A wireless device operates in multiple frequency bands via a multi-structure arrangement that optimizes the electromagnetic performance at each frequency range of operation. The device includes a radiating system comprising a ground plane layer, a multi-structure antenna system that comprises at least two structural branches and at least a radiation booster, and a radiofrequency system. The radiofrequency system comprises an element inserted in the branch structure, connected at a point within the structure. The radiofrequency system may include an additional matching network that fine tunes the impedance of the device to match all the frequency ranges of operation.
Most wireless devices feature a customized antenna, i.e., an antenna that is designed and manufactured ad-hoc for each device model. This is because each wireless device or, more specifically, each mobile device features a different radioelectric specification and a different internal architecture. Additionally, one of the main requirements demanded of antenna technology developed for wireless devices is to feature reduced dimensions since the available space for the antenna system in such devices is quite small. Consequently, one of the constrains of some antenna technologies when they have to be applied to wireless devices is their size, since the relationship between antenna size and its operating wavelength results in large sizes when small frequency bands need to be covered, such as LTE700, GSM850 or GSM900 in the case of mobile communications. In order to fulfill size requirements, antenna technology has evolved to provide complex antenna architectures that efficiently occupy and make use of the maximum space available inside the device, especially if this is a mobile device, a smartphone and the like.
Since the need for covering more applications is an increasing demand of wireless devices, other requirements related to such devices are large bandwidths and high efficiencies in order to provide good wireless communications. The challenge then is to develop antenna technologies that provide large bandwidths with good antenna efficiencies and that feature reduced sizes to fit in the small available spaces that wireless devices dedicate to the antenna system. One finds in the prior art some solutions proposed to fulfill the mentioned requirements.
Other prior-art solutions comprise an antenna system that includes more than one single-branch structure and a feeding system for each structure, or branch in these cases. Other solutions found in the prior art operate by coupling between branches of their single-branch structures. More details of those solutions are found in WO 2014/012796 A1 and US 2016/0111790 A1, respectively. In general, the solutions that include more than one single-branch structure provide better bandwidths than single-branch solutions but one of their drawbacks is that they feature radiofrequency systems more complex in architecture and in the number of ports. One also may find multi-branch solutions with simpler radiofrequency systems but those can not reach so large bandwidths as the aforementioned solutions and a device related to the system described herein.
It is the purpose of the described system to provide a wireless device solution that fulfills the electromagnetic requirements at the different frequency regions of operation via a multi-structure multi-branch antenna system that enables optimization of the performance at each frequency region and/or band separately, improving the operation bandwidth and the efficiencies achieved. Additionally, the multi-branch solution features a common feeding system for the whole multi-branch structure, providing a simpler feeding system and normally also a simpler radiofrequency structure than the prior-art solutions that comprise more than one single-branch structures. The described system also profits from the advantages of VATech technology as described in WO 2010/015365 A2, such as for example small antenna system volume and standardization.
Different applications can be covered by a wireless device related to the described system, including mobile, Wifi, Bluetooth or even Sharkfin applications. It is an object of the described system to provide a wireless device that operates at different frequency band and/or regions via a multi-structure arrangement comprising different structural branches, which operate independently at the different given frequency regions and/or bands of operation, a structural branch being a conductive path.
In this section, illustrative examples of the described system are provided in detail with no limiting purpose. Referring to
As previously mentioned, each branch mainly contributes to the performance of one frequency band and/or region of operation.
Depending on the application of the wireless device, the ground plane dimensions of a device related to the described system are typically between 60 mm and 300 mm in length LG and between 30 mm and 240 mm in width WG, but not limited to those dimensions, or preferably between 100 mm and 200 mm in length and between 60 mm and 150 mm in width, or yet preferably between 110 mm and 150 mm and between 60 mm and 90 mm for the ground plane length and width respectively. The area that the antenna system of a device related to this system fills, normally features a length LA between 10 mm and 100 mm and a width WA between 5 mm and 30 mm, or preferably between 15 mm and 60 mm and between 8 mm and 20 mm for the area length and width respectively, or even preferably between 20 mm and 30 mm for length and between 10 mm and 15 mm for width, those dimensions depending on the operation wavelengths.
Some embodiments related to the described system include only one radiation booster even if the antenna system comprises more than one branch.
Other examples related to the described system include an antenna system that comprises two branch paths with two radiation boosters connected at an end of each conductive branch, which operates at two different frequency bands and/or regions, like for example the embodiment provided in
In some embodiments, the multi-structure arrangement includes three conductive branch paths and three radiation boosters, each conductive path connected at an end to a radiation booster. Such embodiments normally operate at three different frequency regions and/or bands, such for example a first range of frequencies within 600 MHz and 1 GHz range, a second range of frequencies within the 1,700 MHz and 3,000 MHz range and a third frequency range where the lowest frequency is bigger than the largest frequency of the second frequency range of operation.
Some other examples comprise a ground clearance that allocates the multi-structure antenna system, not positioned at a corner of the ground plane layer 12 but at other locations. Some other embodiments include such ground clearance at a corner position of the ground plane layer.
Referring to
This application claims priority under 35 U.S.C. § 119(e) from U.S. Provisional Patent Application Ser. No. 62/286,469 filed Jan. 25, 2016, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
20140340276 | Anguera Pros | Nov 2014 | A1 |
20160028152 | Anguera Pros et al. | Jan 2016 | A1 |
20160111790 | Anguera Pros et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2010015364 | Feb 2010 | WO |
2010015365 | Feb 2010 | WO |
2014012796 | Jan 2014 | WO |
2014012842 | Jan 2014 | WO |
Entry |
---|
Wong, Kin-Lu ; et al., A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets, IEEE ransactions on Antennas and Propagation, p. 121-125, vol. 51, No. 1, Jan. 2003. |
Number | Date | Country | |
---|---|---|---|
20170214137 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62286469 | Jan 2016 | US |