Multi-tenant mode for serverless code execution

Information

  • Patent Grant
  • 12015603
  • Patent Number
    12,015,603
  • Date Filed
    Friday, December 10, 2021
    2 years ago
  • Date Issued
    Tuesday, June 18, 2024
    12 days ago
Abstract
Systems and methods are described for a multi-tenant mode of a serverless code execution system. For instance, a method may include maintaining a set of execution environments, wherein each execution environment is associated with a serverless function, wherein the serverless function is associated with a software as a service (SaaS) provider that is a tenant of a cloud services provider, wherein the SaaS provider provides services to sub-tenants, wherein the set of execution environments are partitioned based on sub-tenants of the SaaS provider; receiving a call to execute a serverless function, wherein the call includes a serverless function identifier and a sub-tenant identifier; identifying a sub-tenant-specific execution environment of the set of execution environments that is associated with the sub-tenant; and in response to identifying the tenant-specific execution environment, invoking the serverless function on the sub-tenant-specific execution environment.
Description
BACKGROUND

Computing devices can utilize communication networks to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or to provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.


To facilitate increased utilization of data center resources, virtualization technologies allow a single physical computing device to host one or more virtual machine instances that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.


In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram depicting an illustrative environment in which a serverless code execution system can provide for a multi-tenant mode of serverless code execution;



FIG. 2 depicts a general architecture of a computing device providing a tenant manager of FIG. 1, which can provide for a multi-tenant mode of serverless code execution;



FIG. 3A is a flow diagram depicting illustrative interactions for instantiation of a sub-tenant-specific execution environment;



FIG. 3B is a flow diagram depicting illustrative interactions for invoking a sub-tenant-specific execution environment;



FIG. 4 is a flow chart depicting an illustrative routine for managing calls for serverless functions using sub-tenant-specific execution environments.





DETAILED DESCRIPTION

Generally, aspects of the present disclosure relate to serverless code execution and, in a particular example, a software as a service (SaaS) model hosted (at least partially) in a serverless code execution system. Serverless code execution systems can group together invocations that occur under a same account (or under a same account and for each function, or variation thereof) for efficiency purposes. Typically, there is not a security concern, as all invokes for a specific account can be assumed to share trust among one another. In the SaaS use case, all calls may be under the same account (the SaaS provider, referred to as “SaaS provider” or “tenant of serverless code execution system”), but it may be desirable to separate the calls. For instance, a calling party may not be the SaaS provider, but instead an end user of the SaaS provider (referred to as “sub-tenant” or “sub-tenants”). Alternatively, the SaaS provider may call a service on behalf of the end user. This application allows invocations to be grouped according to the SaaS end user, thus providing increased security when using serverless functions to provide SaaS resources.


The SaaS providers may define and invoke code without needing to own or manage servers by using, e.g., a serverless code execution system (which may itself be operated by another SaaS provider). In this context, the SaaS provider may act as a “second level” SaaS provider, providing software as a service utilizing a SaaS service provided by another SaaS provider, like a cloud services provider. Generally, as a first approach for providing a SaaS platform, the SaaS provider could define a single serverless function hosted by the serverless code execution system to serve each sub-tenant using a same serverless function in execution environments (which could be, e.g., VM instances or containers (with appropriate software packages)), but there may be a possibility of data persistence between separate calls to a same execution environment, thereby possibly exposing persistent data to unauthorized entities. For instance, if the SaaS provider uses a non-differentiated function on their account of the serverless code execution system, the serverless code execution system may use an idle environment (referred to as “warm”) for each call, therefore the SaaS provider does not incur higher costs to run the SaaS platform on the serverless execution environment (e.g., greater efficiency), and the serverless execution environment does not incur a high overhead of creating a new environment, which makes execution both faster and more efficient. In this case, the SaaS provider also enjoys the faster and more efficient execution of the serverless function. Therefore, this approach may offer higher operational efficiency and better utilization of infrastructure but could introduce security concerns. For instance, the serverless code execution system may generally be configured to provide isolation between functions, which functions may themselves be associated with a respective user account. Accordingly, by providing isolation between functions, the serverless code execution system may provide isolation between data of different accounts. Under this scenario, a SaaS provider using a single non-differentiated function may service calls for multiple end users with the same function, and thus without isolation between those calls. Accordingly, if a vulnerability existed within the function, inherent security provided by the serverless code execution system may be bypassed, and malicious requests might be able to access the service code or state used to process requests from other sub-tenants of the SaaS provider (thereby possibly exposing other sub-tenant data) and increases the attack surface as the service can have permissions to access data for all the sub-tenants of the SaaS provider. However, data nondisclosure between the various sub-tenants may be highly valued. As an alternative second approach, the SaaS provider could define dedicated infrastructure per sub-tenant on the serverless code execution system to serve each sub-tenant using their respective dedicated infrastructure. This would help minimize the security concerns but would result in increased operational complexity and poor utilization of infrastructure. Therefore, neither approach is satisfactory.


On the other hand, systems and methods of the present disclosure may enable the serverless code execution system to support a multi-tenant mode for serverless functions of a multi-tenant platform (for SaaS providers) on the serverless code execution system. Generally, a multi-tenant mode for serverless functions may utilize a shared model to build multi-tenanted applications (therefore avoiding dedicated infrastructure per sub-tenant), while minimizing the security concerns by provisioning a fresh execution environment to process requests from each sub-tenant using sub-tenant-specific execution environments (therefore avoiding exposing persistent data to unauthorized entities). Furthermore, multi-tenant mode of the serverless code execution system may manage credentials corresponding to a requesting sub-tenant, so that the invoked serverless function may access other tenant-level services that support multi-tenant architectures, such as Amazon™'s DynamoDB or other databases. With multi-tenant mode, an attacker cannot persist beyond the sub-tenant-specific execution environment and will not have permissions to access data for other sub-tenants (whether persistent data or in other tenant-level services).


Generally, SaaS providers may provide software services to end users. For instance, SaaS providers may provide software services on a subscription basis, or as a part of being a customer of a SaaS provider. In particular, certain services offered by SaaS providers may be hosted on the serverless execution environment as serverless functions. In this case, the SaaS providers may be a direct user (e.g., a customer) of the serverless execution environment (referred to as “tenants”), while end users of the SaaS providers may be sub-tenants of SaaS providers with respect to the serverless execution environment. In this manner, the serverless execution environment may provide sub-tenants the services of the serverless functions, as defined and uploaded by the SaaS providers to the serverless execution environment. In some cases, the sub-tenants of the SaaS providers may be enterprise end users (e.g., for an entity) that have their own sub-tenants (e.g., users associated with the entity, referred to as sub-sub-tenants). Generally, the serverless execution environment may handle calls from sub-sub-tenants of SaaS providers on a sub-sub-tenant basis or as-if the sub-sub-tenants are requesting calls on behalf of the enterprise end user (sub-tenant).


Generally, the serverless code execution system may manage execution of code on an on-demand basis. Furthermore, the serverless code execution system may provide a network-accessible service enabling users (e.g., developers of the SaaS providers) to submit or designate computer-executable code to be executed by execution environments on the serverless code execution system. Each set of code on the serverless code execution system may define a “function,” and implement specific functionality corresponding to that function when executed on an execution environment of the serverless code execution system. Individual executions of code of the function on the serverless code execution system may be referred to as an “execution” of the function. The serverless code execution system can further enable users to trigger execution of a function based on a variety of potential events, such as transmission of an application programming interface (“API”) call or a specially formatted hypertext transport protocol (“HTTP”) packet. Thus, users (generally) or sub-tenants (of SaaS providers in particular) may utilize the serverless code execution system to execute any specified executable code “on-demand,” without requiring configuration or maintenance of the underlying hardware or infrastructure on which the code is executed. Further, the serverless code execution system may be configured to execute functions in a rapid manner (e.g., in under 100 milliseconds [ms]), thus enabling execution of functions in “real-time” (e.g., with little or no perceptible delay to an end user). To enable this rapid execution, the serverless code execution system can include one or more execution environments that are “pre-warmed” or pre-initialized (e.g., booted into an operating system and executing a complete or substantially complete runtime environment) and configured to enable execution of user-defined code, such that the code may be rapidly executed in response to a request to execute the code, without delay caused by initializing the execution environment. Thus, when an execution of a function is triggered, the code corresponding to that function can be executed within a pre-initialized execution environment in a very short amount of time.


Generally, an “execution environment” may be a virtual machine instance or a container. Containers may be software containers, sometimes referred to as “OS-level virtualization” and hosted on a worker (sometimes referred to as a “host” or “host computing device”). Each execution environment may be divided by a virtualization boundary to ensure data security between respective execution environments. For example, each execution environment may exist within a partitioned user space on the worker, which logically partitions resources of the worker among execution environments on the worker. Each user space may, for example, represent a “chroot” jail.


In accordance with embodiments of the present disclosure, access to network services, such as serverless functions or network resources used by those functions, can be managed by use of identity and access management (IAM) roles and IAM policies. For instance, IAM roles and policies may define access (or not) to computer systems or resources based on an identity of a device requesting access to computer systems or resources. IAM policies may be defined by SaaS providers to indicate which sub-tenants (based on sub-tenant identity or a IAM role of the sub-tenant) may access (or not) computer systems or resources associated with the SaaS providers hosted by the serverless code execution system. In particular, the IAM policies may indicate which sub-tenants may invoke serverless functions associated with the SaaS providers. Moreover, an invoked serverless function may assume the role of a sub-tenant when interacting with network resources, thereby enabling access to sub-tenant-specific network resources.


In aspects of the present disclosure, the serverless code execution system may include one or more data stores including information for a set of IAM policies defining access to a plurality of serverless functions hosted by the serverless code execution system. A set of serverless functions of the plurality of serverless functions may be associated with a SaaS provider. The serverless code execution system may also include a plurality of worker devices hosting a plurality of execution environments. Each execution environment may be associated with a serverless function. A set of execution environments may be associated with the set of serverless functions. The set of execution environments may be partitioned based on sub-tenants of the SaaS provider. Generally, the serverless code execution system may only allow a specific sub-tenant to call a serverless function (per an associated IAM policy) and the serverless code execution system may call the serverless function on an execution environment associated with the that specific sub-tenant. In this manner, the SaaS provider may only need to manage one serverless function (thereby avoiding maintenance costs and additional infrastructure costs), while ensuring data security, as calls of sub-tenants may be portioned among sub-tenant-specific environments (such as use the sub-tenant-specific execution environment for the specific sub-tenant). Therefore, the serverless code execution system may not invoke, for a third party (e.g., another sub-tenant), the same serverless function on the sub-tenant-specific execution environment assigned to the sub-tenant, or serverless code execution system may not invoke, for the sub-tenant, a serverless function on a different sub-tenant-specific execution environment (thereby, increasing data security).


For instance, the serverless code execution system may receive a call to execute a serverless function, where the call includes a serverless function identifier and a sub-tenant identifier, determine a sub-tenant, from any number of sub-tenants, based on the sub-tenant identifier; in response to determining the sub-tenant, identify a sub-tenant-specific execution environment of the set of execution environments that is associated with the sub-tenant, where other calls to execute the serverless function from any of the other sub-tenants are blocked from being invoked on the sub-tenant-specific execution environment; and in response to identifying the sub-tenant-specific execution environment, invoke the serverless function on the sub-tenant-specific execution environment. In this manner, the one or more computing devices of the serverless code execution system may confirm whether a sub-tenant is authorized to access the serverless function and, if so, execute the serverless function on a sub-tenant-specific execution environment in a secure manner. Moreover, as the serverless code execution system may scale down (or up), the SaaS provider may receive the benefits of operational efficiency while maintaining data security.


In at least some embodiments, the serverless functions may try to retrieve data and use services from network resources that are particular to a sub-tenant. However, by default, the execution environments may execute under authentication of the SaaS provider. Providing the SaaS provider access to the sub-tenant-specific resources may reduce security of those resources and may be undesirable. This application provides a solution, whereby sub-tenant-specific execution environments can be authenticated as a sub-tenant (e.g., assume an IAM role of the sub-tenant). This allows those execution environments (and only those execution environments, not other execution environments of other SaaS sub-tenants) to access sub-tenant-specific resources in a secure manner. For instance, the sub-tenant-specific execution environment may interact with one or more tenant services to access sub-tenant data, in accordance with an authentication token indicating the sub-tenant. For instance, the sub-tenant-specific execution environment may assume the role of the sub-tenant using the authentication token to request data and/or services from tenant-level services, such as Amazon™'s DynamoDB. In this manner, the sub-tenant-specific execution environment may only be exposed to sub-tenant-specific information or functionality, as the sub-tenant-specific execution environment may be viewed as the sub-tenant by third party systems. The sub-tenant-specific execution environment may receive the authentication token from a worker that hosts the sub-tenant-specific execution environment, or the worker may modify outbound (e.g., requests from sub-tenant-specific execution environment to other services) to include the authentication token for the sub-tenant-specific execution environment. The authentication token may be based on the sub-tenant identifier and may modify session tags of the sub-tenant-specific execution environment. Moreover, in certain embodiments, the serverless code execution system may be a multi-tenant cloud services provider that maintains a set of execution environments. Each execution environment may be associated with a serverless function. The serverless function may be associated with a software as a service (SaaS) provider that is a tenant of the cloud services provider. The SaaS provider may provide services to a plurality of sub-tenants. The set of execution environments may be partitioned based on sub-tenants of the SaaS provider. In response to receiving a call to execute a serverless function, where the call includes a serverless function identifier and a sub-tenant identifier; the system may identify a sub-tenant-specific execution environment of the set of execution environments that is associated with the sub-tenant identifier; and invoke the serverless function on the sub-tenant-specific execution environment.


The serverless code execution system, to identify the sub-tenant-specific execution environment associated with the sub-tenant, may determine whether any execution environment of the set of execution environments are associated with the sub-tenant identifier. In this manner, the serverless code execution system may condition access based on sub-tenant identifier. Moreover, the serverless code execution system may determine whether any execution environment of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier. In this manner, the serverless code execution system may still condition access based on sub-tenant identifier, but also ensure the execution environment is defined to perform the serverless function (e.g., is capable of being updated to execute the corresponding code, or already has the corresponding code). Furthermore, the serverless code execution system may determine whether any execution environment of the set of execution environments are associated with the sub-tenant identifier, the serverless function identifier, and a version identifier. In this manner, the serverless code execution system may still condition access based on sub-tenant identifier, but also ensure the execution environment is defined to perform the correct version of the serverless function (e.g., is capable of being updated to execute the corresponding correct version of the code, or already has the corresponding correct version of the code). For instance, as the serverless code execution system may execute functions in a rapid manner, determining particular execution environments for version and function with respect to sub-tenant may assist in rapidly providing function processing and results.


The serverless code execution system may, in response to determining none of the set of execution environments are associated with the sub-tenant identifier (and/or the serverless function identifier or version identifier), instantiate the sub-tenant-specific execution environment. In this manner, the serverless code execution system may determine none of the set is current assigned to be used by the sub-tenant, so a new sub-tenant-specific execution environment for this particular sub-tenant is needed to be provisioned and used for this sub-tenant. As a part of instantiating a new sub-tenant-specific execution environment, an authentication token (discussed above) may be passed the sub-tenant-specific execution environment (or a worker hosting the sub-tenant-specific execution environment), so that the sub-tenant-specific execution environment assumes the role of the sub-tenant. As discussed above, the authentication token may secure sub-tenant data in third party systems, thereby increasing security of sub-tenant data within the serverless code execution system.


In particular, to instantiate the sub-tenant-specific execution environment, the serverless code execution system may select a non-tenant-specific execution environment in a warm state to be modified into the sub-tenant-specific execution environment, or create the sub-tenant-specific execution environment. For instance, a non-tenant-specific execution environment may be an execution environment that is not a part of any set of execution environments associated with any SaaS provider. Restated, the non-tenant-specific execution environment may be an execution environment that is not associated with a multi-tenant mode of the serverless code execution system. In this manner, the multi-tenant mode may quickly modify an already warm execution environment to invoke the serverless function and server a response. For instance, the warm non-tenant-specific execution environment may be selected as it has a basic configuration to be modified to be used for the sub-tenant-specific execution environment, or the non-tenant-specific execution environment may have various commonalities with a configuration needed to modify one or more parameters, etc. to become the sub-tenant-specific execution environment. In this manner, process time may be decreased and the serverless code execution system may respond more rapidly than if a new sub-tenant-specific execution environment had to be created. In the case a new sub-tenant-specific execution environment has to be created, the serverless code execution system may create a new execution environment as discussed below on a worker and assign the new execution environment to the sub-tenant, so that the new execution environment is a sub-tenant-specific execution environment.


The serverless code execution system may, in response to determining at least one execution environment of the set of execution environments are associated with the sub-tenant identifier (and, optionally, the serverless function identifier and/or the version identifier), select an execution environment of the at least one execution environment to be the sub-tenant-specific execution environment. In this manner, the serverless code execution system may condition access based on at least the sub-tenant identifier and process the call faster than creating a new sub-tenant-specific execution environment. Moreover, of all execution environments associated with the sub-tenant identifier, the serverless code execution system may prefer to select an execution environment that has a same serverless function identifier and a same version identifier, then an execution environment that has a same serverless function identifier and a different version identifier (to be updated to the correct version of the function), and then an execution environment that has a different serverless function identifier and a different version identifier (to be updated to this serverless function and this version thereof). In this manner, serverless code execution system may invoke the serverless function as fast as possible, while making as few modifications to already existing environments associated with the sub-tenant.


