1. The Field of the Invention
The present invention is directed generally to a multi-temperature output fluid heating system. More specifically, the present invention is directed to a temperature controlled domestic and space heating hot water combination unit.
2. Background Art
Domestic water heating is typically performed separately from floor or space heating as these two types of heating must meet two diverse sets of heating requirements. The target temperature for domestic water heating must be set at a suitable level so that scalding concerns are eliminated but yet sufficiently hot for domestic water needs, e.g., for showering, washing, etc. As the fluids or fluid conductors used in space heating loops do not typically come in direct contact with space heating users and therefore do not pose scalding concerns, the target temperature for a space heating system can be increased to a level much higher than that for domestic hot water needs. The need for two separate heating systems for both domestic water and space heating causes the need for additional physical spaces to accommodate the equipment of such systems and also duplicate control systems be made available for each system and maintenance of multiple systems instead of a single system. Recent advancements in space heating technologies have caused widespread use of floor heating systems utilizing heated tubes incorporated in floors or baseboards as compared to forced air heating systems where heat is brought into a space via the supply of warm air into the space.
Thus, there arises a need for a single heating system which can meet both the needs for domestic hot water and space heating.
Disclosed herein is a multi-temperature output fluid heating system including an input for receiving a fluid supply, a single heating source, a first output, a second output and a bypass path. The first output is fluidly connected to the input, where the first output is adapted for control by a first control device and to receive heat from the single heating source to achieve a first temperature at the first output. The bypass path fluidly connects the input and the second output. In one flow configuration, the input is adapted to empty a first portion of the fluid supply into the first output and a second portion of the fluid supply into the bypass path. The second output is adapted to receive an output from the first output and an output from the bypass path to achieve a second temperature.
The present system further includes a pump disposed upstream of the first output and configured for pushing an output of the first output through a heat exchanger.
In one embodiment, the heat exchanger is a plate-type heat exchanger.
In one embodiment, the first control device is a modulating device configured to modulate the first portion. In one example, the modulating device is a proportional valve.
In one embodiment, the second portion is adapted for control by a second control device. In one example, the second control device is an on-off valve, e.g., a solenoid valve. In another example, the second control device is a proportional valve.
In one embodiment, the second control device is a solenoid valve having a failed state configured to allow the second portion from the input to the second output.
In one embodiment, the present system further includes a temperature regulator disposed between the second output and the first output. The temperature regulator is configured to prevent overheating of the second output if the first output has been maintained for a long period of time at an unacceptably high level for the second output.
In one embodiment, the temperature regulator is an S-shaped bend. In another embodiment, the temperature regulator is a loop.
In one embodiment, the present system further includes a buffer tank disposed between the input and the first output.
In one embodiment, the present system further includes a temperature sensor disposed at the second output, wherein the temperature sensor is adapted to detect a condition where the second temperature that is unacceptably high.
In one example, the first temperature is controlled to about 180 degrees F. In another example, the first temperature is controlled to about 120 degrees F. In one example, the second temperature is controlled to about 120 degrees F. In one example, the first temperature is substantially the same as the second temperature.
Also disclosed herein is a method of adjusting the target temperature of a fluid heating system, the method including:
In one embodiment, the parameter is frequency. In an embodiment where the fluid heating system includes a space heating loop having a supply line and a return line, the parameter is the temperature of the return line. An event includes turn-on-off of the fluid heating system, turn-on of the fluid heating system, turn-off of the fluid heating system and duration of turn-on of the fluid heating system.
Accordingly, it is a primary object of the present invention to provide both domestic heated water at suitable temperature of about 120 degrees F. for domestic uses and at the same time, heated fluid for space heating temperature of about 180 degrees F. using only one heating source and one set of active, fluidly-connected fluid conductors to service both domestic water and space heating demands.
It is another object of the present invention to provide a passive means for isolating negative temperature effects of a first heating loop from a second heating loop that is fluidly connected to the first heating loop.
It is yet another object of the present invention to provide a means for anticipating the amount of required heating for the present heating system.
Whereas there may be many embodiments of the present invention, each embodiment may meet one or more of the foregoing recited objects in any combination. It is not intended that each embodiment will necessarily meet each objective. Thus, having broadly outlined the more important features of the present invention in order that the detailed description thereof may be better understood, and that the present contribution to the art may be better appreciated, there are, of course, additional features of the present invention that will be described herein and will form a part of the subject matter of this specification.
