary to use a tower crane for some ICF buildings. Also, no removable supplementary supports are required to support the two foam layers while the concrete is being formed resulting in a further saving.
While ICF forms are usually used for exterior walls, circumstances could arise where the forms are used for an interior wall or walls. One foam layer of each form is considered to be an inside layer and the other foam layer of each form is considered to be an outside layer when an interior wall is being constructed with ICF forms. Interior walls are within the scope of the claims.
The uppermost row of forms of each storey has an inside foam layer that is shorter than an outside foam layer for at least part of said row. Since there is no corresponding inside foam layer, the outside foam layer must be straightened and supported. Otherwise, the outside foam layer will not remain straight and/or will move outward as the fresh concrete is poured. The outside foam layer is said to be an unopposed outside foam layer as there is no corresponding inside foam layer directly opposite the outside foam layer. The outside foam layer is straightened and supported by supports that are directly or indirectly anchored in that part of the concrete wall that has previously been poured. The supports extend inward from the outside foam layer and are embedded in the concrete wall when it is poured beyond a level of the outside foam layer. The supports can be anchored in a floor or they can be anchored to reinforcing rods in the concrete wall or they can be anchored directly into the concrete wall. The supports can each comprise more than one component. In many buildings, the uppermost row of forms of each storey will have an unopposed outside foam layer. However, where balconies or other external structures are added to the outside portion of the vertical wall at the uppermost row of forms for each storey, the portion of the uppermost row of forms where an external structure is added will not have an unopposed foam layer as both the inside foam layer and outside foam layer will be substantially at the same height in order to accommodate the external structure. In that portion of the vertical wall where there is no external structure, there will be an unopposed outside foam layer in the uppermost row of forms for each storey. The supports will be installed for the unopposed outside foam layer before the concrete is poured against that outside foam layer.
Preferably, the mesh is embedded in concrete when the concrete is poured and extends along an exterior of the outside foam layer along the bottom of a bottom row of forms of each building and along a top of the top row of forms of each building and along any border or edge of the insulated concrete form wall. The guides are preferably vertically aligned with one another using lasers as each storey is constructed.