In another embodiment, the serverless code execution system may, before selecting the execution environment of the at least one execution environment to be the sub-tenant-specific execution environment, determine whether any of the at least one execution environment are available to handle the request. That is, even if there is at least one execution environment associated with the sub-tenant, only those that are available (e.g., warm and not in use) may be selected from to be invoked.


As will be appreciated by one of skill in the art in light of the present disclosure, the embodiments disclosed herein improve the ability of computing systems, such as serverless compute systems, to support SaaS providers (e.g., tenants of the serverless compute systems) with sub-tenants in a manner that supports generalized functions with restricted access to sub-tenant-specific data or services, thereby providing increased functionality and security. Moreover, the presently disclosed embodiments address technical problems inherent within computing systems; specifically, the difficulties in providing SaaS providers via serverless compute systems. For instance, there may be tradeoffs between efficiency and security. As discussed above, one the one hand, if execution environments are grouped together to serve multiple sub-tenants, the SaaS provider may have less to manage and the serverless code execution system may process calls faster and more efficiently, meanwhile sub-tenant data may be exposed to malicious requests. On the other hand, using isolated execution environments may provide stronger data security, while requiring higher infrastructure utilization and maintenance. These technical problems are addressed by the various technical solutions described herein, including a cloud computing service configured to provide sub-tenant-specific execution environments. Thus, the present disclosure represents an improvement on serverless code execution systems and computing systems in general.


The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following description, when taken in conjunction with the accompanying drawings.



FIG. 1 is a block diagram of an illustrative operating environment 100 in which client devices 102 may interact with a serverless code execution system 110 via a network 104. By way of illustration, various example client devices 102 are shown in communication with the serverless code execution system 110, including a desktop computer, laptop, and a mobile phone. In general, the client devices 102 can be any computing device such as a desktop, laptop or tablet computer, personal computer, wearable computer, server, personal digital assistant (PDA), hybrid PDA/mobile phone, mobile phone, electronic book reader, set-top box, voice command device, camera, digital media player, and the like. The serverless code execution system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI), application programing interfaces (API), and/or other programmatic interfaces for generating and uploading user-executable source code (e.g., as part of a disk image), invoking the user-provided source code (e.g., submitting a request to execute the source code on the serverless code execution system 110), scheduling event-based code executions or timed code executions, tracking the user-provided source code, and/or viewing other logging or monitoring information related to their requests and/or source code. Although one or more embodiments may be described herein as using a user interface, it should be appreciated that such embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.


The illustrative environment 100 further includes one or more auxiliary services 106, which can interact with the serverless code execution system 110 to implement desired functionality on behalf of a user. Auxiliary services 106 can correspond to network-connected computing devices, such as servers, which generate data accessible to the serverless code execution system 110 or otherwise communicate to the serverless code execution system 110. For example, the auxiliary services 106 can include web services (e.g., associated with the user computing devices 102, with the serverless code execution system 110, or with third parties), databases, really simple syndication (“RSS”) readers, social networking sites, or any other source of network-accessible service or data source. In some instances, auxiliary services 106 may be invoked by code execution on the serverless code execution system 110, such as by API calls to the auxiliary services 106. In some instances, auxiliary services 106 may be associated with the serverless code execution system 110, e.g., to provide billing or logging services to the serverless code execution system 110. In some instances, auxiliary services 106 actively transmit information, such as API calls or other task-triggering information, to the serverless code execution system 110. In other instances, auxiliary services 106 may be passive, such that data is made available for access by the serverless code execution system 110. For example, components of the serverless code execution system 110 may periodically poll such passive data sources, and trigger execution of code within the serverless code execution system 110 based on the data provided. While depicted in FIG. 1 as distinct from the user computing devices 102 and the serverless code execution system 110, in some embodiments, various auxiliary services 106 may be implemented by either the user computing devices 102 or the serverless code execution system 110.


The client devices 102, auxiliary services 106, and serverless code execution system 110 may communicate via a network 104, which may include any wired network, wireless network, or combination thereof. For example, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. As a further example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.


The serverless code execution system 110 is depicted in FIG. 1 as operating in a distributed computing environment including several computer systems that are interconnected using one or more computer networks (not shown in FIG. 1). The serverless code execution system 110 could also operate within a computing environment having a fewer or greater number of devices than are illustrated in FIG. 1. Thus, the depiction of the serverless code execution system 110 in FIG. 1 should be taken as illustrative and not limiting to the present disclosure. For example, the serverless code execution system 110 or various constituents thereof could implement various Web services components, hosted or “cloud” computing environments, and/or peer to peer network configurations to implement at least a portion of the processes described herein.


Further, the serverless code execution system 110 may be implemented directly in hardware or software executed by hardware devices and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers. In some instances, the one or more servers may operate as part of a system of rapidly provisioned and released computing resources, often referred to as a “cloud computing environment.”


In the example of FIG. 1, the serverless code execution system 110 is illustrated as connected to the network 104. In some embodiments, any of the components within the serverless code execution system 110 can communicate with other components of the serverless code execution system 110 via the network 104. In other embodiments, not all components of the serverless code execution system 110 are capable of communicating with other components of the environment 100. In one example, only the frontends 120 may be connected to the network 104, and other components of the serverless code execution system 110 may communicate with other components of the environment 100 via the frontends 120.


In FIG. 1, users (e.g., developers) of the SaaS provider, by way of user computing devices 102, may interact with the serverless code execution system 110 to provide source code, and establish rules or logic defining when and how such code should be executed on the serverless code execution system 110, thus establishing a “task.” In this disclosure, “tasks” and “serverless function” may be used interchangeably. For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed. One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code. In order to avoid the complexity of this process, the user may alternatively provide the code to the serverless code execution system 110, and request that the serverless code execution system 110 execute the code using one or more execution environments that are managed by the system 110. The serverless code execution system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity. The serverless code execution system 110 may automatically scale up and down based on the volume of request to execute code, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the code, and thus overpaying).


To enable interaction with the serverless code execution system 110, the system 110 includes multiple frontends 120, which enable interaction with the serverless code execution system 110. In an illustrative embodiment, the frontends 120 serve as a “front door” to the other services provided by the serverless code execution system 110, enabling users (via user computing devices 102) to provide, request execution of, and view results of computer executable source code. The frontends 120 include a variety of components to enable interaction between the serverless code execution system 110 and other computing devices. For example, each frontend 120 may include a request interface providing user computing devices 102 with the ability to upload or otherwise communication user-specified code and associated data sets to the serverless code execution system 110 (e.g., in the form of executable code or a disk image) and to thereafter request execution of that code. In one embodiment, the request interface communicates with external computing devices (e.g., user computing devices 102, auxiliary services 106, etc.) via a graphical user interface (GUI), CLI, or API. The frontends 120 process the requests and makes sure that the requests are properly authorized. For example, the frontends 120 may determine whether the user associated with the request is authorized to access the source code specified in the request.


References to source code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language. In the present disclosure, the terms “source code,” “user code,” and “program code,” may be used interchangeably. Source code which has been compiled for execution on a specific device is generally referred to herein as “machine code.” Both “source code” and “machine code” are representations of the same instructions, which may be collectively referred to as “code.” Such code may be executed to achieve a specific function, for example, in connection with a particular web application or mobile application developed by the user. As noted above, individual collections of code (e.g., to achieve a specific function) are referred to herein as “tasks” or “functions,” while specific executions of that code are referred to as “task executions,” “function executions,” “code executions,” or simply “executions.” Source code for a task may be written, by way of non-limiting example, in JavaScript (e.g., node.js), Java, Python, and/or Ruby (and/or another programming language). Tasks may be “triggered” for execution on the serverless code execution system 110 in a variety of manners. In one embodiment, a user or other computing device may transmit a request to execute a task may, which can generally be referred to as “call” to execute of the task (e.g., a “task call,” a “function call,” etc.). Such calls may include an identifier of the task to be executed and one or more arguments to be used for executing the task. A request interface of the frontend 120 may receive calls to execute tasks as Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing a task. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing a task call to the request interface.


Prior to calling for execution of a task, an end user may submit (e.g., to a frontend 120) for the task and associated data to be used to execute the task. In one embodiment, the code is provided in the form of an executable code file or a disk image containing the code and other data that the code may use during execution. Illustratively, creation of a task may result in the frontend 120 creating metadata for the task, which defines for example the user creating the task, the executable code file/the disk image used to facilitate execution of the task, trigger conditions for the task, and the like. In one embodiment, tasks may be versioned, with task metadata identifying the available versions and at least some other metadata for a task may vary across versions. For example, different versions may be associated with different executable code files or disk images. Metadata is illustratively stored in the task metadata store 130.


On submitting an executable code file or a disk image, the executable code file or image is illustratively stored (e.g., by the frontend 120) in the configuration data store 174. In one embodiment, each executable code file is stored as a text file. In another embodiment, each image is stored as a set of layers and a manifest identifying the layers making up the disk image. Separate storage of layers and a manifest may enable, for example, deduplication of layers. For example, where two images share a layer, the configuration data store 174 may store only a single copy of that layer. Deduplication may be conducted, for example, based on a digital fingerprint of a layer. Illustratively, each layer may be identified in the store 174 based on a digital fingerprint, such as a hash value, message authentication code (MAC) or the like, which fingerprint is calculable based on the contents of the layer. Accordingly, when two layers share a fingerprint, the system 110 may conclude that the two layers are identical and thus store only a single copy of that layer. As noted above, layers may associated with software that is versioned, such that a first layer corresponds to a first version of software and a second layer corresponds to a second version of software. For ease of reference, the present disclosure refers to such layers as themselves being versioned. However, while the system 110 may in some cases maintain versioning information for layers directly, it may additionally or alternatively maintain versioning information for software, along with information mapping such software versions to particular layers (e.g., a first layer corresponds to version 1 of a particular software, a second layer corresponds to version 2, etc.). In some cases, each disk image is additionally or alternatively stored as an unlayered image, such as one or more files providing a block-level representation of a file system. For example, the system 110 may “flatten” a layered disk image by using the layers to create a file system, and then saving a non-layered representation of that file system to the configuration data store 174. In some cases, the non-layered representation may be divided into a number of distinct chunks, which may be deduplicated within the data store 174. Generation and handling of file system chunks is discussed in more detail in U.S. patent application Ser. No. 17/105,250, filed Nov. 25, 2020 and entitled “LOW LATENCY ACCESS TO DATA SETS USING SHARED DATA SET PORTIONS” (the “'250 Applications”) the entirety of which is hereby incorporated by reference.


Both the task metadata store 130 and the configuration data store 174 can correspond to any persistent data store. In one embodiment, the task metadata store 130 and the configuration data store 174 are implemented as logical storage on a cloud storage service, such as an object storage system. An example of such an object storage system is AMAZON™'s SIMPLE STORAGE SERVICE™ (or “S3™”).


After a user has created a task on the serverless code execution system 110, the system 110 may accept calls to execute that task. To calls to execute a task, the frontend 120 can include an execution queue, which can maintain a record of requested task executions. Illustratively, the number of simultaneous task executions by the serverless code execution system 110 is limited, and as such, new task executions initiated at the serverless code execution system 110 (e.g., via an API call, via a call from an executed or executing task, etc.) may be placed on the execution queue and processed, e.g., in a first-in-first-out order. In some embodiments, the serverless code execution system 110 may include multiple execution queues, such as individual execution queues for each user account. For example, users of the serverless code execution system 110 may desire to limit the rate of task executions on the serverless code execution system 110 (e.g., for cost reasons). Thus, the serverless code execution system 110 may utilize an account-specific execution queue to throttle the rate of simultaneous task executions by a specific user account. In some instances, the serverless code execution system 110 may prioritize task executions, such that task executions of specific accounts or of specified priorities bypass or are prioritized within the execution queue. In other instances, the serverless code execution system 110 may execute tasks immediately or substantially immediately after receiving a call for that task, and thus, the execution queue may be omitted.


As noted above, tasks may be triggered for execution at the serverless code execution system 110 based on explicit calls from user computing devices 102 (e.g., as received at a request interface). In some embodiments when SaaS providers are tenants and end users of the SaaS providers are sub-tenants, calls may not be sent from an entity that owns a specific task. For instance, the tasks may be owned by SaaS providers, and sub-tenants may transmit calls to the serverless execution system 110 to invoke the tasks. Alternatively or additionally, tasks may be triggered for execution at the serverless code execution system 110 based on data retrieved from one or more auxiliary services 106. To facilitate interaction with auxiliary services 106, the frontend 120 can include a polling interface, which operates to poll auxiliary services 106 for data. Illustratively, the polling interface may periodically transmit a request to one or more user-specified auxiliary services 106 to retrieve any newly available data (e.g., social network “posts,” news articles, files, records, etc.), and to determine whether that data corresponds to user-established criteria triggering execution a task on the serverless code execution system 110. Illustratively, criteria for execution of a task may include, but is not limited to, whether new data is available at the auxiliary services 106, the type or content of the data, or timing information corresponding to the data. In some instances, the auxiliary services 106 may function to notify the frontend 120 of the availability of new data, and thus the polling service may be unnecessary with respect to such services.


In addition to tasks executed based on explicit user calls and data from auxiliary services 106, the serverless code execution system 110 may in some instances operate to trigger execution of tasks independently. For example, the serverless code execution system 110 may operate (based on instructions from a user) to trigger execution of a task at each of a number of specified time intervals (e.g., every 10 minutes).


The frontend 120 can further includes an output interface configured to output information regarding the execution of tasks on the serverless code execution system 110. Illustratively, the output interface may transmit data regarding task executions (e.g., results of a task, errors related to the task execution, or details of the task execution, such as total time required to complete the execution, total data processed via the execution, etc.) to the user computing devices 102 or to auxiliary services 106, which may include, for example, billing or logging services. The output interface may further enable transmission of data, such as service calls, to auxiliary services 106. For example, the output interface may be utilized during execution of a task to transmit an API request to an external service 106 (e.g., to store data generated during execution of the task).


Code executions triggered on the serverless code execution system 110 of FIG. 1 are executed by execution environments hosted by a set of workers 181 within a worker fleet 180. Each worker 181 is illustratively a host device configured to host multiple execution environments, which in FIG. 1 are virtual machine instances 183A-N. Execution environments may alternatively include software containers, sometimes referred to as “OS-level virtualization,” another virtualization technology known in the art. Thus, where references are made herein to VM instances 183, it should be understood that (unless indication is made to the contrary) a container may be substituted for such instances 183.


As shown in FIG. 1, each worker 181 may host a number of instances 183. Each instance 183 may be isolated from other instances 183, thus ensuring the security of code executions on the serverless code execution system 110. For example, each instance 183 may be divided by a virtualization boundary, by virtue of the instance 183 being a virtual machine hosted by the worker 181. In addition, each instance 183 may exist within a partitioned user space on the worker 181, which logically partitions resources of the worker 181 among instances 183. Each user space may, for example, represent a “chroot” jail—a known isolation technique for LINUX™ operating systems.


To facilitate rapid execution of code, each worker 181 may be configured to maintain a set of instances 183 in a “pre-warmed” state, being at least partially configured to begin execution of code. For example, instances may be created on the worker and configured with access to computing resources (CPU, RAM, drive storage, etc.). In some cases, it may be impractical or impossible to maintain instances 183 in a fully warmed state for all possible code executions, as executions may be associated with a wide variety of at least partially distinct data sets (e.g., executable code files, disk images, and/or snapshots). Thus, instances 183 may be maintained in a “greatest commonality” for a given group of tasks, such as being provisioned with a set of computing resources common to those tasks, being configured to accept an operating system type used by those tasks, etc.


On receiving instructions to provision an instance 183 to support execution of the task, the worker 181 may adjust the configuration of the instance 183 to support that execution. Specifically, the worker 181 may provision the instance 183 with access to an executable code file, a disk image, or snapshot corresponding to the task. In some instances, the worker 181 may retrieve the disk image from the configuration data store 174 and store the full image locally. In other instances, the worker 181 may provide to an instance 183 what appears to be full local access to the disk image or snapshot, while “lazily” retrieving portions of that image or snapshot in response to a request to read such portions. Techniques for providing lazy retrieval of image portions are discussed in the '250 Applications, incorporated by reference above.


In addition, the system 110 includes a number of components for facilitating distribution of calls to execute a task from frontends 120 to particular VM instances 183. For example, the serverless code execution system 110 includes one or more worker managers 140 configured to manage execution environments (e.g., virtual machine instances) hosted by workers 181 among a worker fleet 180. The worker managers 140—each of which are illustratively implemented as physical or virtual-on-physical devices—illustratively “lease” particular VM instances 183 within the fleet 180, thus gaining operational control to, for example, instruct virtual machine instances 183 to execute code of the task. Thus, on receiving a call to execute a task, a frontend 120 may distribute the call to a worker manager 140, which may identify a currently-leased VM instance 183 in which to implement the task, and cause the instance 183 to implement the task. Example interactions for distributing a call from a frontend 120 to a worker manager 140 are described, for example, in U.S. Pat. No. 10,942,795 to Yanacek et al, entitled “SERVERLESS CALL DISTRIBUTION TO UTILIZE RESERVED CAPACITY WITHOUT INHIBITING SCALING” (the “'795 patent”), the entirety of which is hereby incorporated by reference.