In order that the manner in which the above-recited and other advantages and objects of the invention are obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The present invention enables the use a single heating source for preparing and providing both domestic hot water and space heating, thereby eliminating the need for maintaining more than one heating source and eliminating the need for space for accommodating more than one heating system.
The present heating system is capable of maintaining fluids at different portions of the system that are fluidly connected, at two different temperatures, thereby enabling the use of only one set of active, fluidly-connected fluid conductors to service both domestic water and space heating demands.
According to one embodiment of the present heating system, domestic water and space heating can be prepared based on forecasted outdoor weather data, thereby eliminating any potential delays associated with drastic drops in outdoor temperature or drastic increase in heat loss to the outdoor environment.
The term “about” is used herein to mean approximately, roughly, around, or in the region of. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 20 percent up or down (higher or lower).
Domestic hot water is typically provided at about 120 degrees F. although it is conceivable that this temperature may be set at a temperature higher or lower than 120 degrees F. by the installer or user of a hot water heater. Space heating fluid supply tube is typically filled with fluid heated to about 180 degrees F. It is also conceivable that this temperature may be set at a temperature higher or lower than 180 degrees F.
The present system further includes a pump 18 disposed upstream of the first output 48 and configured for pushing an output of the first output 48 through a heat exchanger 24. In one embodiment, the heat exchanger is a plate-type heat exchanger, although another type of heat exchanger may perform equivalent functions of the plate-type heat exchanger. In a plate-type heat exchanger, at least one first flow loop that provides heat is thermally coupled to at least one second flow loop to receive the heat provided by the at least one first flow loop. The at least one second flow loop is functionally connected to a space heating system, e.g., a radiant floor heating system, a baseboard heating system or in-floor heating system, etc., such that the received heat can be rejected into the space being heated.
In one embodiment, the first control device 14 is a modulating device configured to modulate the first portion of the input 6. The modulating device can include, but not limited to, a proportional valve.
In one embodiment, the second portion is adapted for control by a second control device 8. The second control device 8 can include, but not limited to, an on-off valve, e.g., a solenoid valve and a proportional valve. In one embodiment, the second control device is a solenoid valve having a failed state allowing the second portion from the input 6 to the second output 4, thereby ensuring that if the second control device 8 fails, no scalding concerns will exist, as cold water can be supplied through the bypass path 46 to be merged with a potentially acceptably hot first output.
In one embodiment, the present system further includes a temperature regulator 12 disposed between the second output 4 and the first output 48. The temperature regulator 12 is configured to prevent overheating of the second output 4 if the first output has been maintained for a long period of time at an unacceptably high level and no second output 4 has been the requested during this long period of time and that the second output 4 is mounted at a higher elevation as compared to the first output 48. As shown in
In one embodiment, the present system further includes a buffer tank 20 disposed between the input 6 and the first output 48. The buffer tank 20 serves as a small reservoir of warm water to reduce delays in delivering warm water outputs at their respective first and second temperatures. A temperature sensor 42 is disposed upstream of the heat exchanger 22 while a temperature sensor 44 is disposed downstream from the heat exchanger 22. In some embodiments, the first control device 14 also includes a flow meter capable of determining the water flowrate through the first control device 14. A second flow meter may be used to determine the water flowrate through the bypass path 46. However, in some embodiments, the water flowrate through the bypass path 46 may be inferred given the fluid properties and magnitude of the water flowrate through the bypass path 46. Armed with the temperature difference between readings reported by temperature sensors 42 and 44 and the flowrate of the first output, the heating rate of heat source, e.g., burner, is calculated and adjusted accordingly. If the difference is large and delay in achieving the desired temperature downstream of the heat exchanger is to be minimized, a large heating rate is provided. In one embodiment, the present system further includes a temperature sensor 10 disposed at the second output 4, where the temperature sensor 10 is adapted to detect a condition where the second temperature that is unacceptably high or to report the temperature readings at the second output 4. If the second is unacceptably high, valve 8 is left open and valve 14 closed to provide the maximum flowrate of cold water to get mixed with the unacceptably hot water at juncture 40 such that the temperature of the second output 4 can be tempered. It is also possible that valve 8 and valve 14 can be closed to temporarily stop the flow of the second output 4 and the heating source at the heat exchanger 22 turned off, if the water temperature at temperature sensor 10 is determined to pose severe scalding threat where any amount of cold water provided through the bypass path is considered to be incapable of tempering the hot water already disposed at the second output 4.
Circumstances can exist where an active domestic water demand is no longer needed.
Circumstances can exist where an active space heating demand is no longer needed.
