The present invention relates generally to pay-for-play, self-scoring electronic dart games. More particularly, the present invention relates to electronic dart games having multiple targets.
Self-scoring, electronic, single target dart games typically offer a limited number of game play options. However, given the limited space often available for such games, the number or types of games available to players are limited. Further, the use of multiple target games are typically limited to the space constraints. More specifically, such multi-target games often require sufficient space to allow for maneuvering of the targets as the targets are changing position. Further, such changes in targets typically require that the game be manually operated, such as by a third-party attendant who may collect payment for game play, provide the darts to the players, and ensure the participants comply with the rules of game play. Further, such multi target gaming machines, if electronic, are complex and require a substantial number of duplicative electronics for use with the different targets.
The present invention relates to multiple target dart games utilizing axial rotation of a game board that provides the players options as to the target on the gaming machine that is to be used for game play. Further, certain embodiments of the present invention are for use in coin-operated industry environments where dart games are adapted with an automatic fee-for-play collection mechanism. Such coin-operated industry environments allow players to pay-for-play by inserting the necessary fee into the dart game for desired game selection and launch without the need for a third-party attendant. Additionally, players also remove their own darts from the dart target as needed to continue game play until game completion.
Embodiments of the present invention also provide a robust multiple target electronic dart game with axial rotation that also reduces production costs through the use of shared electrical components.
Additionally, embodiments of the present invention also provide a user friendly mechanism to allow players to move and latch into place a player selected and/or preferred target. Further, according to certain embodiments, the present invention provides a robust and re-enforced dual purpose latch and release mechanism optimally positioned to withstand powerful physical blows to the invention by players, such as players frustrated or overzealous with their game play, before, during and after dart removal from a target. Additionally, embodiments of the present invention provide a contactless target positioning mechanism, such as, for example, a magnetic field detector, which is optimally positioned for reliable, consistent target position detection.
One aspect of the present invention is a gaming machine having a game controller that includes a cabinet having a front portion and a back portion. The gaming machine also includes a game board that is rotatably secured to the cabinet. The game board includes a first target side, a second target side, and a detector. The first target side is configured for game play of a first game, and the second target side is configured for game play of a second game. The game board is rotatable about the cabinet between at least a first position and a second position. The first target side faces the front portion of the cabinet when the game board is in a first position, while the second target side faces the front portion when the game board is in the second position. The detector is configured for the detection of a position of the game board relative to the cabinet. Further, the game controller is configured to determine whether the game board is in the first or second position based on the position of the game board detected by the detector. The gaming machine further includes a latch mechanism that is operably connected to the game board. The latch mechanism, which includes a handle and a bolt, is configured to engage the cabinet to releasably retain the game board in a first or second position.
According to another aspect of the present invention is a gaming machine that includes a target assembly secured to a cabinet. The target assembly includes a multi-sided game board, a game controller, and a magnetic field detector. The multi-sided game board is rotatable about the cabinet between at least a first position and a second position. Further, the multi-sided game board also includes at least two target sides that are configured for play of electronic dart games. The magnetic field detector is configured to detect a magnetic field generated by one or more magnets positioned in the cabinet. The game controller is configured to determine whether the multi-sided game board is in a first or second position based on the polarity of the magnetic field detected by the magnetic field detector.
A further aspect of the present invention is a gaming machine having a cabinet having a first side and a second side. The gaming machine also includes a target assembly that is secured to the cabinet. The target assembly has a multi-sided game board, a game controller, and a magnetic field detector. The multi-sided game board is rotatable about the cabinet between at least a first position and a second position. Additionally, the multi-sided game board includes at least two target sides configured for play of electronic dart games. The magnetic field detector is configured to detect a first magnetic field that is generated by a first magnet positioned in proximity to the first side of the cabinet. The magnetic field detector is also configured to detect a second magnetic field generated by a second magnet positioned in proximity to the second side of the cabinet. Further the first and second magnetic fields have a different polarity. The game controller is configured to determine whether the multi-sided game board is in a first or second position based on the polarity of the magnetic field detected by the magnetic field detector. Additionally, the game controller used for score detection for the first target side is the same game controller used for score detection for the second target side.
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings, certain embodiments. It should be understood, however, that the present invention is not limited to the arrangements and instrumentalities shown in the attached drawings.
The player input device 18 of the gaming machine 10 may be used for a variety of game play related operations, including, for example, during game selection, game start, selection of number of players for game play, and/or switching identification of current player(s) playing the game, among other functions. The main game controller may also include memory that is used to store game play information. For example, the main game controller may store information regarding different types of games for game play on the gaming machine 10. The main game controller may also be configured to control the information and/or images displayed on the display 14, such as, for example, the score of the game, the number of players, and/or an indication of the type of game being played, among other information and/or images.