In the instance that a worker manager 140 does not currently lease a VM instance 183 corresponding to the called task, the worker manager 140 can contact a placement service 160 to request a lease on an additional instance 183, which is illustratively configured to grant to the worker managers 140 leases to individual VM instances 183. Illustratively, the placement service 160 may maintain state information for VM instances 183 across the fleet 180, as well as information indicating which manager 140 has leased a given instance 183. When a worker manager 140 requests a lease on an additional instance 183, the placement service 160 can identify an appropriate instance 183 (e.g., warmed with software and/or data required to support a call to implement a task) and grant to the manager 140 a lease to that instance 183. In the case that such an instance 183 does not exist, the placement service 160 can instruct a worker 181 to create such an instance 183 (e.g., by creating an instance 183 or identifying an existing unused instance 183, storing an appropriate data manifest for a required executable code file, disk image, snapshot, etc. in a user space of that instance 183, and configuring a file system process to provide access to the required data set) thereafter grant to the worker manager 140 a lease to that instance 183, thus facilitating execution.


In accordance with embodiments of the present disclosure, the serverless code execution system 110 further includes a tenant service 190 configured to manage a multi-tenant mode of the serverless code execution system 110. Specifically, the tenant service 190 includes an identity and access management (IAM) data store 192, a log data store 194, and a tenant manager 196. The serverless code execution system 110, in accordance with the multi-tenant mode, may also interact with tenant resources 150. The tenant resources 150 may include tenant data store(s) 152 and API service(s) 154. In some embodiments, the tenant service 190 may be a part of the frontends 120, or may be hosted near to the frontends 120 to minimize latency to support the functions of the frontends 120.


The tenant manager 196 illustratively represents a computing device configured to manage multi-tenant mode serverless functions on the system 110. As described in more detail below, the tenant manager 196 may (1) manage access to serverless functions, and (2) manage metrics associated with use of the system 110. For instance, the tenant manager 196 may manage access to serverless functions in accordance with the IAM data store 192 and/or the metrics associated with use of the system 110. Furthermore, the tenant manager 196 may manage the metrics associated with use of the system 110 by tracking sub-tenant-specific VM instances (see, e.g., journal below), and tracking log data indicating system performance and use of the system 110 (see, e.g., log data below). Moreover, as discussed in more detail below, the tenant manager 196 may provide session tags to instantiated sub-tenant-specific VM instances. The session tags may include sub-tenant-specific session tags that correspond to the particular sub-tenant that requested a serverless function. The sub-tenant-specific session tags may include a sub-tenant identifier. The sub-tenant-specific tags may be authentication tokens. The sub-tenant-specific session tags may be used to modify execution role permissions of the sub-tenant-specific VM instances, so that outbound requests from the serverless function may be handled as-if the sub-tenant transmitted the request. The metrics may be used determine whether one or more conditions to limit call rates are satisfied based on various criteria. Depending on if one of the conditions are satisfied, the system 110 may determine to limit call rates for serverless functions. Moreover, the system 110 may use the metrics for auditing and reporting. For instance, the system 110 may generate general or specific reports (e.g., per sub-tenant, per SaaS provider, etc.) for SaaS providers.


The IAM data store 192 illustratively includes information for a set of IAM policies. The set of IAM policies may be managed by SaaS provider owners and hosted by the serverless code execution system 110, so that access (or not) to specific compute resources (e.g., storage, functions, serverless functions, etc.) is conditioned based on identity of a requesting device associated with a user (e.g., developer of a SaaS provider) or a sub-tenant. One of skill in the art would recognize that the IAM data store 192 and associated functions performed in accordance with the set of IAM policies may be hosted in a separate system other than the serverless code execution system 110. The set of IAM policies may include, for each SaaS provider or other entity using the serverless code execution system 110, a sub-set of policies to condition access (or not) to serverless functions associated with the SaaS provider or other entity. Generally, the sub-set of policies may include at least one policy to define who may modify, delete, or add new serverless functions associated with the SaaS provider or other entity. Other policies of the sub-set of policies may condition access (or not) to use the various serverless functions in accordance with an identity of a requesting device. In addition, the IAM policies may condition access (or not) based on IAM roles of users or sub-tenants.


The log data store 194 illustratively includes information for a journal and log data. As discussed in more detail below, the journal may track at least sub-tenant-specific VM instances, as the sub-tenant-specific VM instances are instantiated, in use, in a warm state (e.g., ready to be used), or decommissioned. In this way, the journal may indicate whether a sub-tenant-specific VM instance is available (or not) to handle an invocation of a serverless function for a particular sub-tenant requesting invocation of the serverless function. As discussed in more detail below, the log data may store concurrency data of VM instances for SaaS providers or other entities, and telemetry data for each request/response handled by the system 110. The concurrency data may indicate currently warm or in use sub-tenant-specific VM instances and currently warm or in use non-tenant-specific VM instances (e.g., non-multi-mode VM instances that may process non-multi-tenant serverless functions) for each of the SaaS providers or other entities. The telemetry data may indicate response time, load, pendency, sub-tenant/user requestor, etc. of each request/response of the system 110. In this way, and as discussed below, the system 110 may limit request rates on one or more conditions, such as concurrency conditions, load conditions, etc. In some embodiments, the journal may be stored and managed by the worker manager 140, as a part of managing leases. In some embodiments, the log data may be stored and managed by the frontends 120.


The tenant data store(s) 152 may be data repositories to store particular data for SaaS providers or other entities. The tenant data store(s) 152 may be any type of data store and may be hosted within the system 110 or somewhere else (e.g., within a private network associated with the system 110 or outside the private network). In some embodiments, at least some of the tenant data store(s) 152 may store data in multi-tenant architectures, such as Amazon™'s DynamoDB. In this case, those tenant data store(s) 152 may condition access to particular portions of data stored therein based on an identity of a requesting device. For instance, a tenant data store 152 may store data associated with a particular sub-tenant within a larger data structure that stores data associated with other sub-tenants, but may only allow access to the data associated with the particular sub-tenant if a device requesting the data provides a satisfactory identity indicator corresponding to the particular sub-tenant.


Similarly, the API service(s) 154 may be any service to be invoked by sub-tenants, other users, serverless functions, SaaS providers, or other entities. The API service(s) 154 may be hosted within the system 110 or somewhere else (e.g., within the private network associated with the system 110 or outside private network). In some embodiments, at least some of the API service(s) 154 may provide services in multi-tenant architectures. In this case, those API service(s) 154 may condition access to their respective services based on an identity of a requesting device. For instance, a API service 154 may only allow access to the its service if a device requesting the services provides a satisfactory identity indicator corresponding to the particular sub-tenant.


To simplify FIG. 1, the tenant services 150 are depicted as communicating directly with system 110. One of skill in the art would recognize that tenant services 150 may (in total or partially) be included within the system 110, in a separate part of the private network associated with the system 110, or connected to the system 110 by network 104.



FIG. 2 depicts a general architecture of a computing system implementing the tenant manager 196 of FIG. 1. The general architecture of the system depicted in FIG. 2 includes an arrangement of computer hardware and software that may be used to implement aspects of the present disclosure. The hardware may be implemented on physical electronic devices, as discussed in greater detail below. The system may include many more (or fewer) elements than those shown in FIG. 2. It is not necessary, however, that all of these generally conventional elements be shown in order to provide an enabling disclosure. Additionally, the general architecture illustrated in FIG. 2 may be used to implement one or more of the other components illustrated in FIG. 2 (e.g., a worker 181, a frontend 120, etc.).


As illustrated, the system includes a processing unit 290, a network interface 292, a computer readable medium drive 294, and an input/output device interface 296, all of which may communicate with one another by way of a communication bus. The network interface 292 may provide connectivity to one or more networks or computing systems. The processing unit 290 may thus receive information and instructions from other computing systems or services via the network 104. The processing unit 290 may also communicate to and from memory 280 and further provide output information for an optional display (not shown) via the input/output device interface 296. The input/output device interface 296 may also accept input from an optional input device (not shown).


The memory 280 may contain computer program instructions (grouped as units in some embodiments) that the processing unit 290 executes in order to implement one or more aspects of the present disclosure, along with data used to facilitate or support such execution. While shown in FIG. 2 as a single set of memory 280, memory 280 may in practice be divided into tiers, such as primary memory and secondary memory, which tiers may include (but are not limited to) random access memory (RAM), 3D XPOINT memory, flash memory, magnetic storage, and the like. For example, primary memory may be assumed for the purposes of description to represent a main working memory of the system, with a higher speed but lower total capacity than a secondary memory, tertiary memory, etc.


The memory 280 may store an operating system 284 that provides computer program instructions for use by the processing unit 290 in the general administration and operation of the device 196. The memory 280 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 280 includes an IAM manager 286 representing code executable to manage access to serverless functions, and provide session tags to instantiated sub-tenant-specific VM instances. In addition, the memory 280 includes a log manager 288 representing code executable to manage metrics associated with use of the system 110. In combination, the elements of the memory 280, when executed on the device 200, enable implementation of embodiments of the present disclosure.


The system of FIG. 2 is one illustrative configuration of such a device, of which others are possible. For example, while shown as a single device, a system may in some embodiments be implemented as a logical device hosted by multiple physical host devices. In other embodiments, the system may be implemented as one or more virtual devices executing on a physical computing device. While described in FIG. 2 as a tenant manager 196, similar components may be utilized in some embodiments to implement other devices shown in the environment 100 of FIG. 2.


With reference to FIG. 3A, illustrative interactions are depicted for instantiation of a sub-tenant-specific virtual machine, will be described. The interactions of FIG. 3A assume that a SaaS provider has previously interacted with the serverless code execution system 110 to create a function whose execution is supported by an executable code file or a disk image. For example, the user may provide the disk image in the form of a manifest and set of layers.


The interactions of FIG. 3A begin at (1), where a user device 102 transmits a call request to a frontend 120 and the frontend 120 may receive the call request from the user device 102. The user device 102 may be operated, for example, by an end user associated with a sub-tenant account of a SaaS provider. The user device 102 may be separate and distinct from the SaaS provider, while using services (including serverless functions) of the SaaS provider. Illustratively, the call request may include a serverless function identifier and a sub-tenant identifier (referred to alternatively as “attributes” of the call request). The call request may include other data as well, such as a payload to be used by the serverless function and a return address to which a response is to be sent. The serverless function identifier may indicate a particular serverless function to be invoked. The serverless function identifier may include a version identifier, if multiple versions of the serverless function are supported, that indicates a particular version of the serverless function to be invoked. The serverless function identifier may be a key-value pair, where the value may indicate the serverless function identifier, and the key may indicate this is a request for a serverless function. The sub-tenant identifier may be assigned by the SaaS provider to a sub-tenant account associated with an end user. For instance, the sub-tenant identifier may be a customer identifier or some other unique identifier associated with the sub-tenant account (e.g., associated with an end user). The sub-tenant identifier may include a tenant identifier that indicates a SaaS provider associated with the serverless function. In some embodiments, the sub-tenant identifier may include an enterprise identifier that indicates a tenant of the SaaS provider and a sub-sub-tenant identifier of an end user of the enterprise that is using the SaaS provider. The sub-tenant identifier may be a key-value pair, where the value is the sub-tenant identifier and the key indicates this is a multi-tenant mode serverless function request.


At (2), the frontend 120 may retrieve a configuration from the configuration data store 174. For example, the frontend 120 may retrieve the executable code file, the disk image or the snapshot corresponding to the serverless function identifier (including, possibly, a version identifier), an identifier thereof, or metadata associated therewith from the configuration data store 174. For instance, the frontend 120 may retrieve the metadata to confirm that the serverless function supports a multi-tenant mode. If it does, the frontend 120 may proceed to handle the call request in accordance with the multi-tenant mode; otherwise, the frontend 120 may determine a malformed call request and handle it accordingly (e.g., transmit an error reply and exit the invoke process), or handle the call request as if it were not a multi-tenant mode (thereby ignoring the sub-tenant identifier). The frontend 120 may retrieve the disk image or snapshot to pass the disk image or snapshot to a worker 181 (via various components) to provision a VM instance to be instantiated. Alternatively, the frontend 120 may pass the identifier of the disk image or snapshot to the worker 181 (via various components) so that the worker 181 may retrieve the executable code file, the disk image or the snapshot and provision the VM instance to be instantiated.


At (3), (4), (5), and (6), the frontend 120, the tenant manager 196, and the IAM data store 192 may cooperate to determine whether the call request is authorized to proceed. At (3), the frontend 120 may request authorization from the tenant manager 196. For example, the frontend 120 may pass the serverless function identifier and the sub-tenant identifier to the tenant manager 196. Note, the frontend 120 may also include a request to authorize the caller separate from the call request.


At (4), the tenant manager 196 may retrieve an IAM policy from the IAM data store 192. For example, the tenant manager 196 may determine a particular IAM policy associated with the serverless function identifier from among the set of policies and retrieve the particular IAM policy. For instance, the particular IAM policy may be associated with all serverless functions associated with a SaaS provider, as indicated by the serverless function identifier or the tenant identifier of the sub-tenant identifier. One of skill in the art would recognize that the particular IAM policy may be for a subset of all serverless functions associated with the SaaS provider, or the particular IAM policy may be associated with the sub-tenant identifier. In the case that the particular IAM policy is associated with the serverless function, the particular IAM policy may indicate which sub-tenants may access (or not) the serverless function. In the case that the particular IAM policy is associated with the sub-tenant identifier, the particular IAM policy may indicate which serverless functions the sub-tenant account associated with the sub-tenant identifier may access (or not).


At (5), the tenant manager 196 may determine whether the call request is authorized to proceed. For instance, in a first case, the tenant manager 196 may determine whether the call request is authorized to proceed based on the retrieved IAM policy, the serverless function identifier, and the sub-tenant identifier. For example, the tenant manager 196 may determine whether a sub-tenant identifier is authorized (or not) to access (or not) the serverless function based on the retrieved IAM policy.


In some embodiments, the tenant manager 196 may determine a context of the call request and determine whether the call request is authorized to proceed based on the context, even if the particular IAM policy indicates it may proceed. For instance, the tenant manager 196 may retrieve the concurrency data and the telemetry data (collectively, “context”) from the log data store 194 and determine whether on one or more conditions are satisfied to limit request rates. Generally, the one or more conditions may include concurrency conditions, load conditions, pendency conditions, requester conditions, response time conditions, or combinations thereof. As an example, the tenant manager 196 may determine whether a concurrency condition is satisfied if a number of concurrent VM instances (both sub-tenant-specific and non-tenant specific VM instances) associated with a SaaS provider (as indicated by the serverless function identifier or the tenant identifier of the sub-tenant identifier) exceeds a threshold. If a condition of the one or more conditions is satisfied, the tenant manager 196 may determine the call request is not authorized to proceed; if none of the one or more conditions are satisfied, the tenant manager 196 may determine the call request is authorized to proceed. In some embodiments, if the tenant manager 196 determines the call request is not authorized to proceed, the tenant manager 196 may queue the call request and authorize the call request when no conditions are satisfied, or the tenant manager 196 may reject the call request and indicate a general declination to proceed or indicate a particular issue for the declination. In the case the call requested is queued, the call request may time out after a period of time. The tenant manager 196 may queue requests in various manners, such as in first-in-first-out process, on a per sub-tenant basis, on a per tenant basis, or for the entire system 110, depending on the types of the one or more conditions that are satisfied.


At (6), the tenant manager 196 may transmit authorization for the call request to proceed. For example, the tenant manager 196 may transmit the authorization for the call request to proceed when the tenant manager 196 determines the call request is authorized to proceed based on the particular IAM policy and, optionally, the context.


In some embodiments, (2) may be contingent on the determination that the call request is authorized to proceed, that is (2) may not be performed if the call request is not authorized to proceed. In some embodiments, (3), (4), (5), and (6) may be contingent on (2) indicating the requested serverless function is indicated as a multi-tenant mode serverless function, that is (3), (4), (5), and (6) may not be performed if the requested serverless function is indicated as not to be a multi-tenant mode serverless function. In some embodiments, (3), (4), (5), and (6), and (2) may be performed in parallel, and the frontend 120 may only proceed if both the determination that the call request is authorized to proceed and requested serverless function is indicated as a multi-tenant mode serverless function.


At (7), the frontend 120 may transmit a reservation request to a worker manager 140. For example, the frontend 120 may distribute the reservation request from the frontend 120 to the worker manager 140, in a similar manner as discussed above with call requests. The reservation request may include the serverless function identifier and the sub-tenant identifier. The reservation request may include other data, such as instructions based on the context of the call request. The worker manager 140 may receive the reservation request.


At (8), the worker manager 140 may update the journal. For example, the worker manager 140 may write a new entry to the journal in the log data store 194 to indicate a new instantiation of a VM instance associated with the serverless function identifier and the sub-tenant identifier. The new entry may include other data, such as a time stamp or other contextual data.


At (9), the worker manager 140 may transmit a new sub-tenant VM request to the placement service 160. For example, the worker manager 140 may transmit the new sub-tenant VM request to the placement service 160 to contact the placement service 160 to request a lease on an additional instance 183, as discussed above. The new sub-tenant VM request may include the serverless function identifier and the sub-tenant identifier. The placement service 160 may receive the new sub-tenant VM request.