In one embodiment, the controller 38 is configured to set or adjust the target temperatures for domestic water and/or space heating loops based on the frequency of events. The amount of a target temperature adjustment is determined by first monitoring the frequency of heat source turn-on-off, turn-on, or turn-off as called for by a room thermostat and/or the return water temperature as seen in the return line 26 of the space heating loop or a recirculating water flowline within the present heating system. If a room thermostat that is functionally connected to the controller of the present heating system turns on the present heating system frequently, this is an indication that the target temperature of the space heating loop has to be increased in order to keep up with the heat loss rate. A log of the frequency at which the heating source is turned on and the duration at which the heating source is turned on is kept such that the amount of adjustment to the target temperature of the space heating loop can be determined. In determining the amount of adjustment, a monitored parameter is first calculated. This quantity is then compared to a pre-determined threshold. If the quantity exceeds the pre-determined threshold, a difference between the quantity and pre-determined threshold is calculated. The difference is then applied to the target temperature of the heating system to improve the efficiency of the heating system. For example, an excessively high frequency of turn-on-offs, turn-ons or turn-offs of the heating source and/or the lengthy duration of turn-ons of the heating source signals a need to increase the target temperature of the space heating loop as this is an indication that heat loss outweighs the ability of the heating system to meet heating demands. On the other hand, if the fluid temperature of the return line 26 remains high, this may be an indication that the surface area of radiators or baseboards is insufficiently large or efficient to dissipate heat to the floor/s it is configured to heat. In this case, the target temperature for the space heating loop may be adjusted down to avoid overheating the space heating loop.
The detailed description refers to the accompanying drawings that show, by way of illustration, specific aspects and embodiments in which the present disclosed embodiments may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice aspects of the present invention. Other embodiments may be utilized, and changes may be made without departing from the scope of the disclosed embodiments. The various embodiments can be combined with one or more other embodiments to form new embodiments. The detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, with the full scope of equivalents to which they may be entitled. It will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of embodiments of the present invention. It is to be understood that the above description is intended to be illustrative, and not restrictive, and that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Combinations of the above embodiments and other embodiments will be apparent to those of skill in the art upon studying the above description. The scope of the present disclosed embodiments includes any other applications in which embodiments of the above structures and fabrication methods are used. The scope of the embodiments should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This non-provisional application claims the benefit of priority from provisional application U.S. Ser. No. 61/929,535 filed on Jan. 21, 2014. Said application is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1112583 | Williams | Oct 1914 | A |
2781174 | Smith | Feb 1957 | A |
4798240 | Gerstmann | Jan 1989 | A |
7322532 | Takada | Jan 2008 | B2 |
7532982 | Inoue | May 2009 | B2 |
8910880 | Farrell | Dec 2014 | B2 |
8971694 | Deivasigamani | Mar 2015 | B2 |
9182159 | Hatada | Nov 2015 | B2 |
20060026974 | Takada | Feb 2006 | A1 |
20070034702 | Rixen | Feb 2007 | A1 |
20070205292 | Kwak | Sep 2007 | A1 |
20080033651 | Inoue | Feb 2008 | A1 |
20090090310 | Farrell | Apr 2009 | A1 |
20090277203 | Dupraz | Nov 2009 | A1 |
20100195991 | Deivasigamani | Aug 2010 | A1 |
20100236498 | Komori | Sep 2010 | A1 |
20100319378 | Chikami | Dec 2010 | A1 |
20100326646 | Kim | Dec 2010 | A1 |
20100329650 | Kim | Dec 2010 | A1 |
20110017152 | Min | Jan 2011 | A1 |
20110232862 | Gofton | Sep 2011 | A1 |
20120043390 | Noh | Feb 2012 | A1 |
20120090341 | Hatada | Apr 2012 | A1 |
20120090560 | Iwama | Apr 2012 | A1 |
20120091214 | Rixen | Apr 2012 | A1 |
20120305105 | Min | Dec 2012 | A1 |
20130284116 | Deivasigamani | Oct 2013 | A1 |
20130284117 | Deivasigamani | Oct 2013 | A1 |
20140202680 | Kusachi | Jul 2014 | A1 |
20140229022 | Deivasigamani | Aug 2014 | A1 |
20150014425 | Olesen | Jan 2015 | A1 |
20150159913 | Yamamoto | Jun 2015 | A1 |
20160320075 | Deivasigamani | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
DE 3828396 | Mar 1989 | AT |
3244373 | Jun 1983 | DE |
05118652 | May 1993 | JP |
2014137206 | Jul 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20150204550 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61929535 | Jan 2014 | US |