The cabinet 12 may also include a payment mechanism 20 that is configured to receive payment for game play on the gaming machine 10. According to certain embodiments, the payment mechanism 20 is a pay-for-play mechanism such that the payment mechanism receives payment for games that are about to be played on the gaming machine 10 without the need for a third-party attendant. Moreover, according to certain embodiments, the player may use the player input device 18 to make selections for game play, such as the game to be played and/or the number of players playing the game before and/or after inserting payment into the payment mechanism 20. The payment mechanism 20 may be operably connected to the main game controller of the gaming machine 10 such that the main game controller receives an indication of when payment for game play has been inputted into the payment mechanism 20. According to certain embodiments, the payment mechanism 20 may also be configured to indicate the type, amount, and/or denomination of the currency inserted into the payment mechanism 20. Additionally, according to certain embodiments, the main game controller may be configured to determine whether the payment received by the payment mechanism 20 is sufficient for the requested game play.
According to illustrated embodiments, the target assembly 16 includes a multi-sided game board 22. For example, referencing
According to certain embodiments, the first target side 24 may have a configuration, such as indicia, for example, that is used for play of at least one game that is different than the configuration of the second target side 26. For example, in embodiments in which the gaming machine 10 is at least used for the play of a dart game(s), the indicia on the first target side 24 may provide a standard dart board, such as shown in
If the player(s) desires to play a game on a target side 24, 26 of the game board 22 that is not presently positioned relative to the cabinet 12 for game play, the player may axially rotate the game board 22 until the desired target side 24, 26 is oriented for game play. For example, when game play is to commence using the first target side 24, the game board 22 may be moved (if needed) relative to the cabinet 12 such that the game board 22 is in a first position. In the illustrated embodiment, when the game board 22 is in the first position, the player may be able to simultaneously view both the display 14 and the first game target side 24, as shown in
The target assembly 16 may be configured for the game board 22 to be axially rotated in any number of directions, such as along an axis that is generally perpendicular, parallel, or at an angle to the floor, or any combination thereof. For example, the shaft 28 may extend through the game board 22 so as to be operably attached to the cabinet 12 both above and below the game board 22. Alternatively, the shaft 28 may include a lower shaft and/or an upper shaft, with the lower shaft extending from the bottom 30 of the game board 22 to the cabinet 16, and the upper shaft extending from the top 32 of the game board 22 to the cabinet 12. For example,
More specifically, as the game board 22 is being axially rotated to the first position and the user is not displacing the handle 38, the bolt 40 may be outwardly biased from the game board 22 by the spring. Therefore, when the bolt 40 initially engages the angled surface 50, the bolt 40 may be at or around its full outwardly extended locked position from the game board 22. As the game board 22 continues to be axially rotated, the angled configuration of the angled surface 50 may cause the bolt 40 to continue to be inwardly depressed into the game board 22, thereby further compressing the biasing spring of the latch mechanism 36. After the depressed bolt 40 reaches the end of the angled surface 50 of the strike plate 48 so that the angled surface 50 is no longer inwardly depressing the bolt 40, the spring is able to return the bolt 40 to its outwardly extended locked position in an area of the recess 46 behind the angled surface 50, thereby locking the position of the game board 22 relative to the cabinet 12.
Similarly, according to certain embodiments, when the game board 22 is to change positions, the user may inwardly displace the handle 38 so as to draw at least a portion of the bolt 40 toward the game board 22 so that the bolt 40 is withdrawn from the recess 46 and has sufficient clearance to pass over the angled surface 50 of the strike plate 48. The game board 22 may then be axially rotated to another position, such as being rotated from the first position to the second position. Thus, when the game board 22 in the illustrated embodiment is moved to the second position, the latch mechanism 36 may engage a similar strike plate 48 located at second side 35b of the cabinet 12 before the game board 22 is secured at the second position.
As shown in
The gaming machine 10 may also include a game controller involved with tracking player activity with respect to the target sides 24, 26 of the game board 22, such as, for example, the main game controller or a peripheral game controller 65. For example,
In the illustrated embodiment, the peripheral game controller 65 is operably connected to a detector 64 that is used in the detection of the position of the game board 22 relative to the cabinet 12. For example, the detector 64 may be used in the detection of which target side 24, 26 is and/or is not facing the front portion 44 of the cabinet 12. Moreover, the detector 64 may provide a signal or other instruction that the peripheral game controller 65 uses to determine which target side 24, 26 is currently properly positioned for game play. Further, the detection or determination of the positioning of the game target sides 24, 26 may allow the peripheral game controller 65 to determine which target side 24, 26 is to be monitored during that period of game play for purposes of score detection. For example, if the first target side 24 is detected to be in a first, or front facing, position relative to the cabinet 12, then the peripheral game controller 65 may determine that detected scoring events during game play of the first target side 24 are to be recognized, while detected scoring or non-scoring events involving other target sides 26 are to be disregarded. According to certain embodiments, the peripheral game controller 65 may even deactivate target sides 24, 26 that the peripheral game controller 65 determines are not currently in a forward facing position. Such detection of position of the game board 22 and which target sides 24, 26 are to be monitored, ignored, and/or deactivated for purposes of game play activities allows for the same peripheral game controller 65 to be used for different games, such as games on different target sides 24, 26.