At (10), the placement service 160 may retrieve a tag from the tenant manager 196. For example, the placement service 160 may retrieve a session tag from the tenant manager 196 by providing the sub-tenant identifier to the tenant manager 196; the tenant manager 196 may determine the session tag and return the session tag to the placement service 160. In this manner, the tenant manager 196 ensures data nondisclosure by managing session tags, as the tenant manager 196 may ensure session tags are not repeated concurrently and/or correspond to an authorized entity (e.g., the sub-tenant account, based on a similar process as discussed above with respect to authorization). The tenant manager 196 may generate the session tag when the tenant manager 196 receives the authorization request (e.g., in anticipation of a subsequent contact from the placement service 160), or the tenant manager 196 may generate the session tag when the tenant manager 196 receives the sub-tenant identifier from the placement service 160. The tenant manager 196 or the placement service 160 may update the new entry in the journal with the session tag by updating the journal in the log data store 194. Alternatively, the placement service 160 may generate the session tag based on the sub-tenant identifier and notify the tenant manager 196, so that the tenant manager 196 may, e.g., track and manage session tags without slowing the instantiation process. Alternatively, the frontend 120 may pass the session tag (from the tenant manager 196) to the placement service 160, via transmitting the reservation request to the worker manager 140, who may pass the session tag via the transmitting the new sub-tenant VM request. For instance, the tenant manager 196 may provide the session tag when indicating authorization to proceed with the serverless function. In some embodiments, the IAM policy may be dynamically executed by the tenant manager 196 to provide the session tag. For instance, in response to a IAM request to retrieve the session tag (e.g., to assume the role of the sub-tenant), the tenant manager 196 may execute a dynamic policy based on a parameter (e.g., the sub-tenant identifier) of the IAM request. In this manner, the scale of the sub-tenants supported by the SaaS provider may not be limited by generation of the IAM policy or updates subsequent thereto.


At (11), the placement service 160 may instantiate a sub-tenant-specific VM instance. For example, the placement service 160 may identify an appropriate instance 183 (e.g., warmed with software and/or data required to support a call to implement a task) and grant to the manager 140 a lease to that instance 183. The placement service 160 may not select a warm instance 183 that is already assigned as a sub-tenant-specific VM instance 183, but may select a warm instance that is not assigned as a sub-tenant-specific instance 183 that has an appropriate software and/or data that can updated to execute the specific configuration for the serverless function. In the case that such an instance 183 does not exist, the placement service 160 can instruct a worker 181 to create such an instance 183, as discussed above, and grant to the worker manager 140 a lease to that instance 183. In either case, the placement service 160 may assign the identified instance 183 or the created instance 183 as a sub-tenant-specific VM instance 183 associated with the sub-tenant identifier, and pass the session tag to the sub-tenant-specific VM instance 183 to modify the temporary credentials of sub-tenant-specific VM instance with the session tag. In this manner, when the sub-tenant-specific VM instance 183 is invoked, the sub-tenant-specific VM instance 183 may assume the role of the sub-tenant when transmitting outbound requests to other services, such as the tenant resources 150.


At (12), the placement service 160 (or the worker 181) may update the journal to indicate the identity of the sub-tenant-specific VM instance 183. Therefore, the journal may be updated to identify which sub-tenant-specific VM instance 183 are currently assigned to specific sub-tenants, as the sub-tenant-specific VM instances 183 are instantiated, in use, or idle. Additionally or alternatively, the placement service 160 (or the worker 181) may notify the frontend 120 when the sub-tenant-specific VM instance 183 is ready.


With reference to FIG. 3B, illustrative interactions are depicted for invoking a sub-tenant-specific virtual machine, will be described. The interactions of FIG. 3B assume that a previous call request has previously been transmitted by a user device 102 and the interactions of FIG. 3A have occurred. In some embodiments, the interactions of FIG. 3B follow immediately after the interactions of FIG. 3A, that is to invoke the sub-tenant-specific VM instance 183 that was instantiated to serve that specific call request.


In other embodiments, the interactions of FIG. 3B may occur after that specific call request was handled by at least one sub-tenant-specific VM instance 183 assigned to the sub-tenant identifier and a subsequent call request from a same sub-tenant is received. In that case, the frontend 120 may, before transmitting a reservation request as in (7), or retrieving a configuration as in (2), determine whether at least one sub-tenant-specific VM instance 183 assigned to the sub-tenant identifier and/or the serverless function identifier, and whether any of the at least one sub-tenant-specific VM instance 18 are available (e.g., warm and not in use) to handle the subsequent call request. For instance, to determine whether at least one sub-tenant-specific VM instance 183 is assigned to the sub-tenant identifier and/or the serverless function identifier, the frontend 120 may search the journal to determine whether any sub-tenant-specific VM instance 183 is associated with the sub-tenant identifier and the serverless function identifier. To determine whether the sub-tenant-specific VM instances 183 (if present) are available, the frontend 120 may determine if the sub-tenant-specific VM instances 183 are warm (e.g., ready), not in use, and not decommissioned. If the sub-tenant-specific VM instances 183 are available, the frontend 120 (or a worker manager 140, or other component of system 110) may select one of sub-tenant-specific VM instances 183 that are available to handle the subsequent call request. If the sub-tenant-specific VM instances 183 are not available (e.g., all are in use, or have been decommissioned) or there were no sub-tenant-specific VM instance 183 assigned to the sub-tenant identifier and the serverless function identifier, the frontend 120 may proceed as in FIG. 3A to instantiate a sub-tenant-specific VM instance 183.


The interactions of FIG. 3B begin at (13), where the frontend 120 invokes a serverless function on a sub-tenant-specific VM instance 183. For instance, the frontend 120 may pass a call, in accordance with the call request, to the sub-tenant-specific VM instance 183. The call may include a request in accordance with a framework of the serverless function, as defined by the tenant. For instance, the call may include a payload of data, a request to retrieve particular data, a request to update data based on the payload of data, etc. The sub-tenant-specific VM instance 183 may receive the call from the frontend 120. The frontend 120 may update the journal to indicate the sub-tenant-specific VM instance 183 is in use.


At (14), the sub-tenant-specific VM instance 183 may execute code for the invoked serverless function, in accordance with the executable code file, the disk images and/or the snapshots associated with the serverless function and provided by SaaS provider. Illustratively, at (15), the sub-tenant-specific VM instance 183 may, as a part of executing the code for the invoked serverless function, retrieve sub-tenant data at sub-tenant level access from tenant data store(s) 152. For instance, the sub-tenant-specific VM instance 183 may transmit a request to a tenant data store 152, with a session tag that enables the sub-tenant-specific VM instance 183 to assume the role of the sub-tenant so that the tenant data store 152 provides access to the sub-tenant restricted data. For instance, the tenant data store 152 may check with tenant manager 196 whether an IAM policy associated with the tenant data store 152 authorizes the particular session tag to access the sub-tenant data; if so, the tenant data store 152 may provide access to the sub-tenant data; if not, the tenant data store 152 may deny access to the sub-tenant data. For instance, the code may not include the session tag (or authentication token) in the call to tenant data store(s) 152. Instead, the worker 181 that hosts the VM instance 183 may supplement calls with the session tag (or authentication token), so that the code need not worry about authentication. Alternatively, the code may refer to authentication information generically (e.g., as an environmental variable), and the worker 181 may populate the environment variable with the session tag (or authentication token) as linked to that generic identifier. In this manner, the code may work no matter the session tag (or authentication token).


At (16), the sub-tenant-specific VM instance 183 may transmit a response to the frontend 120. For instance, the sub-tenant-specific VM instance 183 may generate a response in accordance with code for the invoked serverless function and transmit the response to the frontend 120. The frontend 120 may receive the response.


At (17), the frontend 120 may relay the response to the user device 102. For instance, the frontend 120 may repackage the response, so that the response is transmitted to the return address of the user device 102. Alternatively, (16) and (17) may be omitted and the sub-tenant-specific VM instance may transmit the response directly to the user device 102. In this case, the sub-tenant-specific VM instance may notify the frontend 120 or the tenant manager 196 to notify that the response was sent to the user 102.


At (18), the frontend 120 may notify the tenant manager 196 that the response was sent. For instance, the frontend 120 may indicate the response was sent, along with optional data, such as response time, load, pendency, sub-tenant/user requestor. The tenant manager 196 may receive the notice that the response was sent.


At (19), the tenant manager 196 may generate logs and update the log data in log data store 194. For instance, the tenant manager 196 may update the telemetry data. The tenant manager 196 may also update an appropriate journal entry for the sub-tenant-specific VM instance 183, to reflect it is no longer in use.


In some embodiments, the tenant manager 196 may keep (via the workload manager 140 or other component of system 110) the sub-tenant-specific VM instance 183 in a warm state in case the sub-tenant has an additional calls to be processed. Generally, the sub-tenant-specific VM instance 183 may be kept in a warm state until a scale down policy decommissions the sub-tenant-specific VM instance 183. This may be based on various criteria, such as a period of time since a last call request for the serverless function identifier and the sub-tenant identifier, a load of the system 110, a concurrence amount of a tenant, or combinations thereof.


With reference to FIG. 4, an illustrative routine 400 for managing calls for serverless functions using sub-tenant-specific virtual machines, will be described. The routine 400 may be implemented, for example, by a serverless code execution system 110, including one or more components of FIG. 1, such as a frontend 120, a worker manager 140, the placement service 160, a worker 181, and the tenant service 190.


The routine 400 begins at block 402, where the system 110 may determine whether a call request for a serverless function from a user device has been received. For example, the frontends 120 may wait for call requests for user devices, but generally, the call requests may be automated from other system components or other systems. Therefore, generally, the frontends 120 may wait for call requests. Generally, each call may be associated with a calling party (e.g., a sub-tenant, a service, a user device, a service, etc. that transmitted the call). In response to determining no call request for a serverless function has been received (block 402: No), the system 110 may return to wait for a call request at block 402.


At block 404, in response to determining a call request for a serverless function has been received (block 402: Yes), the system 110 may determine whether the serverless function is a multi-tenant serverless function. For example, the system 110 may retrieve metadata and determine the serverless function is a multi-tenant serverless function, as discussed above, but generally the system may determine whether the call request indicates a multi-tenant call request.


At block 406, in response to determining the serverless function is a multi-tenant serverless function (block 404: Yes), the system 110 may determine whether there is at least one warm sub-tenant-specific VM associated with a sub-tenant identifier. For example, the system 110 may determine a sub-tenant associated with the call by determining the sub-tenant based on the sub-tenant identifier, and determine whether there is at least one warm sub-tenant-specific VM associated with a sub-tenant identifier and a serverless function identifier, as discussed above. Alternatively, system 110 may automatically instantiate a sub-tenant-specific VM instance 183 for the sub-tenant identifier (e.g., proceed straight to block 414, discussed below) without considering whether there is at least one warm sub-tenant-specific VM associated with a sub-tenant identifier. For instance, in certain embodiments, the system 110 may be able to instantiate a VM for each call and quickly recycle the VM to handle a next call (without exposing sub-tenant data therebetween).


At block 408, in response to determining there is at least one warm sub-tenant-specific VM associated with a sub-tenant identifier (block 406: Yes), the system 110 may select a warm sub-tenant VM associated with the sub-tenant identifier. For example, the system 110 may select a warm sub-tenant-specific VM instance 183 from among the available warm sub-tenant-specific VM instances, in accordance with various criteria, such as age, load, etc.


At block 410, the system 110 may invoke the serverless function on the warm sub-tenant-specific VM. For example, the system 110 may pass a call, in accordance with the call request, to the selected sub-tenant-specific VM instance 183, as discussed above. Upon receiving the call, the sub-tenant-specific VM may execute the associated code (or image). Generally, the sub-tenant-specific VM may already have a session tag (e.g., a currently active session tag, as passed to it during instantiation) or the sub-tenant-specific VM may get passed a session tag (e.g., a new session tag). Therefore, the sub-tenant-specific VM may assume the role of the sub-tenant when executing the associated code, such as when interacting with tenant services 150.


At block 412, the system 110 may respond to the user device based on output of the serverless function. For example, the system 110 may execute the code of the serverless function on the selected sub-tenant-specific VM instance, generate a response, and transmit the response to the user device 102, as discussed above. Note, the response may be to any entity that transmitted the call request and not just user devices. The routine 400 may return to block 402, where the system 110 may determine whether a call request for a serverless function from a user device has been received.


At block 414, in response to determining there is no warm sub-tenant-specific VM associated with a sub-tenant identifier (block 406: No), the system 110 may instantiate a sub-tenant-specific VM instance 183 for the sub-tenant identifier. For example, the system 110 may instantiate a sub-tenant-specific VM instance that has a session tag to assume the role of the sub-tenant when executing the code associated with the serverless function, as discussed above.


At block 416, the system 110 may invoke the serverless function on instantiated sub-tenant-specific VM instance 183. For example, the system 110 may pass a call, in accordance with the call request, to the instantiated sub-tenant-specific VM instance 183, as discussed above. Upon receiving the call, the instantiated sub-tenant-specific VM may execute the associated code (or image). Generally, the instantiated sub-tenant-specific VM may assume the role of the sub-tenant when executing the associated code, such as when interacting with tenant services 150.


The routine 400 may then advance to block 412, in which the system 110 may respond to the user device based on output of the serverless function, and return to block 402, where the system 110 may determine whether a call request for a serverless function from a user device has been received.


At block 418, in response to determining the serverless function is not a multi-tenant serverless function (block 404: No), the system 110 may determine whether there is at least one warm VM. For example, the system 110 may determine whether there is at least one warm non-tenant-specific VM instance 183, as discussed above.


At block 420, in response to determining there is at least one warm VM (block 418: Yes), the system 110 may select a warm VM. For example, the system 110 may select a warm VM instance 183 from among the available warm VM instances that are not warm tenant-specific VM instances, as described above.


At block 422, the system 110 may invoke the serverless function on the warm VM. For example, the system 110 may pass a call, in accordance with the call request, to the selected warm VM instance 183, as discussed above. The routine 400 may then advance to block 412, in which the system 110 may respond to the user device based on output of the serverless function, and return to block 402, where the system 110 may determine whether a call request for a serverless function from a user device has been received.


At block 424, in response to determining there is no warm VM (block 418: No), the system 110 may instantiate a VM instance 183. For example, the system 110 may instantiate a VM instance 183 without a session tag.


At block 426, the system 110 may invoke the serverless function on instantiated VM instance 183. For example, the system 110 may pass a call, in accordance with the call request, to the instantiated VM instance 183, as discussed above. The routine 400 may then advance to block 412, in which the system 110 may respond to the user device based on output of the serverless function, and return to block 402, where the system 110 may determine whether a call request for a serverless function from a user device has been received.


Generally, the system 110 may confirm authorization to proceed with the call request before doing any of blocks 404 to 426. In this manner, the IAM policies may ensure appropriate access to sub-tenant data.


Therefore, the systems and methods of the present disclosure may utilize a shared model to build multi-tenanted applications (therefore avoiding dedicated infrastructure per sub-tenant), while minimizing the security concerns by provisioning a fresh execution environment to process requests from each sub-tenant using sub-tenant specific VM instances or containers (therefore avoiding exposing persistent data to unauthorized entities). Furthermore, multi-tenant mode of the serverless code execution system may manage credentials corresponding to a requesting sub-tenant, so that the invoked serverless function may access other tenant-level services that support multi-tenant architectures.


All of the methods and processes described above may be embodied in, and fully automated via, software code modules executed by one or more computers or processors. The code modules may be stored in any type of non-transitory computer-readable medium or other computer storage device. Some or all of the methods may alternatively be embodied in specialized computer hardware.


Conditional language such as, among others, “can,” “could,” “might” or “may,” unless specifically stated otherwise, are otherwise understood within the context as used in general to present that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Disjunctive language such as the phrase “at least one of X, Y or Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y or Z, or any combination thereof (e.g., X, Y and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y or at least one of Z to each be present.


Unless otherwise explicitly stated, articles such as ‘a’ or ‘an’ should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.


