This invention is related generally to a testing apparatus and, more particularly, to a multi-through hole testing plate for high throughput screening.
Prior testing apparatuses have consisted of a testing plate with a pair of opposing surfaces and a plurality of wells. The wells extend in from one of the opposing surfaces, but do not extend through to the other opposing surfaces. The wells are used to hold samples of solution to be analyzed.
Although these testing apparatuses work there are some problems. For example, the wells in these testing apparatuses are difficult to fill. Special delivery systems, such as large pipette systems, are needed to fill each of the wells with samples of solution. These special delivery systems are often expensive and difficult to operate. As a result, the overall cost of the testing procedure is increased.
Another problem with these prior testing apparatuses is with their construction. The bottom of the wells in these testing plates need to be transparent so that light can be transmitted through the samples during testing. However, the rest of the testing plate needs to be constructed of a non-transparent material. The construction of a testing apparatus with these characteristics is difficult and expensive.
Yet another problem with these prior testing apparatuses is with the operator locating a particular well in the testing apparatus. Typically, these testing apparatuses each include large numbers of wells which are equidistantly spaced apart. As a result, locating a particular well within the large number of wells is difficult.
Accordingly, there is a need for an improved testing apparatus for high throughput screening.
A method for holding samples in accordance with one embodiment of the present invention includes several steps. First, a testing plate with a pair of opposing surfaces and a plurality of holes is provided. Each of the holes extends from one of the opposing surfaces to the other one of the opposing surfaces. Next, at least one of the opposing surfaces of the testing plate is immersed in a solution to be analyzed. A portion of the solution enters openings for each of the holes in the immersed opposing surface and any gases in the holes escape through openings for each of the holes in the other opposing surface. Next, the testing plate is removed from the solution. Surface tension holds some of the solution in each of the holes. The opposing surfaces of the testing plate are then held above a supporting surface and the solution held in at least one of the holes is analyzed.
A method for identifying the location at least one sample of a solution in accordance with another embodiment of the present invention includes several steps. First, a testing plate with a pair of opposing surfaces and a plurality of holes is provided. Each of the holes in the testing plate extend from one of the opposing surfaces to the other one of the opposing surfaces. The holes in the plate are arranged in groups. Each of the groups comprises at least two rows and two columns of holes. Once a testing plate has been provided, solution is loaded into the holes and is then analyzed. Based on this analysis, the solution in at least one hole is identified for further study. The location of the identified hole is marked based upon the group in which the hole is found.
A method for screening a sample in accordance with another embodiment of the present invention includes several steps. First, a solution of the sample is prepared for screening. Next, a testing plate with a pair of opposing surfaces and a plurality of holes is provided. Each of the holes extends from one of the opposing surfaces to the other one of the opposing surfaces in the testing plate. Next, at least one of the opposing surfaces of the testing plate is immersed in a solution. A portion of the solution enters openings for each of the holes in the immersed opposing surface of the testing plate. Once the solution has enter into the holes, the testing plate is removed from the solution and the surface tension holds at least some of the solution in the holes. Next, the solution in one or more of the holes is analyzed.
An apparatus for holding samples of a solution with cells for analysis in accordance with another embodiment of the present invention includes a testing plate with a pair of opposing surfaces and a plurality of through holes. Each of the holes extends from an opening in one of the opposing surfaces in the testing plate to an opening in the other one of the opposing surfaces and is sized to hold a plurality of the cells. A portion of at least one of the opposing surfaces of the testing plate where the holes are located is recessed so that the openings in the testing plate are spaced in from the opposing surface.
An apparatus for holding samples for analysis in accordance with yet another embodiment of the present invention also includes a testing plate with a pair of opposing surfaces and a plurality of holes. Each of the holes extends from one of the opposing surfaces to the other one of the opposing surfaces. The holes are arranged in groups on the testing plate, where each of the groups comprises at least two rows and two columns of holes.
The method and apparatus for holding samples for analysis in accordance with the present invention provides a number of advantages. For example, the present invention simplifies testing procedures. The samples of solution to be analyzed can be loaded into the testing plate by simply dipping or flooding one of the surfaces of the testing plate into the solution. As a result, the present invention does not require the use of a separate delivery systems for loading solution into the wells on the testing plate.