The detection of the orientation of the game board 22, such as whether the game board 22 is in the first or second position can be achieved by a variety of different ways, including both passive and active means. For example, the positioning of the game board 22 relative to the cabinet 12 may be determined by the use of optical sensors (both reflective and interrupted beam), inductive sensing, capacitive sensing, ultra-sonic sensing, mechanical switch means using an actuator and movable contact, among others. For example, in the illustrated embodiment, the detector 64 may be a magnetic field detector, such as a linear Hall Effect sensor, that is configured to detect a magnetic field of at least one magnet or other magnetic material 66a, 66b that is mounted in or to the cabinet 12. For example, referencing
For example, according to the illustrated embodiment, when the game board 22 is at the first position, the magnetic field detector is in relative close proximity to the first magnet 66a. The magnetic field detector may then be able to detect the polarity of the portion of the first magnet 66a that is facing the magnetic field detector. For example, the first magnet 66a may be oriented such that the north magnetic pole of the magnet 66a is facing toward the magnetic field detector, while the south magnetic pole of the magnet 66a is facing away from the magnetic field detector. With the first magnet 66a in this orientation, the magnetic field detector may detect the north polarity of the first magnet 66a.
Conversely, when in the game board 22 is moved to the second position in the illustrated embodiment, the magnetic field detector may be in proximity to a second magnet 66b. The second magnet 66b may have an orientation that is opposite of that of the first magnet 66a, such as having the south polarity facing the magnetic field detector. Therefore, the magnetic field detector may detect the south polarity of the second magnet 66b when the game board 22 is in the second position. Thus, the detection of a north or south polarity may be used to indicate whether the game board 22 is in the first or second position.
The VoutO level may be monitored by the game controller, such as, for example, the peripheral game controller 65, to determine the position of the game board 22. In such an embodiment, the VoutO level may be used by the peripheral game controller 65 to determine which target side 24, 26 of the game board 22 to monitor for purposes of game play events, including, for example, detection of scoring on the target side 24, 26 presently positioned for game play relative to the game cabinet 12. For example, an indication that the VoutO level is at or within a predetermined range of the VsatL level may indicate to the peripheral game controller 65 that the game board 22 is at the first position, where the first target side 24 is in the first or forward facing position relative to the cabinet 12. The peripheral game controller 65 may then monitor game play on the first target side 24 of the game board 22, such, for example, detecting a scoring or non-scoring events during game play of the first target side 24.
The VoutO level may also indicate to the peripheral game controller 65 which target side 24, 26 is not being played, such as which target side 24, 26 is currently in the second or rearward facing position relative to the cabinet 12 so as to prevent the award or allocation of points or prizes due to scoring on the rearward facing target side 24, 26. According to certain embodiments, the peripheral game controller 65 may deactivate the rearward facing target side 24, 26, such as, for example, by stopping the delivery of electricity needed for game play of the rearward facing target side 24, 26 and/or deactivating detection of scoring or non-scoring events on the rearward facing target side 24, 26. Such deactivation may prevent inadvertent or improper scoring or non-scoring activity when the opposite, forward facing target side 24, 26 is being played. Further, the peripheral game controller 65 may similarly deactivate both target sides 24, 26 when the indeterminate VoutO level indicates to the peripheral game controller 65 that the position of the game board 22 is being changed. Such deactivation while the position of the game board is being changed may prevent the peripheral game controller 65 from erroneously detecting a scoring or non-scoring game play event due to contact with a target side 24, 26 during rotation of the game board 22.
According to certain embodiments, the latch mechanism 36 may include a sensor that is used to provide a signal to the peripheral game controller 65 that indicates when the game board 22 is going to be rotated so that contact with the target side 24, 26 is not interpreted by the peripheral game controller 65 as a scoring or non-scoring game play event. For example, the latch mechanism 36 may include a capacitive sensor that is senses that a player is in contact with the handle 38. A signal may then been provided to the peripheral game controller 65 that indicates that the player is in contact with the handle 38 and that the peripheral game controller 65 should at least temporarily suspend detection of scoring and non-scoring game play events.
While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims priority to U.S. Application No. 61,490,412, having a filing date of May 26, 2011, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3836148 | Manning | Sep 1974 | A |
4415162 | Sheppard | Nov 1983 | A |
4565527 | Burchett | Jan 1986 | A |
4974857 | Beall et al. | Dec 1990 | A |
5020806 | Martin | Jun 1991 | A |
5813511 | Takemoto et al. | Sep 1998 | A |
6659467 | Ross | Dec 2003 | B2 |
6926278 | Bibi | Aug 2005 | B2 |
7523942 | Chung | Apr 2009 | B2 |
20050049056 | Padilla | Mar 2005 | A1 |
20090305801 | Chung | Dec 2009 | A1 |
20120122569 | Kowolik et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
646248 | Nov 1984 | CH |
101 07 985 | Apr 2002 | DE |
2187302 | Nov 2004 | ES |
WO 9115729 | Oct 1991 | WO |
Entry |
---|
PCT—International Application No. PCT/US2012/039618 Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration—Mailed Aug. 7, 2012. |
Number | Date | Country | |
---|---|---|---|
20120299244 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61490412 | May 2011 | US |