Any routine descriptions, elements or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or elements in the routine. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, or executed out of order from that shown or discussed, including substantially synchronously or in reverse order, depending on the functionality involved as would be understood by those skilled in the art.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims
  • 1. A serverless code execution system comprising: one or more data stores including information for a set of identity and access management (IAM) policies defining access to a serverless function hosted by the serverless code execution system, wherein the serverless function is associated with a software as a service (SaaS) provider;one or more worker devices hosting a set of execution environments, wherein each execution environment is associated with the serverless function, and wherein the set of execution environments are partitioned based on sub-tenants of the SaaS provider; andone or more computing devices of the serverless code execution system configured to: receive a call to execute a serverless function, wherein the call includes a serverless function identifier and a sub-tenant identifier;determine whether the serverless function is configured for a multi-tenant mode of the serverless code execution system based on the serverless function identifier;in response to determining the serverless function is configured for the multi-tenant mode of the serverless code execution system, determine whether the call is authorized to proceed based on at least an IAM policy of the set of IAM policies;in response to determining the call is authorized to proceed, determine a sub-tenant of the sub-tenants based on the sub-tenant identifier;in response to determining the sub-tenant, identify a sub-tenant-specific execution environment of the set of execution environments that is associated with the sub-tenant, wherein other calls to execute the serverless function from other sub-tenants of the sub-tenants are blocked from being invoked on the sub-tenant-specific execution environment; andin response to identifying the sub-tenant-specific execution environment, invoke the serverless function on the sub-tenant-specific execution environment.
  • 2. The serverless code execution system of claim 1, wherein the one or more computing devices are further configured to, using the sub-tenant-specific execution environment, interact with one or more tenant services to access sub-tenant data, in accordance with an authentication token indicating the sub-tenant.
  • 3. The serverless code execution system of claim 1, wherein, to identify the sub-tenant-specific execution environment associated with the sub-tenant, the one or more computing devices are further configured to: determine whether any execution environment of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier; andin response to determining none of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier, instantiate the sub-tenant-specific execution environment, wherein, to instantiate the sub-tenant-specific execution environment, the one or more computing devices generate the sub-tenant-specific execution environment with an authentication token so that the sub-tenant-specific execution environment assumes the role of the sub-tenant.
  • 4. The serverless code execution system of claim 3, wherein, to instantiate the sub-tenant-specific execution environment, the one or more computing devices are further configured to select a non-tenant-specific execution environment in a warm state to be modified into the sub-tenant-specific execution environment, or create the sub-tenant-specific execution environment, wherein the one or more computing devices of the serverless code execution system pass the authentication token to the sub-tenant-specific execution environment.
  • 5. A computer-implemented method comprising: maintaining, by a multi-tenant cloud services provider, a set of execution environments, wherein each execution environment is associated with a serverless function, wherein the serverless function is associated with a software as a service (SaaS) provider that is a tenant of the cloud services provider, wherein the SaaS provider provides services to a plurality of sub-tenants, wherein the set of execution environments are partitioned based on sub-tenants of the SaaS provider;receiving a call to execute a serverless function, wherein the call includes a serverless function identifier and a sub-tenant identifier;identifying a sub-tenant-specific execution environment of the set of execution environments that is associated with the sub-tenant identifier; andinvoking the serverless function on the sub-tenant-specific execution environment.
  • 6. The computer-implemented method of claim 5, further comprising, using the sub-tenant-specific execution environment, interacting with one or more tenant services to access tenant data, in accordance with an authentication token indicating the sub-tenant.
  • 7. The computer-implemented method of claim 5, wherein identifying the sub-tenant-specific execution environment that is associated with the sub-tenant includes: determining whether any execution environment of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier; andin response to determining none of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier, instantiating the sub-tenant-specific execution environment, wherein instantiating the sub-tenant-specific execution environment includes generating the sub-tenant-specific execution environment with an authentication token so that the sub-tenant-specific execution environment assumes the role of the sub-tenant.
  • 8. The computer-implemented method of claim 7, wherein instantiating the sub-tenant-specific execution environment includes selecting a non-tenant-specific execution environment in a warm state to be modified into the sub-tenant-specific execution environment, or creating the sub-tenant-specific execution environment, wherein the sub-tenant-specific execution environment obtains the authentication token based on the sub-tenant identifier.
  • 9. The computer-implemented method of claim 5, wherein identifying the sub-tenant-specific execution environment associated with the sub-tenant includes: determining whether any execution environment of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier; andin response to determining at least one execution environment of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier, selecting an execution environment of the at least one execution environment to be the sub-tenant-specific execution environment.
  • 10. The computer-implemented method of claim 9, further comprising, before selecting the execution environment of the at least one execution environment to be the sub-tenant-specific execution environment, determining whether any of the at least one execution environment are available to handle the call.
  • 11. The computer-implemented method of claim 5, further comprising, before invoking the serverless function on the sub-tenant-specific execution environment, determining whether the call is authorized to proceed based on at least an IAM policy of a set of IAM policies and/or a context of the call.
  • 12. The computer-implemented method of claim 11, wherein determining whether the call is authorized to proceed based on the context includes retrieving contextual data; determining whether one or more conditions are satisfied to limit call rates; and in response to none of the one or more conditions are satisfied, determining the call is authorized to proceed.
  • 13. One or more non-transitory computer-readable media comprising computer-executable instructions that, when executed on a serverless compute system, cause the serverless compute system to: maintain, by a multi-tenant cloud services provider, a set of execution environments, wherein each execution environment is associated with a serverless function, wherein the serverless function is associated with a software as a service (SaaS) provider that is a tenant of the cloud services provider, wherein the SaaS provider provides services to a plurality of sub-tenants, wherein the set of execution environments are partitioned based on sub-tenants of the SaaS provider;receive a call to execute a serverless function, wherein the call includes a serverless function identifier and a sub-tenant identifier;identify a sub-tenant-specific execution environment of the set of execution environments that is associated with the sub-tenant; andinvoke the serverless function on the sub-tenant-specific execution environment.
  • 14. The one or more non-transitory computer-readable media of claim 13, wherein the sub-tenant-specific execution environment assumes the role of the sub-tenant.
  • 15. The one or more non-transitory computer-readable media of claim 13, wherein the computer-executable instructions further cause the serverless computing system to, using the sub-tenant-specific execution environment, interact with one or more tenant services to access tenant data, in accordance with an authentication token indicating the sub-tenant.
  • 16. The one or more non-transitory computer-readable media of claim 13, wherein, to identify the sub-tenant-specific execution environment associated with the sub-tenant, the computer-executable instructions further cause the serverless computing system to: determine whether any execution environment of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier; andin response to determining none of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier, instantiate the sub-tenant-specific execution environment, wherein instantiating the sub-tenant-specific execution environment includes generating the sub-tenant-specific execution environment with an authentication token so that the sub-tenant-specific execution environment assumes the role of the sub-tenant.
  • 17. The one or more non-transitory computer-readable media of claim 16, wherein, to instantiate the sub-tenant-specific execution environment, the computer-executable instructions further cause the serverless computing system to: select a non-tenant-specific execution environment in a warm state to be modified into the sub-tenant-specific execution environment, or create the sub-tenant-specific execution environment, wherein the sub-tenant-specific execution environment obtains the authentication token based on the sub-tenant identifier.
  • 18. The one or more non-transitory computer-readable media of claim 13, wherein, to identify the sub-tenant-specific execution environment associated with the sub-tenant, the computer-executable instructions further cause the serverless computing system to: determine whether any execution environment of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier; andin response to determining at least one execution environment of the set of execution environments are associated with the sub-tenant identifier and the serverless function identifier, select an execution environment of the at least one execution environment to be the sub-tenant-specific execution environment.
  • 19. The one or more non-transitory computer-readable media of claim 18, wherein, before invoking the serverless function on the sub-tenant-specific execution environment, the computer-executable instructions further cause the serverless computing system to: determine whether the call is authorized to proceed based on at least an IAM policy of a set of IAM policies and/or a context of the call.
  • 20. The one or more non-transitory computer-readable media of claim 19, wherein, to determine whether the call is authorized to proceed based on the context, the computer-executable instructions further cause the serverless computing system to retrieve contextual data; determine whether one or more conditions are satisfied to limit call rates; and in response to none of the one or more conditions are satisfied, determine the call is authorized to proceed.
US Referenced Citations (968)
Number Name Date Kind
4949254 Shorter Aug 1990 A
5283888 Dao et al. Feb 1994 A
5835764 Platt et al. Nov 1998 A
5970488 Crowe et al. Oct 1999 A
5983197 Enta Nov 1999 A
6237005 Griffin May 2001 B1
6260058 Hoenninger et al. Jul 2001 B1
6385636 Suzuki May 2002 B1
6463509 Teoman et al. Oct 2002 B1
6501736 Smolik et al. Dec 2002 B1
6523035 Fleming et al. Feb 2003 B1
6549936 Hirabayashi Apr 2003 B1
6708276 Yarsa et al. Mar 2004 B1
7036121 Casabona et al. Apr 2006 B1
7308463 Taulbee et al. Dec 2007 B2
7340522 Basu et al. Mar 2008 B1
7360215 Kraiss et al. Apr 2008 B2
7558719 Donlin Jul 2009 B1
7577722 Khandekar et al. Aug 2009 B1
7590806 Harris et al. Sep 2009 B2
7640574 Kim et al. Dec 2009 B1
7665090 Tormasov et al. Feb 2010 B1
7707579 Rodriguez Apr 2010 B2
7730464 Trowbridge Jun 2010 B2
7774191 Berkowitz et al. Aug 2010 B2
7823186 Pouliot Oct 2010 B2
7831464 Nichols et al. Nov 2010 B1
7870153 Croft et al. Jan 2011 B2
7886021 Scheifler et al. Feb 2011 B2
7949677 Croft et al. May 2011 B2
7954150 Croft et al. May 2011 B2
8010679 Low et al. Aug 2011 B2
8010990 Ferguson et al. Aug 2011 B2
8024564 Bassani et al. Sep 2011 B2
8046765 Cherkasova et al. Oct 2011 B2
8051180 Mazzaferri et al. Nov 2011 B2
8051266 DeVal et al. Nov 2011 B2
8065676 Sahai et al. Nov 2011 B1
8065682 Baryshnikov et al. Nov 2011 B2
8095931 Chen et al. Jan 2012 B1
8127284 Meijer et al. Feb 2012 B2
8146073 Sinha Mar 2012 B2
8166304 Murase et al. Apr 2012 B2
8171473 Lavin May 2012 B2
8201026 Bornstein et al. Jun 2012 B1
8209695 Pruyne et al. Jun 2012 B1
8219987 Vlaovic et al. Jul 2012 B1
8296267 Cahill et al. Oct 2012 B2
8321554 Dickinson Nov 2012 B2
8321558 Sirota et al. Nov 2012 B1
8336079 Budko et al. Dec 2012 B2
8352608 Keagy et al. Jan 2013 B1
8387075 McCann et al. Feb 2013 B1
8392558 Ahuja et al. Mar 2013 B1
8402514 Thompson et al. Mar 2013 B1
8417723 Lissack et al. Apr 2013 B1
8429282 Ahuja Apr 2013 B1
8448165 Conover May 2013 B1
8479195 Adams et al. Jul 2013 B2
8490088 Tang Jul 2013 B2
8555281 Van Dijk et al. Oct 2013 B1
8560699 Theimer et al. Oct 2013 B1
8566835 Wang et al. Oct 2013 B2
8601323 Tsantilis Dec 2013 B2
8613070 Borzycki et al. Dec 2013 B1
8615589 Adogla et al. Dec 2013 B1
8631130 Jackson Jan 2014 B2
8667471 Wintergerst et al. Mar 2014 B2
8677359 Cavage et al. Mar 2014 B1
8694996 Cawlfield et al. Apr 2014 B2
8700768 Benari Apr 2014 B2
8713093 Upadhyay et al. Apr 2014 B1
8719415 Sirota et al. May 2014 B1
8725702 Raman et al. May 2014 B1
8756322 Lynch Jun 2014 B1
8756696 Miller Jun 2014 B1
8763091 Singh et al. Jun 2014 B1
8769519 Leitman et al. Jul 2014 B2
8793676 Quinn et al. Jul 2014 B2
8799236 Azari et al. Aug 2014 B1
8799879 Wright et al. Aug 2014 B2
8806266 Qu et al. Aug 2014 B1
8806468 Meijer et al. Aug 2014 B2
8806644 McCorkendale et al. Aug 2014 B1
8819679 Agarwal et al. Aug 2014 B2
8825863 Hansson et al. Sep 2014 B2
8825964 Sopka et al. Sep 2014 B1
8839035 Dimitrovich et al. Sep 2014 B1
8850432 Mcgrath et al. Sep 2014 B2
8869300 Singh et al. Oct 2014 B2
8874952 Tameshige et al. Oct 2014 B2
8904008 Calder et al. Dec 2014 B2
8949457 Theroux et al. Feb 2015 B1
8966495 Kulkarni Feb 2015 B2
8972980 Banga et al. Mar 2015 B2
8990807 Wu et al. Mar 2015 B2
8997093 Dimitrov Mar 2015 B2
9002871 Bulkowski et al. Apr 2015 B2
9021501 Li et al. Apr 2015 B2
9026658 Xu et al. May 2015 B2
9027087 Ishaya et al. May 2015 B2
9038068 Engle et al. May 2015 B2
9052935 Rajaa Jun 2015 B1
9086897 Oh et al. Jul 2015 B2
9086924 Barsness et al. Jul 2015 B2
9092837 Bala et al. Jul 2015 B2
9098528 Wang Aug 2015 B2
9104477 Kodialam et al. Aug 2015 B2
