The subject matter disclosed herein generally relates to the field of building system controls, and more particularly to an apparatus and method for controlling building systems through a mobile device.
Building systems typically require physical manipulation of the actual system in order to control the system.
According to one embodiment, a method of controlling building systems is provided. The method comprises: receiving a first user input; determining a building system corresponding to the first user input; receiving a second user input, the second input corresponding to one of a plurality of defined actions; and controlling the building system using the defined action.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the receiving a first input further comprises: receiving a first user sub-input; generating a list, the list including a plurality of building systems; and receiving a second user sub-input selecting a building system.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the first user sub-input is a press and hold.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the second user sub-input is a drag and hold.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include prior to the receiving a first user input: generating a user interface depicting a home control icon, the home control icon depicting a selected building system.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the first user input is a defined action corresponding to the selected building system depicted on the home control icon; and the first user input is used to satisfy the second user input.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include after controlling the building system using the defined action: generating a user interface depicting a home control icon, the home control icon depicting the selected building system.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the first user input is used to satisfy the second user input.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the defined action is user defined.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include prior to the receiving a first user input: receiving a user input; creating a defined action in response to the user input; assigning the defined action to a building system; and storing the defined action in a database.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include associating the defined action with a user of a user mobile device; and storing the association in the database.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the building system is at least one of a door system, an elevator system, a lighting system, and a climate control system.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the controlling further comprises: unlocking a door of the door system.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the controlling further comprises: calling an elevator car of the elevator system.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the controlling further comprises: adjusting a light of the lighting system.
In addition to one or more of the features described above, or as an alternative, further embodiments of the method may include where the controlling further comprises: adjusting an output of the climate control system.
According to another embodiment, a building control system is provided. The building control system comprising: a processor; a memory comprising computer-executable instructions that, when executed by the processor, cause the processor to perform operations, the operations comprising: receiving a first user input; determining a building system corresponding to the first user input; receiving a second user input, the second input corresponding to one of a plurality of defined actions; and controlling the building system using the defined action.
According to another embodiment, a computer program product tangibly embodied on a computer readable medium is provided. The computer program product including instructions that, when executed by a processor, cause the processor to perform operations comprising: receiving a first user input; determining a building system corresponding to the first user input; receiving a second user input, the second input corresponding to one of a plurality of defined actions; and controlling the building system using the defined action.
Technical effects of embodiments of the present disclosure include the ability control building systems through a multi-target dynamic user interface on a mobile device.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, that the following description and drawings are intended to be illustrative and explanatory in nature and non-limiting.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
The building systems 202-205 may be operably connected to one or more computing devices, such as a controller 206. The controller 206 may be configured to control dispatching operations for one or more elevator cars (e.g., elevator cars 204-1, 204-2 . . . 204-n) associated with the elevator system 204. The controller 206 may also be configured to control access to the one or more elevator cars (e.g., elevator cars 204-1, 204-2 . . . 204-n) associated with the elevator system 204. It is understood that the elevator system 204 may utilize more than one controller 206, and that each controller may control a group of elevators cars 204-1 and 204-2. Although two elevator cars 204-1 and 204-2 are shown in
Further, the controller 206 may also be configured to control access to one or more doors (e.g., doors 205-1, 205-2 . . . 205-n). It is understood that the door system 205 may utilize more than one controller 206, and that each controller may control a group of doors 205-1 and 205-2. Although two doors 205-1 and 205-2 are shown in
Additionally, the controller 206 may also be configured to control operation of the climate control system 202, the lighting system 203, and any other system of the building 201 known to one of skill in the art. It is understood that the climate control system 202 and the lighting system 203 may utilize more than one controller 206, and that each controller may control each system as a whole (e.g., 202 and 203) or each separate component (e.g. 202-1-202-n, 203-1-203-n). It is understood that other components of the climate control system 202 and the lighting system 203 are not depicted for ease of illustration.
The controller 206 may include a processor 260, memory 262 and communication module 264 as shown in
Also shown in
The user mobile device 208a and the controller 206 communicate with one another. For example, the user mobile device 208a and the controller 206 may communicate with one another when proximate to one another (e.g., within a threshold distance). The user mobile device 208a and the controller 206 may communicate over a wireless network, such as 802.11x (WiFi), short-range radio (Bluetooth), cellular, satellite, etc. In some embodiments, the controller 206 may include, or be associated with (e.g., communicatively coupled to) a networked element, such as kiosk, beacon, hall call fixture, lantern, bridge, router, network node, door lock, elevator control panel, building intercom system, etc. The networked element may communicate with the user mobile device 208a using one or more communication protocols or standards. For example, the networked element may communicate with the user mobile device 208a using near field communications (NFC). In other embodiments, the controller 206 may establish communication with a user mobile device 208a that is outside of the building 201. This connection may be established with various technologies including GPS, triangulation, or signal strength detection, by way of non-limiting example. In example embodiments, the user mobile device 208a communicates with the controller 206 over multiple independent wired and/or wireless networks. Embodiments are intended to cover a wide variety of types of communication between the user mobile device 208a and controller 206, and embodiments are not limited to the examples provided in this disclosure. Communication between the user mobile device 208a and the controller 206 will allow the controller 206 to determine the location of the user mobile device 208a in relation to each building system 202-205.
Embodiments generate a user interface on the user mobile device 208a through the building system control application 255a. The building system control application 255a may be used for users to control building systems 202-205 through a user mobile device 208a. In a few non-limiting examples, a user may use the building system control application 255a to increase the heat output of a climate control system 202-1, turn on a light 203-1, call an elevator car 204-1, and unlock a door 205-1. An identification credential on the user mobile device 208a will identify each user mobile device 208a to the controller 206.
a-4d depict an example user interface 300 on user mobile device 208a. Referring to
Referring to the
Referring now to
Referring now to
The first user input of block 504 may be broken down into user sub-inputs. For example, a first user sub-input may result in the generation of a list 308 as shown in
Alternatively, rather than generating a list 308 to select a building system, the user may desire to control a selected building system on a home control icon 304. As mentioned above, prior to the first user input, a user interface 300 is generated depicting a home control icon 304 and the selected building system appears on the home control icon 304. If the user desires to control that selected building system then the user will perform a first user input that is a defined action 326 corresponding to the selected building system depicted on the home control icon 304. Then the first user input is used to satisfy the second user input of block 508 and the user will be able to control the building system in block 510. Regardless of the building system selected to control, the control screen 302 on the user interface 300 may default back to the home control icon 304 depicting the selected building system.
Prior to receiving the first user input, a user of a user mobile device 208a may define a defined action 326 for each building system, as mentioned above. Thus, the user may perform a user input and a defined action 326 is created in response to the user input. For instance, the user input may be a zig-zag swipe (see
While the above description has described the flow process of
As described above, embodiments can be in the form of processor-implemented processes and devices for practicing those processes, such as a processor. Embodiments can also be in the form of computer program code containing instructions embodied in tangible media, such as network cloud storage, SD cards, flash drives, floppy diskettes, CD ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes a device for practicing the embodiments. Embodiments can also be in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into an executed by a computer, the computer becomes an device for practicing the embodiments. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.
The term “about” is intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application. For example, “about” can include a range of ±8% or 5%, or 2% of a given value.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
While the present disclosure has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this present disclosure, but that the present disclosure will include all embodiments falling within the scope of the claims.