The present invention is directed to a multi-tap compression connector, and more particularly, to a split multi-tap compression connector that can accommodate different size tap wires.
Examples of multi-tap compression connectors can be found in the following U.S. Pat. Nos. 3,009,987; 5,103,068; 5,200,576; 6,452,103; 6,486,403; 6,525,270; 6,538,204; and 6,552,271. However, none of these prior art compression connectors have a first collapsible link positioned between the first and second tap wire ports, and a second collapsible link positioned between the third and fourth tap wire ports. Moreover, none of these prior art compression connectors have a first angled crumple zone positioned between the first and second side tap wire ports, and a second angled crumple zone positioned between the third and fourth side tap wire ports.
It would be desirable to provide a multi-tap compression connector having increased wire pullout strength.
It would also be desirable to provide a multi-tap compression connector having improved retention of tap wires before and during the crimping operation.
It would further be desirable to provide a multi-tap compression connector having a collapsible link to increase the overall compressibility of the compression connector.
It would also be desirable to provide a multi-tap compression connector having non-coplanar side taps to improve retention of tap wires therein.
A compression connector for securing wires therein is disclosed. The compression connector has a first section connected to a second section. Each of the first and second sections has a body portion and an end wall. The body portion has a hook and a ramp extending therefrom to form a main wire port, and the body portion has first and second tap wire ports adjacent the end wall. An angled collapsible link is defined between the first and second tap wire ports.
Preferably, the compression connector has a first pair of slots extending between the first section and the second section on a first side thereof, and a second pair of slots extending between the first section and the second section on a second side thereof. The first and second pairs of slots are capable of receiving a cable tie for securing wires therein before crimping.
Preferably, each of the first, second, third and fourth tap wire ports are teardrop-shaped and are substantially the same size. Alternatively, the first tap wire port may be larger than the second tap wire port, and the third tap wire port may be larger than the fourth tap wire port.
Preferably, the compression connector has first, second, third and fourth retention tabs. The retention tabs retain the tap wires in the tap wire ports.
In another preferred embodiment, a compression connector for securing wires therein is disclosed. The compression connector has a first body portion connected to a second body portion. Each of the body portions has a hook and a ramp extending therefrom to form a first main wire port, and a hook and a ramp extending therefrom to form a second main wire port. Each of the body portions further has two side tap wire ports, and an angled crumple zone defined between the two tap wire ports.
Preferably, the compression connector has a first pair of slots extending between the first and second body portions on a first side thereof, and a second pair of slots extending between the first and second body portions on a second side thereof. The first and second slots are capable of receiving a cable tie for securing wires therein before crimping.
Preferably, each of the side tap wire ports is positioned between a hook and a ramp. Moreover, each of the side tap wire ports are substantially the same size. Alternatively, each of the side tap wire ports are a different size.
The illustrated embodiments of the invention are directed to a split multi-tap compression connector having at least one main line wire and two tap wires secured therein.
As shown in
Retention tabs 46, 48 increase the overall compressibility of compression connector 20 because tap wire ports 42, 44 can accommodate different size tap wires 24, 26. As shown in
Second section 30 is identical to first section 28. As best seen in
As best seen in
A second embodiment of the present invention is illustrated in
In operation, C-shaped compression connector 20 allows for partial hands-free installation because hooks 34, 56 can be hung around main line wires 22 while tap wire 24 is inserted into tap wire ports 42, 64, and tap wire 26 is inserted into tap wire ports 44, 66. Main wire port 38 and one of tap wire ports 42 or 44 must be utilized. The remaining tap wire port 42 or 44 may be utilized or left empty. Similarly, main wire port 60 and one of tap wire ports 64 or 66 must be utilized. The remaining tap wire port 64 or 66 may be utilized or left empty. Compression connector 20 is crimped with one single crimp over first section 28 and second section 30.
Compression connector 20 is crimped using a crimp tool (not shown), such as Panduit® CT-2940 crimp tool, fitted with a pair of crimp dies (not shown), such as Panduit® CD-940H-250 crimp dies. The outer radius of hooks 34, 56, first end wall 40 and second end wall 62 are smaller than the inner radius of the crimping dies and, thus, two die contact points are created. During crimping, as best seen in
A third embodiment of the present invention is illustrated in
As shown in
Second section 232 is identical to first section 230. Second section 232 includes a second body portion 256 having hooks 258, 260 and ramps 262, 264 extending therefrom to form conductor receiving channels 266, 268 in which main line wires 222, 224 can be placed. Preferably, hooks 258, 260 are C-shaped. S-shaped compression connector 220 allows for partial hands-free installation because hooks 258, 260 can be hung around main line wires 222, 224 while tap wires 226, 228 are inserted into side tap wire ports 270, 272. The outer radius of hooks 258, 260 is smaller than the inner radius of the crimping dies and, thus, two die contact points 274, 276 are created. As shown in
The disclosed invention provides a split multi-tap compression connector having improved retention of tap wires before and during the crimping operation. It should be noted that the above-described illustrated embodiments and preferred embodiments of the invention are not an exhaustive listing of the form such a compression connector in accordance with the invention might take; rather, they serve as exemplary and illustrative of embodiments of the invention as presently understood. By way of example, and without limitation, a compression connector having three or more tap wire ports is contemplated to be within the scope of the invention. Many other forms of the invention are believed to exist.
This application claims priority to U.S. Provisional Application Ser. Nos. 60/413,686, filed on Sep. 26, 2002, and 60/467,031, filed on Apr. 30, 2003, the entireties of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10669391 | Sep 2003 | US |
Child | 11005988 | Dec 2004 | US |