9110732 Forschmiedt et al. Aug 2015 B1
9110770 Raju et al. Aug 2015 B1
9111037 Nalis et al. Aug 2015 B1
9112813 Jackson Aug 2015 B2
9116733 Banga et al. Aug 2015 B2
9130900 Tran Sep 2015 B2
9141410 Leafe et al. Sep 2015 B2
9146764 Wagner Sep 2015 B1
9152406 De et al. Oct 2015 B2
9154955 Bertz et al. Oct 2015 B1
9164754 Pohlack Oct 2015 B1
9176871 Serlet Nov 2015 B1
9183019 Kruglick Nov 2015 B2
9189778 Sh. Al-Rashidi Nov 2015 B1
9195520 Turk Nov 2015 B2
9208007 Harper et al. Dec 2015 B2
9218190 Anand et al. Dec 2015 B2
9223561 Orveillon et al. Dec 2015 B2
9223966 Satish et al. Dec 2015 B1
9250893 Blahaerath et al. Feb 2016 B2
9268586 Voccio et al. Feb 2016 B2
9298633 Zhao et al. Mar 2016 B1
9317689 Aissi Apr 2016 B2
9323556 Wagner Apr 2016 B2
9361145 Wilson et al. Jun 2016 B1
9405582 Fuller et al. Aug 2016 B2
9411645 Duan et al. Aug 2016 B1
9413626 Reque et al. Aug 2016 B2
9417918 Chin et al. Aug 2016 B2
9430290 Gupta et al. Aug 2016 B1
9436555 Dornemann et al. Sep 2016 B2
9461996 Hayton et al. Oct 2016 B2
9471775 Wagner et al. Oct 2016 B1
9471776 Gu et al. Oct 2016 B2
9483335 Wagner et al. Nov 2016 B1
9489227 Oh et al. Nov 2016 B2
9497136 Ramarao et al. Nov 2016 B1
9501345 Lietz et al. Nov 2016 B1
9514037 Dow et al. Dec 2016 B1
9537788 Reque et al. Jan 2017 B2
9563613 Dinkel et al. Feb 2017 B1
9565190 Telvik et al. Feb 2017 B1
9575798 Terayama et al. Feb 2017 B2
9588790 Wagner et al. Mar 2017 B1
9594590 Hsu Mar 2017 B2
9596350 Dymshyts et al. Mar 2017 B1
9600312 Wagner et al. Mar 2017 B2
9613127 Rus et al. Apr 2017 B1
9626204 Banga et al. Apr 2017 B1
9628332 Bruno, Jr. et al. Apr 2017 B2
9635132 Lin et al. Apr 2017 B1
9652306 Wagner et al. May 2017 B1
9652617 Evans et al. May 2017 B1
9654508 Barton et al. May 2017 B2
9661011 Van Horenbeeck et al. May 2017 B1
9678773 Wagner et al. Jun 2017 B1
9678778 Youseff Jun 2017 B1
9703681 Taylor et al. Jul 2017 B2
9715402 Wagner et al. Jul 2017 B2
9720661 Gschwind et al. Aug 2017 B2
9720662 Gschwind et al. Aug 2017 B2
9727725 Wagner et al. Aug 2017 B2
9733967 Wagner et al. Aug 2017 B2
9760387 Wagner et al. Sep 2017 B2
9760443 Tarasuk-Levin et al. Sep 2017 B2
9767271 Ghose Sep 2017 B2
9785476 Wagner et al. Oct 2017 B2
9787779 Frank et al. Oct 2017 B2
9798831 Chattopadhyay et al. Oct 2017 B2
9799017 Vermeulen et al. Oct 2017 B1
9811363 Wagner Nov 2017 B1
9811434 Wagner Nov 2017 B1
9817695 Clark Nov 2017 B2
9830175 Wagner Nov 2017 B1
9830193 Wagner et al. Nov 2017 B1
9830449 Wagner Nov 2017 B1
9864636 Patel et al. Jan 2018 B1
9898393 Moorthi et al. Feb 2018 B2
9910713 Wisniewski et al. Mar 2018 B2
9921864 Singaravelu et al. Mar 2018 B2
9928108 Wagner et al. Mar 2018 B1
9929916 Subramanian et al. Mar 2018 B1
9930103 Thompson Mar 2018 B2
9930133 Susarla et al. Mar 2018 B2
9952896 Wagner et al. Apr 2018 B2
9977691 Marriner et al. May 2018 B2
9979817 Huang et al. May 2018 B2
9983982 Kumar et al. May 2018 B1
10002026 Wagner Jun 2018 B1
10002036 Fuchs et al. Jun 2018 B2
10013267 Wagner et al. Jul 2018 B1
10042660 Wagner et al. Aug 2018 B2
10048974 Wagner et al. Aug 2018 B1
10061613 Brooker et al. Aug 2018 B1
10067801 Wagner Sep 2018 B1
10102040 Marriner et al. Oct 2018 B2
10108443 Wagner et al. Oct 2018 B2
10139876 Lu et al. Nov 2018 B2
10140137 Wagner Nov 2018 B2
10146635 Chai et al. Dec 2018 B1
10162655 Tuch et al. Dec 2018 B2
10162672 Wagner et al. Dec 2018 B2
10162688 Wagner Dec 2018 B2
10191861 Steinberg Jan 2019 B1
10193839 Tandon et al. Jan 2019 B2
10198298 Bishop et al. Feb 2019 B2
10203990 Wagner et al. Feb 2019 B2
10248467 Wisniewski et al. Apr 2019 B2
10255090 Tuch et al. Apr 2019 B2
10277708 Wagner et al. Apr 2019 B2
10282229 Wagner et al. May 2019 B2
10303492 Wagner et al. May 2019 B1
10331462 Varda et al. Jun 2019 B1
10346625 Anderson et al. Jul 2019 B2
10353678 Wagner Jul 2019 B1
10353746 Reque et al. Jul 2019 B2
10360025 Foskett et al. Jul 2019 B2
10360067 Wagner Jul 2019 B1
10365985 Wagner Jul 2019 B2
10387177 Wagner et al. Aug 2019 B2
10402231 Marriner et al. Sep 2019 B2
10423158 Hadlich Sep 2019 B1
10437629 Wagner et al. Oct 2019 B2
10445140 Sagar et al. Oct 2019 B1
10459822 Gondi Oct 2019 B1
10496547 Naenko et al. Dec 2019 B1
10503626 Idicula et al. Dec 2019 B2
10528390 Brooker et al. Jan 2020 B2
10531226 Wang et al. Jan 2020 B1
10552193 Wagner et al. Feb 2020 B2
10552442 Lusk et al. Feb 2020 B1
10564946 Wagner et al. Feb 2020 B1
10572375 Wagner Feb 2020 B1
10592269 Wagner et al. Mar 2020 B2
10608973 Kuo et al. Mar 2020 B2
10615984 Wang Apr 2020 B1
10623476 Thompson Apr 2020 B2
10637817 Kuo et al. Apr 2020 B2
10649749 Brooker et al. May 2020 B1
10649792 Kulchytskyy et al. May 2020 B1
10650156 Anderson et al. May 2020 B2
10652350 Wozniak May 2020 B2
10678522 Yerramreddy et al. Jun 2020 B1
10686605 Chhabra et al. Jun 2020 B2
10691498 Wagner Jun 2020 B2
10713080 Brooker et al. Jul 2020 B1
10719367 Kim et al. Jul 2020 B1
10725752 Wagner et al. Jul 2020 B1
10725826 Sagar et al. Jul 2020 B1
10732951 Jayanthi et al. Aug 2020 B2
10733085 Wagner Aug 2020 B1
10754701 Wagner Aug 2020 B1
10776091 Wagner et al. Sep 2020 B1
10776171 Wagner et al. Sep 2020 B2
10817331 Mullen et al. Oct 2020 B2
10817346 Culp Oct 2020 B1
10824484 Wagner et al. Nov 2020 B2
10831898 Wagner Nov 2020 B1
10846117 Steinberg Nov 2020 B1
10853112 Wagner et al. Dec 2020 B2
10853115 Mullen et al. Dec 2020 B2
10884722 Brooker et al. Jan 2021 B2
10884787 Wagner et al. Jan 2021 B1
10884802 Wagner et al. Jan 2021 B2
10884812 Brooker et al. Jan 2021 B2
10891145 Wagner et al. Jan 2021 B2
10915371 Wagner et al. Feb 2021 B2
10942795 Yanacek et al. Mar 2021 B1
10949237 Piwonka et al. Mar 2021 B2
10956185 Wagner Mar 2021 B2
10956244 Cho Mar 2021 B1
11010188 Brooker et al. May 2021 B1
11016815 Wisniewski et al. May 2021 B2
11044198 Ahn et al. Jun 2021 B1
11082333 Lam et al. Aug 2021 B1
11095706 Ankam Aug 2021 B1
11099870 Brooker et al. Aug 2021 B1
11099917 Hussels et al. Aug 2021 B2
11115404 Siefker et al. Sep 2021 B2
11119809 Brooker et al. Sep 2021 B1
11119813 Kasaragod Sep 2021 B1
11119826 Yanacek et al. Sep 2021 B2
11126469 Reque et al. Sep 2021 B2
11132213 Wagner Sep 2021 B1
11146569 Brooker et al. Oct 2021 B1
11159528 Siefker et al. Oct 2021 B2
11188391 Sule Nov 2021 B1
11190609 Siefker et al. Nov 2021 B2
11231955 Shahane et al. Jan 2022 B1
11243819 Wagner Feb 2022 B1
11243953 Wagner et al. Feb 2022 B2
11263034 Wagner et al. Mar 2022 B2
11327992 Batsakis et al. May 2022 B1
11354169 Marriner et al. Jun 2022 B2
11360793 Wagner et al. Jun 2022 B2
11392497 Brooker et al. Jul 2022 B1
11461124 Wagner et al. Oct 2022 B2
11467890 Wagner Oct 2022 B2
11550713 Piwonka et al. Jan 2023 B1
11561811 Wagner Jan 2023 B2
11593270 Brooker et al. Feb 2023 B1
11714675 Brooker et al. Aug 2023 B2
20010044817 Asano et al. Nov 2001 A1
20020083012 Bush et al. Jun 2002 A1
20020120685 Srivastava et al. Aug 2002 A1
20020172273 Baker et al. Nov 2002 A1
20030071842 King et al. Apr 2003 A1
20030084434 Ren May 2003 A1
20030149801 Kushnirskiy Aug 2003 A1
20030177186 Goodman et al. Sep 2003 A1
20030191795 Bernardin et al. Oct 2003 A1
20030208569 O'Brien et al. Nov 2003 A1
20030229794 James, II et al. Dec 2003 A1
20040003087 Chambliss et al. Jan 2004 A1
20040019886 Berent et al. Jan 2004 A1
20040044721 Song et al. Mar 2004 A1
20040049768 Matsuyama et al. Mar 2004 A1
20040098154 McCarthy May 2004 A1
20040158551 Santosuosso Aug 2004 A1
20040205493 Simpson et al. Oct 2004 A1
20040249947 Novaes et al. Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050027611 Wharton Feb 2005 A1
20050044301 Vasilevsky et al. Feb 2005 A1
20050120160 Plouffe et al. Jun 2005 A1
20050132167 Longobardi Jun 2005 A1
20050132368 Sexton et al. Jun 2005 A1
20050149535 Frey et al. Jul 2005 A1
20050193113 Kokusho et al. Sep 2005 A1
20050193283 Reinhardt et al. Sep 2005 A1
20050237948 Wan et al. Oct 2005 A1
20050257051 Richard Nov 2005 A1
20050262183 Colrain et al. Nov 2005 A1
20050262512 Schmidt et al. Nov 2005 A1
20060010440 Anderson et al. Jan 2006 A1
20060015740 Kramer Jan 2006 A1
20060031448 Chu et al. Feb 2006 A1
20060036941 Neil Feb 2006 A1
20060080678 Bailey et al. Apr 2006 A1
20060123066 Jacobs et al. Jun 2006 A1
20060129684 Datta Jun 2006 A1
20060155800 Matsumoto Jul 2006 A1
20060168174 Gebhart et al. Jul 2006 A1
20060184669 Vaidyanathan et al. Aug 2006 A1
20060200668 Hybre et al. Sep 2006 A1
20060212332 Jackson Sep 2006 A1
20060218601 Michel Sep 2006 A1
20060242647 Kimbrel et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248195 Toumura et al. Nov 2006 A1
20060259763 Cooperstein et al. Nov 2006 A1
20060282330 Frank et al. Dec 2006 A1
20060288120 Hoshino et al. Dec 2006 A1
20070033085 Johnson Feb 2007 A1
20070050779 Hayashi Mar 2007 A1
20070067321 Bissett et al. Mar 2007 A1
20070076244 Suzuki et al. Apr 2007 A1
20070094396 Takano et al. Apr 2007 A1
20070101325 Bystricky et al. May 2007 A1
20070112864 Ben-Natan May 2007 A1
20070130341 Ma Jun 2007 A1
20070174419 O'Connell et al. Jul 2007 A1
20070180449 Croft et al. Aug 2007 A1
20070180450 Croft et al. Aug 2007 A1
20070180493 Croft et al. Aug 2007 A1
20070186212 Mazzaferri et al. Aug 2007 A1
20070192082 Gaos et al. Aug 2007 A1
20070192329 Croft et al. Aug 2007 A1
20070198656 Mazzaferri et al. Aug 2007 A1
20070199000 Shekhel et al. Aug 2007 A1
20070220009 Morris et al. Sep 2007 A1
20070226700 Gal et al. Sep 2007 A1
20070240160 Paterson-Jones Oct 2007 A1
20070255604 Seelig Nov 2007 A1
20070300297 Dawson et al. Dec 2007 A1
20080028409 Cherkasova et al. Jan 2008 A1
20080052401 Bugenhagen et al. Feb 2008 A1
20080052725 Stoodley et al. Feb 2008 A1
20080082977 Araujo et al. Apr 2008 A1
20080104247 Venkatakrishnan et al. May 2008 A1
20080104608 Hyser et al. May 2008 A1
20080115143 Shimizu et al. May 2008 A1
20080126110 Haeberle et al. May 2008 A1
20080126486 Heist May 2008 A1
20080127125 Anckaert et al. May 2008 A1
20080147893 Marripudi et al. Jun 2008 A1
20080178278 Grinstein et al. Jul 2008 A1
20080184340 Nakamura et al. Jul 2008 A1
20080189468 Schmidt et al. Aug 2008 A1
20080195369 Duyanovich et al. Aug 2008 A1
20080201568 Quinn et al. Aug 2008 A1
20080201711 Amir Husain Aug 2008 A1
20080209423 Hirai Aug 2008 A1
20080244547 Wintergerst et al. Oct 2008 A1
20080288940 Adams et al. Nov 2008 A1
20080307098 Kelly Dec 2008 A1
20090006897 Sarsfield Jan 2009 A1
20090013153 Hilton Jan 2009 A1
20090018892 Grey et al. Jan 2009 A1
20090025009 Brunswig et al. Jan 2009 A1
20090034537 Colrain et al. Feb 2009 A1
20090055810 Kondur Feb 2009 A1
20090055829 Gibson Feb 2009 A1
20090070355 Cadarette et al. Mar 2009 A1
20090077569 Appleton et al. Mar 2009 A1
20090125902 Ghosh et al. May 2009 A1
20090158275 Wang et al. Jun 2009 A1
20090158407 Nicodemus et al. Jun 2009 A1
20090177860 Zhu et al. Jul 2009 A1
20090183162 Kindel et al. Jul 2009 A1
20090193410 Arthursson et al. Jul 2009 A1
20090198769 Keller et al. Aug 2009 A1
20090204960 Ben-Yehuda et al. Aug 2009 A1
20090204964 Foley et al. Aug 2009 A1
20090222922 Sidiroglou et al. Sep 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090288084 Astete et al. Nov 2009 A1
20090300151 Friedman et al. Dec 2009 A1
20090300599 Piotrowski Dec 2009 A1
20090307430 Bruening et al. Dec 2009 A1
20100023940 Iwamatsu et al. Jan 2010 A1
20100031274 Sim-Tang Feb 2010 A1
20100031325 Maigne et al. Feb 2010 A1
20100036925 Haffner Feb 2010 A1
20100037031 DeSantis et al. Feb 2010 A1
20100058342 Machida Mar 2010 A1
20100058351 Yahagi Mar 2010 A1
20100064299 Kacin et al. Mar 2010 A1
20100070678 Zhang et al. Mar 2010 A1
20100070725 Prahlad et al. Mar 2010 A1
20100083048 Calinoiu et al. Apr 2010 A1
20100083248 Wood et al. Apr 2010 A1
20100094816 Groves, Jr. et al. Apr 2010 A1
20100106926 Kandasamy et al. Apr 2010 A1
20100114825 Siddegowda May 2010 A1
20100115098 De Baer et al. May 2010 A1
20100122343 Ghosh May 2010 A1
20100131936 Cheriton May 2010 A1
20100131959 Spiers et al. May 2010 A1
20100146004 Sim-Tang Jun 2010 A1
20100169477 Stienhans et al. Jul 2010 A1
20100186011 Magenheimer Jul 2010 A1
20100198972 Umbehocker Aug 2010 A1
20100199285 Medovich Aug 2010 A1
20100257116 Mehta et al. Oct 2010 A1
20100257269 Clark Oct 2010 A1
20100269109 Cartales Oct 2010 A1
20100298011 Pelley et al. Nov 2010 A1
20100299541 Ishikawa et al. Nov 2010 A1
20100312871 Desantis et al. Dec 2010 A1
20100325727 Neystadt et al. Dec 2010 A1
20100329149 Singh et al. Dec 2010 A1
20100329643 Kuang Dec 2010 A1
20110004687 Takemura Jan 2011 A1
20110010690 Howard et al. Jan 2011 A1
20110010722 Matsuyama Jan 2011 A1
20110023026 Oza Jan 2011 A1
20110029970 Arasaratnam Feb 2011 A1
20110029984 Norman et al. Feb 2011 A1
20110035785 Mihara Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110055378 Ferris et al. Mar 2011 A1
20110055396 DeHaan Mar 2011 A1
20110055683 Jiang Mar 2011 A1
20110078679 Bozek et al. Mar 2011 A1
20110099204 Thaler Apr 2011 A1
20110099551 Fahrig et al. Apr 2011 A1
20110131572 Elyashev et al. Jun 2011 A1
20110134761 Smith Jun 2011 A1
20110141124 Halls et al. Jun 2011 A1
20110153541 Koch et al. Jun 2011 A1
20110153727 Li Jun 2011 A1
20110153838 Belkine et al. Jun 2011 A1
20110154353 Theroux et al. Jun 2011 A1
20110173637 Brandwine et al. Jul 2011 A1
20110179162 Mayo et al. Jul 2011 A1
20110184993 Chawla et al. Jul 2011 A1
20110208866 Marmolejo-Meillon et al. Aug 2011 A1
20110225277 Freimuth et al. Sep 2011 A1
20110231680 Padmanabhan et al. Sep 2011 A1
20110247005 Benedetti et al. Oct 2011 A1
20110258603 Wisnovsky et al. Oct 2011 A1
20110265067 Schulte et al. Oct 2011 A1
20110265069 Fee et al. Oct 2011 A1
20110265164 Lucovsky Oct 2011 A1
20110271276 Ashok et al. Nov 2011 A1
20110276945 Chasman et al. Nov 2011 A1
20110276963 Wu et al. Nov 2011 A1
20110296412 Banga et al. Dec 2011 A1
20110314465 Smith et al. Dec 2011 A1
20110321033 Kelkar et al. Dec 2011 A1
20110321051 Rastogi Dec 2011 A1
20120011496 Shimamura Jan 2012 A1
20120011511 Horvitz et al. Jan 2012 A1
20120016721 Weinman Jan 2012 A1
20120041970 Ghosh et al. Feb 2012 A1
20120054744 Singh et al. Mar 2012 A1
20120060207 Mardikar et al. Mar 2012 A1
20120072762 Atchison et al. Mar 2012 A1
20120072914 Ota Mar 2012 A1
20120072920 Kawamura Mar 2012 A1
20120079004 Herman Mar 2012 A1
20120096271 Ramarathinam et al. Apr 2012 A1
20120096468 Chakravorty et al. Apr 2012 A1
20120102307 Wong Apr 2012 A1
20120102333 Wong Apr 2012 A1
20120102481 Mani et al. Apr 2012 A1
20120102493 Allen et al. Apr 2012 A1
20120110155 Adlung et al. May 2012 A1
20120110164 Frey et al. May 2012 A1
20120110570 Jacobson et al. May 2012 A1
20120110588 Bieswanger et al. May 2012 A1
20120110603 Kaneko et al. May 2012 A1
20120124563 Chung et al. May 2012 A1
20120131379 Tameshige et al. May 2012 A1
20120144290 Goldman et al. Jun 2012 A1
20120166624 Suit et al. Jun 2012 A1
20120173709 Li et al. Jul 2012 A1
20120192184 Burckart et al. Jul 2012 A1
20120197795 Campbell et al. Aug 2012 A1
20120197958 Nightingale et al. Aug 2012 A1
20120198442 Kashyap et al. Aug 2012 A1
20120198514 McCune et al. Aug 2012 A1
20120204164 Castanos et al. Aug 2012 A1
20120209947 Glaser et al. Aug 2012 A1
20120222038 Katragadda et al. Aug 2012 A1
20120233464 Miller et al. Sep 2012 A1
20120254193 Chattopadhyay et al. Oct 2012 A1
20120324052 Paleja et al. Dec 2012 A1
20120324236 Srivastava et al. Dec 2012 A1
20120331113 Jain et al. Dec 2012 A1
20130014101 Ballani et al. Jan 2013 A1
20130042234 DeLuca et al. Feb 2013 A1
20130054804 Jana et al. Feb 2013 A1
20130054927 Raj et al. Feb 2013 A1
20130055262 Lubsey et al. Feb 2013 A1
20130061208 Tsao et al. Mar 2013 A1
20130061212 Krause et al. Mar 2013 A1
20130061220 Gnanasambandam et al. Mar 2013 A1
20130067484 Sonoda et al. Mar 2013 A1
20130067494 Srour et al. Mar 2013 A1
20130080641 Lui et al. Mar 2013 A1
20130091387 Bohnet et al. Apr 2013 A1
20130097601 Podvratnik et al. Apr 2013 A1
20130111032 Alapati et al. May 2013 A1
20130111469 B et al. May 2013 A1
20130124807 Nielsen et al. May 2013 A1
20130132283 Hayhow et al. May 2013 A1
20130132942 Wang May 2013 A1
20130132953 Chuang et al. May 2013 A1
20130139152 Chang et al. May 2013 A1
20130139166 Zhang et al. May 2013 A1
20130145354 Bruening et al. Jun 2013 A1
20130151587 Takeshima et al. Jun 2013 A1
20130151648 Luna Jun 2013 A1
20130151684 Forsman et al. Jun 2013 A1
20130152047 Moorthi et al. Jun 2013 A1
20130167147 Corrie et al. Jun 2013 A1
20130179574 Calder et al. Jul 2013 A1
20130179881 Calder et al. Jul 2013 A1
20130179894 Calder et al. Jul 2013 A1
20130179895 Calder et al. Jul 2013 A1
20130181998 Malakapalli et al. Jul 2013 A1
20130185719 Kar et al. Jul 2013 A1
20130185729 Vasic et al. Jul 2013 A1
20130191847 Sirota et al. Jul 2013 A1
20130191924 Tedesco Jul 2013 A1
20130198319 Shen et al. Aug 2013 A1
20130198743 Kruglick Aug 2013 A1
20130198748 Sharp et al. Aug 2013 A1
20130198763 Kunze et al. Aug 2013 A1
20130205092 Roy et al. Aug 2013 A1
20130205114 Badam et al. Aug 2013 A1
20130219390 Lee et al. Aug 2013 A1
20130227097 Yasuda et al. Aug 2013 A1
20130227534 Ike et al. Aug 2013 A1
20130227563 McGrath Aug 2013 A1
20130227641 White et al. Aug 2013 A1
20130227710 Barak et al. Aug 2013 A1
20130232190 Miller et al. Sep 2013 A1
20130232480 Winterfeldt et al. Sep 2013 A1
20130239125 Iorio Sep 2013 A1
20130246944 Pandiyan et al. Sep 2013 A1
20130262556 Xu et al. Oct 2013 A1
20130263117 Konik et al. Oct 2013 A1
20130274006 Hudlow et al. Oct 2013 A1
20130275376 Hudlow et al. Oct 2013 A1
20130275958 Ivanov et al. Oct 2013 A1
20130275969 Dimitrov Oct 2013 A1
20130275975 Masuda et al. Oct 2013 A1
20130283141 Stevenson et al. Oct 2013 A1
20130283176 Hoole et al. Oct 2013 A1
20130290538 Gmach et al. Oct 2013 A1
20130291087 Kailash et al. Oct 2013 A1
20130297964 Hegdal et al. Nov 2013 A1
20130298183 McGrath et al. Nov 2013 A1
20130311650 Brandwine et al. Nov 2013 A1
20130326506 McGrath et al. Dec 2013 A1
20130326507 McGrath et al. Dec 2013 A1
20130332660 Talagala et al. Dec 2013 A1
20130339950 Ramarathinam et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20130346946 Pinnix Dec 2013 A1
20130346952 Huang et al. Dec 2013 A1
20130346964 Nobuoka et al. Dec 2013 A1
20130346987 Raney et al. Dec 2013 A1
20130346994 Chen et al. Dec 2013 A1
20130347095 Barjatiya et al. Dec 2013 A1
20140007097 Chin et al. Jan 2014 A1
20140019523 Heymann et al. Jan 2014 A1
20140019735 Menon et al. Jan 2014 A1
20140019965 Neuse et al. Jan 2014 A1
20140019966 Neuse et al. Jan 2014 A1
20140040343 Nickolov et al. Feb 2014 A1
20140040857 Trinchini et al. Feb 2014 A1
20140040880 Brownlow et al. Feb 2014 A1
20140047437 Wu et al. Feb 2014 A1
20140058871 Marr et al. Feb 2014 A1
20140059209 Alnoor Feb 2014 A1
20140059226 Messerli et al. Feb 2014 A1
20140059552 Cunningham et al. Feb 2014 A1
20140068568 Wisnovsky Mar 2014 A1
20140068608 Kulkarni Mar 2014 A1
20140068611 McGrath et al. Mar 2014 A1
20140073300 Leeder et al. Mar 2014 A1
20140081984 Sitsky et al. Mar 2014 A1
20140082165 Marr et al. Mar 2014 A1
20140082201 Shankari et al. Mar 2014 A1
20140101643 Inoue Apr 2014 A1
20140101649 Kamble et al. Apr 2014 A1
20140108722 Lipchuk et al. Apr 2014 A1
20140109087 Jujare et al. Apr 2014 A1
20140109088 Dournov et al. Apr 2014 A1
20140129667 Ozawa May 2014 A1
20140130040 Lemanski May 2014 A1
20140137110 Engle et al. May 2014 A1
20140164551 Resch et al. Jun 2014 A1
20140173614 Konik et al. Jun 2014 A1
20140173616 Bird et al. Jun 2014 A1
20140180862 Certain et al. Jun 2014 A1
20140189677 Curzi et al. Jul 2014 A1
20140189704 Narvaez et al. Jul 2014 A1
20140201735 Kannan et al. Jul 2014 A1
20140207912 Thibeault Jul 2014 A1
20140214752 Rash et al. Jul 2014 A1
20140215073 Dow et al. Jul 2014 A1
20140229221 Shih et al. Aug 2014 A1
20140229942 Wiseman et al. Aug 2014 A1
20140245297 Hackett Aug 2014 A1
20140258777 Cheriton Sep 2014 A1
20140279581 Devereaux Sep 2014 A1
20140280325 Krishnamurthy et al. Sep 2014 A1
20140282418 Wood et al. Sep 2014 A1
20140282559 Verduzco et al. Sep 2014 A1
20140282615 Cavage et al. Sep 2014 A1
20140282629 Gupta et al. Sep 2014 A1
20140283045 Brandwine et al. Sep 2014 A1
20140289286 Gusak Sep 2014 A1
20140298295 Overbeck Oct 2014 A1
20140304246 Helmich et al. Oct 2014 A1
20140304698 Chigurapati et al. Oct 2014 A1
20140304815 Maeda Oct 2014 A1
20140317617 O'Donnell Oct 2014 A1
20140330936 Factor et al. Nov 2014 A1
20140331222 Zheng Nov 2014 A1
20140337953 Banatwala et al. Nov 2014 A1
20140344457 Bruno, Jr. et al. Nov 2014 A1
20140344736 Ryman et al. Nov 2014 A1
20140351674 Grube et al. Nov 2014 A1
20140359093 Raju et al. Dec 2014 A1
20140359608 Tsirkin et al. Dec 2014 A1
20140365781 Dmitrienko et al. Dec 2014 A1
20140372489 Jaiswal et al. Dec 2014 A1
20140372533 Fu et al. Dec 2014 A1
20140380085 Rash et al. Dec 2014 A1
20150006487 Yang et al. Jan 2015 A1
20150025989 Dunstan Jan 2015 A1
20150033241 Jackson et al. Jan 2015 A1
20150039891 Ignatchenko et al. Feb 2015 A1
20150040229 Chan et al. Feb 2015 A1
20150046926 Kenchammana-Hosekote et al. Feb 2015 A1
20150046971 Huh et al. Feb 2015 A1
20150052258 Johnson et al. Feb 2015 A1
20150058914 Yadav Feb 2015 A1
20150067019 Balko Mar 2015 A1
20150067830 Johansson et al. Mar 2015 A1
20150074659 Madsen et al. Mar 2015 A1
20150074661 Kothari et al. Mar 2015 A1
20150074662 Saladi et al. Mar 2015 A1
20150074675 Qi et al. Mar 2015 A1
20150081885 Thomas et al. Mar 2015 A1
20150095822 Feis et al. Apr 2015 A1
20150106805 Melander et al. Apr 2015 A1
20150120928 Gummaraju et al. Apr 2015 A1
20150121391 Wang Apr 2015 A1
20150134626 Theimer et al. May 2015 A1
20150135287 Medeiros et al. May 2015 A1
20150142747 Zou May 2015 A1
20150142952 Bragstad et al. May 2015 A1
20150143374 Banga et al. May 2015 A1
20150143381 Chin et al. May 2015 A1
20150146716 Olivier et al. May 2015 A1
20150154046 Farkas et al. Jun 2015 A1
20150161384 Gu et al. Jun 2015 A1
20150163231 Sobko et al. Jun 2015 A1
20150178019 Hegdal et al. Jun 2015 A1
20150178110 Li et al. Jun 2015 A1
20150186129 Apte et al. Jul 2015 A1
20150188775 Van Der Walt et al. Jul 2015 A1
20150199218 Wilson et al. Jul 2015 A1
20150205596 Hiltegen et al. Jul 2015 A1
20150206139 Lea Jul 2015 A1
20150212818 Gschwind et al. Jul 2015 A1
20150227598 Hahn et al. Aug 2015 A1
20150229645 Keith et al. Aug 2015 A1
20150235144 Gusev et al. Aug 2015 A1
20150242225 Muller et al. Aug 2015 A1
20150254248 Burns et al. Sep 2015 A1
20150256514 Laivand et al. Sep 2015 A1
20150256621 Noda et al. Sep 2015 A1
20150261578 Greden et al. Sep 2015 A1
20150264014 Budhani et al. Sep 2015 A1
20150269494 Kardes et al. Sep 2015 A1
20150271073 Saladi et al. Sep 2015 A1
20150271280 Zhang et al. Sep 2015 A1
20150289220 Kim et al. Oct 2015 A1
20150309923 Iwata et al. Oct 2015 A1
20150319160 Ferguson et al. Nov 2015 A1
20150319174 Hayton et al. Nov 2015 A1
20150324174 Bromley et al. Nov 2015 A1
20150324182 Barros et al. Nov 2015 A1
20150324210 Carlson Nov 2015 A1
20150324229 Valine Nov 2015 A1
20150332048 Mooring et al. Nov 2015 A1
20150332195 Jue Nov 2015 A1
20150334173 Coulmeau et al. Nov 2015 A1
20150350701 Lemus et al. Dec 2015 A1
20150356294 Tan et al. Dec 2015 A1
20150363181 Alberti et al. Dec 2015 A1
20150363304 Nagamalla et al. Dec 2015 A1
20150370560 Tan et al. Dec 2015 A1
20150370591 Tuch et al. Dec 2015 A1
20150370592 Tuch et al. Dec 2015 A1
20150371244 Neuse et al. Dec 2015 A1
20150378762 Saladi et al. Dec 2015 A1
20150378764 Sivasubramanian et al. Dec 2015 A1
20150378765 Singh et al. Dec 2015 A1
20150379167 Griffith et al. Dec 2015 A1
20160011901 Hurwitz et al. Jan 2016 A1
20160012099 Tuatini et al. Jan 2016 A1
20160019081 Chandrasekaran et al. Jan 2016 A1
20160019082 Chandrasekaran et al. Jan 2016 A1
20160019536 Ortiz et al. Jan 2016 A1
20160021112 Katieb Jan 2016 A1
20160026486 Abdallah Jan 2016 A1
20160048606 Rubinstein et al. Feb 2016 A1
20160070714 D'Sa et al. Mar 2016 A1
20160072727 Leafe et al. Mar 2016 A1
20160072781 Zhang et al. Mar 2016 A1
20160077901 Roth et al. Mar 2016 A1
20160092320 Baca Mar 2016 A1
20160092493 Ko et al. Mar 2016 A1
20160098285 Davis et al. Apr 2016 A1
20160100036 Lo et al. Apr 2016 A1
20160103739 Huang et al. Apr 2016 A1
20160110188 Verde et al. Apr 2016 A1
20160117163 Fukui et al. Apr 2016 A1
20160117254 Susarla et al. Apr 2016 A1
20160119289 Jain et al. Apr 2016 A1
20160124665 Jain et al. May 2016 A1
20160124978 Nithrakashyap et al. May 2016 A1
20160140180 Park et al. May 2016 A1
20160150053 Janczuk et al. May 2016 A1
20160188367 Zeng Jun 2016 A1
20160191420 Nagarajan et al. Jun 2016 A1
20160198235 Liu et al. Jul 2016 A1
20160203219 Hoch et al. Jul 2016 A1
20160212007 Alatorre et al. Jul 2016 A1
20160226955 Moorthi et al. Aug 2016 A1
20160282930 Ramachandran et al. Sep 2016 A1
20160285906 Fine et al. Sep 2016 A1
20160292016 Bussard et al. Oct 2016 A1
20160294614 Searle et al. Oct 2016 A1
20160306613 Busi et al. Oct 2016 A1
20160315910 Kaufman Oct 2016 A1
20160350099 Suparna et al. Dec 2016 A1
20160350124 Gschwind et al. Dec 2016 A1
20160357536 Firlik et al. Dec 2016 A1
20160364265 Cao et al. Dec 2016 A1
20160364316 Bhat et al. Dec 2016 A1
20160371127 Antony et al. Dec 2016 A1
20160371156 Merriman Dec 2016 A1
20160378449 Khazanchi et al. Dec 2016 A1
20160378525 Bjorkengren Dec 2016 A1
20160378547 Brouwer et al. Dec 2016 A1
20160378554 Gummaraju et al. Dec 2016 A1
20170004169 Merrill et al. Jan 2017 A1
20170032000 Sharma et al. Feb 2017 A1
20170041144 Krapf et al. Feb 2017 A1
20170041309 Ekambaram et al. Feb 2017 A1
20170060615 Thakkar et al. Mar 2017 A1
20170060621 Whipple et al. Mar 2017 A1
20170068574 Cherkasova et al. Mar 2017 A1
20170075749 Ambichl et al. Mar 2017 A1
20170083381 Cong et al. Mar 2017 A1
20170085447 Chen et al. Mar 2017 A1
20170085502 Biruduraju Mar 2017 A1
20170085591 Ganda et al. Mar 2017 A1
20170091235 Yammine et al. Mar 2017 A1
20170091296 Beard et al. Mar 2017 A1
20170093684 Jayaraman et al. Mar 2017 A1
20170093920 Ducatel et al. Mar 2017 A1
20170134519 Chen et al. May 2017 A1
20170142099 Hinohara et al. May 2017 A1
20170147656 Choudhary et al. May 2017 A1
20170149740 Mansour et al. May 2017 A1
20170153965 Nitta et al. Jun 2017 A1
20170161059 Wood et al. Jun 2017 A1
20170177266 Doerner et al. Jun 2017 A1
20170177441 Chow Jun 2017 A1
20170177854 Gligor et al. Jun 2017 A1
20170188213 Nirantar et al. Jun 2017 A1
20170192825 Biberman et al. Jul 2017 A1
20170221000 Anand Aug 2017 A1
20170230262 Sreeramoju et al. Aug 2017 A1
20170230499 Mumick et al. Aug 2017 A1
20170249130 Smiljamic et al. Aug 2017 A1
20170264681 Apte et al. Sep 2017 A1
20170272462 Kraemer et al. Sep 2017 A1
20170286187 Chen et al. Oct 2017 A1
20170288878 Lee et al. Oct 2017 A1
20170308520 Beahan, Jr. et al. Oct 2017 A1
20170315163 Wang et al. Nov 2017 A1
20170322824 Reuther et al. Nov 2017 A1
20170329578 Iscen Nov 2017 A1
20170346808 Anzai et al. Nov 2017 A1
20170353851 Gonzalez et al. Dec 2017 A1
20170364345 Fontoura et al. Dec 2017 A1
20170371720 Basu et al. Dec 2017 A1
20170372142 Bilobrov Dec 2017 A1
20180004555 Ramanathan et al. Jan 2018 A1
20180004556 Marriner et al. Jan 2018 A1
20180032410 Kang et al. Feb 2018 A1
20180046453 Nair et al. Feb 2018 A1
20180046482 Karve et al. Feb 2018 A1
20180060132 Maru et al. Mar 2018 A1
20180060221 Yim et al. Mar 2018 A1
20180060318 Yang et al. Mar 2018 A1
20180067841 Mahimkar Mar 2018 A1
20180067873 Pikhur et al. Mar 2018 A1
20180069702 Ayyadevara et al. Mar 2018 A1
20180081717 Li Mar 2018 A1
20180089232 Spektor et al. Mar 2018 A1
20180095738 Dürkop et al. Apr 2018 A1
20180113770 Hasanov et al. Apr 2018 A1
20180113793 Fink et al. Apr 2018 A1
20180121665 Anderson et al. May 2018 A1
20180129684 Wilson et al. May 2018 A1
20180144263 Saxena et al. May 2018 A1
20180150339 Pan et al. May 2018 A1
20180152401 Tandon et al. May 2018 A1
20180152405 Kuo et al. May 2018 A1
20180152406 Kuo et al. May 2018 A1
20180165110 Htay Jun 2018 A1
20180192101 Bilobrov Jul 2018 A1
20180225096 Mishra et al. Aug 2018 A1
20180227300 Nakic et al. Aug 2018 A1
20180239636 Arora et al. Aug 2018 A1
20180253333 Gupta Sep 2018 A1
20180255137 Hu Sep 2018 A1
20180268130 Ghosh et al. Sep 2018 A1
20180275987 Vandeputte Sep 2018 A1
20180285101 Yahav et al. Oct 2018 A1
20180300111 Bhat et al. Oct 2018 A1
20180314845 Anderson et al. Nov 2018 A1
20180316552 Subramani Nadar et al. Nov 2018 A1
20180341504 Kissell Nov 2018 A1
20180365422 Callaghan et al. Dec 2018 A1
20180367517 Tus Dec 2018 A1
20180375781 Chen et al. Dec 2018 A1
20190004866 Du et al. Jan 2019 A1
20190018715 Behrendt et al. Jan 2019 A1
20190028552 Johnson, II et al. Jan 2019 A1
20190034095 Singh et al. Jan 2019 A1
20190043231 Uzgin et al. Feb 2019 A1
20190068622 Lin Feb 2019 A1
20190072529 Andrawes et al. Mar 2019 A1
20190073430 Webster Mar 2019 A1
20190079751 Foskett et al. Mar 2019 A1
20190102278 Gahlin et al. Apr 2019 A1
20190140831 De Lima Junior et al. May 2019 A1
20190141015 Nellen May 2019 A1
20190147085 Pal et al. May 2019 A1
20190147515 Hurley et al. May 2019 A1
20190171423 Mishra et al. Jun 2019 A1
20190179678 Banerjee et al. Jun 2019 A1
20190179725 Mital et al. Jun 2019 A1
20190180036 Shukla Jun 2019 A1
20190188288 Holm et al. Jun 2019 A1
20190235848 Swiecki et al. Aug 2019 A1
20190238590 Talukdar et al. Aug 2019 A1
20190250937 Thomas et al. Aug 2019 A1
20190268152 Sandoval et al. Aug 2019 A1
20190278938 Greene et al. Sep 2019 A1
20190286475 Mani Sep 2019 A1
20190286492 Gulsvig Wood et al. Sep 2019 A1
20190303117 Kocberber et al. Oct 2019 A1
20190306692 Garty Oct 2019 A1
20190311115 Lavi et al. Oct 2019 A1
20190318312 Foskett et al. Oct 2019 A1
20190320038 Walsh et al. Oct 2019 A1
20190324813 Bogineni et al. Oct 2019 A1
20190339955 Kuo et al. Nov 2019 A1
20190361802 Li et al. Nov 2019 A1
20190363885 Schiavoni et al. Nov 2019 A1
20190370113 Zhang et al. Dec 2019 A1
20200007456 Greenstein et al. Jan 2020 A1
20200026527 Xu et al. Jan 2020 A1
20200028936 Gupta et al. Jan 2020 A1
20200034471 Danilov et al. Jan 2020 A1
20200065079 Kocberber et al. Feb 2020 A1
20200073770 Mortimore, Jr. et al. Mar 2020 A1
20200073987 Perumala et al. Mar 2020 A1
20200081745 Cybulski et al. Mar 2020 A1
20200110691 Bryant et al. Apr 2020 A1
20200120120 Cybulski Apr 2020 A1
20200134030 Natanzon et al. Apr 2020 A1
20200136933 Raskar Apr 2020 A1
20200153798 Liebherr May 2020 A1
20200153897 Mestery et al. May 2020 A1
20200167208 Floes et al. May 2020 A1
20200186445 Govindaraju Jun 2020 A1
20200192646 Yerramreddy et al. Jun 2020 A1
20200213151 Srivatsan et al. Jul 2020 A1
20200241930 Garg et al. Jul 2020 A1
20200327236 Pratt et al. Oct 2020 A1
20200348979 Calmon Nov 2020 A1
20200349067 Syamala et al. Nov 2020 A1
20200366587 White et al. Nov 2020 A1
20200401455 Church et al. Dec 2020 A1
20200412538 Rosado Dec 2020 A1
20210019056 Mangione-Tran Jan 2021 A1
20210042160 Alamouti Feb 2021 A1
20210081233 Mullen et al. Mar 2021 A1
20210117217 Croteau Apr 2021 A1
20210117534 Maximov et al. Apr 2021 A1
20210124822 Tiwary et al. Apr 2021 A1
20210176333 Coleman et al. Jun 2021 A1
20210233045 Singh Jul 2021 A1
20210294646 Hassaan et al. Sep 2021 A1
20210303720 Creenaune Sep 2021 A1
20210314250 Laplante Oct 2021 A1
20210342145 Miller Nov 2021 A1
20210342329 Padmanabhan Nov 2021 A1
20220012083 Brooker et al. Jan 2022 A1
20220200993 Smith Jun 2022 A1
20220201041 Keiser, Jr. Jun 2022 A1
20220214863 Clement et al. Jul 2022 A1
20220391238 Wagner Dec 2022 A1
20230024699 Bayoumi et al. Jan 2023 A1
Foreign Referenced Citations (75)
Number Date Country
2975522 Aug 2016 CA
1341238 Mar 2002 CN
101002170 Jul 2007 CN
101267334 Sep 2008 CN
101345757 Jan 2009 CN
101496005 Jul 2009 CN
101627388 Jan 2010 CN
101640700 Feb 2010 CN
101764824 Jun 2010 CN
102171712 Aug 2011 CN
102246152 Nov 2011 CN
102365858 Feb 2012 CN
102420846 Apr 2012 CN
102761549 Oct 2012 CN
103098027 May 2013 CN
103140828 Jun 2013 CN
103384237 Nov 2013 CN
103731427 Apr 2014 CN
104111848 Oct 2014 CN
104160378 Nov 2014 CN
104243479 Dec 2014 CN
104903854 Sep 2015 CN
105122243 Dec 2015 CN
105956000 Sep 2016 CN
106921651 Jul 2017 CN
107534672 Jan 2018 CN
2663052 Nov 2013 EP
2002-287974 Oct 2002 JP
2006-107599 Apr 2006 JP
2007-080161 Mar 2007 JP
2007-538323 Dec 2007 JP
2010-026562 Feb 2010 JP
2011-065243 Mar 2011 JP
2011-233146 Nov 2011 JP
2011-257847 Dec 2011 JP
2012-078893 Apr 2012 JP
2012-104150 May 2012 JP
2013-156996 Aug 2013 JP
2014-525624 Sep 2014 JP
2016-507100 Mar 2016 JP
2017-534107 Nov 2017 JP
2017-534967 Nov 2017 JP
2018-503896 Feb 2018 JP
2018-512087 May 2018 JP
2018-536213 Dec 2018 JP
10-357850 Oct 2002 KR
WO 2008114454 Sep 2008 WO
WO 2009137567 Nov 2009 WO
WO 2012039834 Mar 2012 WO
WO 2012050772 Apr 2012 WO
WO 2013106257 Jul 2013 WO
WO 2015078394 Jun 2015 WO
WO 2015108539 Jul 2015 WO
WO 2015149017 Oct 2015 WO
WO 2016053950 Apr 2016 WO
WO 2016053968 Apr 2016 WO
WO 2016053973 Apr 2016 WO
WO 2016090292 Jun 2016 WO
WO 2016126731 Aug 2016 WO
WO 2016164633 Oct 2016 WO
WO 2016164638 Oct 2016 WO
WO 2017059248 Apr 2017 WO
WO 2017112526 Jun 2017 WO
WO 2017172440 Oct 2017 WO
WO 2018005829 Jan 2018 WO
WO 2018039514 Jan 2018 WO
WO 2018098443 May 2018 WO
WO 2018098445 May 2018 WO
WO 2020005764 Jan 2020 WO
WO 2020006081 Jan 2020 WO
WO 2020069104 Apr 2020 WO
WO 2020123439 Jun 2020 WO
WO 2020264431 Dec 2020 WO
WO 2021108435 Jun 2021 WO
WO 2023107649 Jun 2023 WO
Non-Patent Literature Citations (127)
Entry
Elsakhawy, Mohamed; Bauer, Michael. FaaS2F: A Framework for Defining Execution-SLA in Serverless Computing. 2020 IEEE Cloud Summit. https://ieeexplore.IEEE.org/stamp/stamp.jsp?tp=&arnumber=9283723 (Year: 2020).
Cordingly, Robert et al. Predicting Performance and Cost of Serverless Computing Functions with SAAF. 2020 IEEE Intl Conf on DASC/PiCom/CBDCom/CyberSciTech. https://ieeexplore.IEEE.org/stamp/stamp.jsp?tp=&arnumber=9251165 (Year: 2020).
Chauvel, Franck; Solberg, Arnor. Using Intrusive Microservices to Enable Deep Customization of Multi-tenant SaaS. 2018 11th International Conference on the Quality of Information and Communications Technology (QUATIC).https://ieeexplore.IEEE.org/stamp/stamp.jsp?tp=&arnumber=8590168 (Year: 2018).
Xiong, Jinjun; Chen, Huamin. Challenges for Building a Cloud Native Scalable and Trustable Multi-tenant AloT Platform. 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). https://ieeexplore.IEEE.org/stamp/stamp.jsp?tp=&arnumber= 9256419 (Year: 2020).
Anonymous: “Amazon Elastic Compute Cloud User Guide for Linux Instances—first 400 pages of 795,” Apr. 8, 2016 (Apr. 8, 2016_, XP055946665, Retrieved from the Internet: URL:https://web.archive.org/web/20160408211543if_/http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-ug.pdf (retrieved on Jul. 27, 2022] 795 pages.
Anonymous: “Amazon Cognito Developer Guide,” Jun. 24, 2001, XP093030075, retrieved from the internet: URL:https://web.archive.org/web/2021062415394lif_/https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-dg. pdf [retrieved on Mar. 9, 2023] the whole document.
Anonymous: “Amazon Simple Workflow Service Developer Guide API Version 2012-01-25,” Jun. 11, 2016 (Jun. 11, 2016), XP055946928, Retrieved from the Internet: URL:https://web.archive.org/web/20160111075522if_/http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg.pdf [retrieved on Jul. 28, 2022] in 197 pages.
Anonymous: “alias (command)—Wikipedia,” Jun. 28, 2016, pp. 106, XP093089956, Retrieved fromthe Internet: URL:https://en.wikipedia.org/w/index.php?title=Alias_(command)&oldid=727315645 [retrieved on Oct. 9, 2023.
Anonymous: “AWS Flow Framework for Java,” Apr. 7, 2016 (Apr. 7, 2016), XP055946535, Retrieved from the Internet: URL:https://web.archive.org/web/20160407214715if_/http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/swf-aflow.pdf, [retrieved Apr. 27, 2022] in 139 pages.
Anonymous: “AWS Lambda Developer Guide,” Jul. 1, 2021, XP093024770, retrieved from the internet: URL:https://web.archieve.org/web/20210701100128if_/https://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf [retrieved on Feb. 17, 2023] the whole document.
Anonymous: “AWS Lambda Developer Guide,” Jul. 1, 2021, XP093024770, retrieved from the internet: URL:https://web.archive.org/web/20210701100128if_/https://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf [retrieved on Feb. 17, 2023] the whole document.
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet:URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017].
Anonymous: SaaS Tenant Isolution Strategies Isolating Resources in a Multi-Tenant Environment,: Aug. 1, 2020, XP093030095, retrieved from the internet: URL:https://dl.awsstatic.com/whitepapers/saas-tenant-isolation-strategies.pdf [retrieved on Mar. 9, 2023] the whole document.
Anonymous: “Security Overview of AWS Lambda,” Aug. 11, 2021, XP093030100, retrieved from the internet:URL:https://web.archive.org/web/20210811044132if_/https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/security-overview-aws-lambda.pdf [retrieved Mar. 9, 2023] the whole document.
Abebe et al., “EC-Store: Bridging the Gap Between Storage and Latency in Distribute Erasure CodedSystems”, IEEE 38th International Conference on Distributed Computing Systems, 2018, pp. 255-266.
Adapter Pattern, Wikipedia,https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages.
Amazon, “AWS Lambda: Developer Guide”, Jun. 26, 2016 Retrieved from the Internet,URL:http://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf, [retrieved on Aug. 30, 2017], 314 pages.
Amazon, “AWS Lambda: Developer Guide”, Apr. 30, 2016 Retrieved from the Internet, URL:https://web.archive.org/web/20160430050158/http://docs.aws.amazon.com:80/lambda/latest/dg/lambda-dg.pdf, 346 pages.
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages.
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: Jan. 2007, 12 pages.
Bebenita et al., “Trace-Based Compilation in Execution Environments without Interpreters,” ACM, Copyright 2010, 10 pages.
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, Sep. 2013, 15 pages.
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages.
Bryan Liston, “Ad Hoc Big Data Processing Made Simple with Serverless Map Reduce”, Nov. 4, 2016, Amazon Web Services <https :/laws. amazon .com/bl ogs/compute/ad-hoc-big-data-processi ng-made-si mple-with-serverless-mapred uce >.
CodeChef Admin discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, retrieved on Sep. 10, 2019.
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, retrieved on Sep. 9, 2019.
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012.
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, Nov. 2014, 13 pages.
Deis, Container, Jun. 2014, 1 page.
Dean et al., “MapReduce: Simplified Data Processing on Large Clusters”, ACM, 2008, pp. 107-113.
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9- 11, 2013, pp. 30-37.
Dornemann et al., “On-Demand Resource Provisioning for BPEL Workflows Using Amazon's ElasticCompute Cloud”, 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009, pp. 140-147.
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, fromhttps://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages.
Ekanayake et al, “Twister: A Runtime for Iterative MapReduce”, ACM, 2010, pp. 810-818.
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013.
Fan et al., Online Optimization of VM Deployment in laaS Cloud, Dec. 17, 2012-Dec. 19, 2012, 6 pages.
Ha et al., A Concurrent Trace-based Just-In-Time Compiler for Single-threaded JavaScript, utexas.edu, Jun. 2009.
Hammoud et al., “Locality-Aware Reduce Task Scheduling for MapReduce”, IEEE, 2011, pp. 570-576.
Han et al., Lightweight Resource Scaling for Cloud Applications, May 13, 2012-May 16, 2012, 8 pages.
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sept, 2015, 15 pages.
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051 /http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012.
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR, va123, 2014.
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015.
Huang, Zhe, Danny HK Tsang, and James She. “A virtual machine consolidation framework formapreduce enabled computing clouds.” 2012 24th International Teletraffic Congress (ITC 24). IEEE, Sep. 4, 2012-Sep. 7, 2012.
Huang et al., “Erasure Coding in Windows Azure Storege”, USENIX, 2012 in 12 pages.
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages.
IBM, what is Serverless computing, https://www.IBM.com/topics/serverless#:-:test=Serverless%20is%20a%20cloud%20computing, managing%20servers%20or%20backend%20infr astructure, pp. 1-11 (Year: 2023).
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation.
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages.
Kim et al., “MRBench: A Benchmark for Map-Reduce Framework”, IEEE, 2008, pp. 11-18.
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages.
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for GridComputing”, SuperComputing 2004. Proceedings of the ACM/IEEE 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages.
Lagar-Cavilla et al., “SnowFlock: Virtual Machine Cloning as a First-Class Cloud Primitive”, ACM Transactions on Computer Systems, vol. 29, No. 1, Article 2, Publication date: Feb. 2011, in 45 pages.
Lin, “MR-Apriori: Association Rules Algorithm Based on MapReduce”, IEEE, 2014, pp. 141-144.
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages.
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages.
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, Jul. 2013, <hal-01228236, pp. 81-89.
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578.
Neenan, Sarah Compare Serverless tools and services in the Public cloud, https://www.techtarget.com/searchcloudcomputing/feature/Compare-serverless-tools-and-services-in-the-public-cloud, TechTarget, pp. 1-4 (Year: 2023).
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321.
Rashmi et al., “EC-Cache: Load-Balance, Low-Latency Cluster Caching with Online Erasure Coding”, USENIX, 2016, pp. 401-417.
Ryden et al., “Nebula: Distributed Edge Cloud for Data-Intensive Computing”, IEEE, 2014, pp. 491-492.
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31.
Search Query Report from IP.com, performed Dec. 2, 2020.
Search Query Report from IP.com, performed May 27, 2021.
Sharma A. et al., “Building a Multi-Tenant SaaS Solution Using AWS Serverless Services,” Aug. 26, 2021, XP093030094, retrieved from the internet: URL:https://aws.amazon.com/blogs/apn/building-a-multi-tenant-saas-solution-using-aws-serverless-services/[retrieved on Mar. 9, 2023] the whole document.
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages.
Stack Overflow, Creating a database connection pool, Nov. 10, 2009, 4 pages.
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages.
Tange, “GNU Parallel: The Command-Line Power Tool”, vol. 36, No. 1, Jan. 1, 1942, pp. 42-47.
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010.
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1): 45-52, Jan. 2011.
Wang et al., “Improving utilization through dynamic VM resource allocation in hybrid cloudenvironment”, Parallel and Distributed V Systems (ICPADS), IEEE, Dec. 16, 2014-Dec. 19, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages.
Wikipedia “API” pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en .wikipedia.org/wiki/Application_programming_interface.
Wikipedia List_of_HTTP status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP status_codes, retrieved on Sep. 10, 2019.
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en .wikipedia.org/wiki/Recursion_(computer_science), 2015.
Wikipedia: Serverless computing, https://en.wikipedia.org/wiki/Serverless_computing, pp. 107 (Year: 2023).
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, retrieved on Sep. 10, 2019.
Wood, Timothy, et al. “Cloud Net: dynamic pooling of cloud resources by live WAN migration of virtual machines.” ACM Sigplan Notices 46.7 (2011): 121-132. (Year: 2011).
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulationin Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages.
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7.
Yang, The Application of MapReduce in the Cloud Computing:, IEEE, 2011, pp. 154-156.
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education, Jun. 10, 2012.
Zhang et al., VMThunder: Fast Provisioning of Large-Scale Virtual Machine Clusters, IEEE Transactions on Parallel and Distributed Systems, vol. 25, No. 12, Dec. 2014, pp. 3328-3338.
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38.
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015.
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018.
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015.
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018.
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020.
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016.
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018.
International Search Report and Written Opinion in PCT/US2015/064071dated Mar. 16, 2016.
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017.
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016.
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017.
European Examination Report, re EP Application No. 17743108.7, dated Oct. 12, 2022.
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016.
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017.
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016.
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017.
International Search Report for Application No. PCT/US2020/039996 dated Oct. 8, 2020.
International Preliminary Report on Patentability for Application No. PCT/US2020/039996 dated Jan. 6, 2022.
International Preliminary Report on Patentability for Application No. PCT/US2020/062060 dated Jun. 9, 2022 in 9 pages.
International Search Report and Written Opinion, re PCT Application No. PCT/US2022/052315, mailed Mar. 20, 2023.
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016.
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018.
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017.
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018.
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017.
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018.
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017.
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019.
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017.
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019.
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019.
International Search Report and Written Opinion mailed Oct. 15, 2019 for International Application No. PCT/US2019/039246 in 16 pages.
International Preliminary Report on Patentability mailed Dec. 29, 2020 for International Application No. PCT/US2019/039246 in 8 pages.
International Search Report for Application No. PCT/US2019/038520 dated Aug. 14, 2019.
International Preliminary Report on Patentability for Application No. PCT/US2019/038520 dated Dec. 29, 2020.
International Preliminary Report on Patentability and Written Opinion in PCT/US2019/053123 dated Mar. 23, 2021.
International Search Report and Written Opinion in PCT/US2019/053123 dated Jan. 7, 2020.
International Search Report for Application No. PCT/US2019/065365 dated Mar. 19, 2020.
International Preliminary Report on Patentability for Application No. PCT/US2019/065365 dated Jun. 8, 2021.
Related Publications (1)
Number Date Country
20230188516 A1 Jun 2023 US