The present invention also simplifies the construction of the testing apparatus. The testing apparatus merely needs one of the opposing surfaces of the testing apparatus to be spaced away by additional spacers or machined to create a recessed portion and then a plurality of holes need to be drilled through the plate in the recessed portion. Unlike prior testing apparatuses, the present invention does not require any special construction techniques to make the bottom of the wells transparent because the holes extend all of the way through the plate.
The present invention also permits an operator to more easily identify a particular hole filled with a sample for further analysis. Instead of spacing the holes equidistantly over the testing plate, the present invention arranges the holes in groups of at least two columns and two rows of holes and arranges the groups in sets of at least two or more. The groups are spaced further apart then the holes within each group and the sets of groups are spaced further apart then the groups are spaced apart. As a result, an operator can more easily identify a particular hole based upon which set, group, row, and column the hole is located in on the testing plate.
A testing apparatus 10 in accordance with one embodiment of the present invention is illustrated in
Referring to
The testing plate 12 includes the pair of opposing surfaces 14 and 16. In this particular embodiment, the opposing surfaces 14 and 16 are substantially planar, except where the recessed portions 20 and 22 are located, although the surfaces 14 and 16 could have other relationships with respect to each other. Each of the opposing surfaces 14 and 16 includes one of the recessed portions 20 and 22 which are machined into the testing plate 12, although other techniques for forming the recessed portions 20 and 22, such as by molding or adding spaces, can be used. When either of the opposing surfaces 14 and 16 of the testing plate 12 rests on a supporting surface 28, the recessed portion 14 or 16 along with the plurality of holes 18 located in the recessed portion 14 or 16 are spaced away from the supporting surface 28. If openings 30 and 32 to the holes 18 contacted the supporting surface 28, then any solutions in the holes 18 would drain out of the holes 18. In this particular embodiment, a ridge 34 if formed in each of the opposing surfaces 14 and 16 by the recessed portions 20 and 22 which extends around the outer circumference of the testing plate 12. Although the holes 18 are spaced from the support surface 28 by a recessed portion 20 or 22 formed in the testing plate 12, the holes 18 can be spaced from the supporting surface 28 with other types of supporting structures, such as a bracket attached to the testing plate which supports the testing plate 12 and holes 18 above the supporting surface 28.
Referring to
Referring to
A plurality of through holes 18 are located in the testing plate 12. The holes 18 extend from openings 30 in the recessed portion 20 of one of the opposing surfaces 14 to openings 32 in the recessed portion 22 of the other opposing surface 16. In this particular embodiment, the holes 18 have a substantially cylindrical shape, although the holes 18 could have other shapes, such as a hexagonal cross-sectional shape or a cone shape. In this particular embodiment, each of the holes 18 has a diameter of about one millimeter and can hold about 5.5 microliters of solutions S and cells C, although the diameter, volume and number of cells C each hole 18 can hold can vary as needed or desired. The solution S along with cells C in the solution S are held in the holes 18 by surface tension as shown in
One of the advantages of the present invention is that the testing plate 12 is easy to manufacture. A plate having opposing surfaces can have an appropriate number of holes drilled there through. The plate can include one or more recessed portions 20, 22, and the through holes can pass through the recessed portion of the plate 12. Since the holes 18 extend all of the way through, there is no need for a transparent bottom in each hole 18. Light transmitted into the holes 18 will pass through during testing. With prior wells, the testing apparatus also needed to be non-transparent, but since the wells did not extend through the apparatus, the bottom of the wells needed to be made of a transparent material to permit light to pass through the sample for optical analysis. Constructing these prior testing apparatuses was difficult and expensive.
Referring to
By arranging the holes 18 in sets 26 and groups 24, it is much easier for an operator to identify a particular hole 18 in the testing plate 12 and retrieve a particular sample. The sets 26 of holes 18 help the operator identify the general area of the hole 18 and then the groups 24 help the operator to begin to narrow down the location of the hole 18. The column and row of the hole 18 in each group 24 provides the precise location of the hole 18. The spacing between sets 26, groups 24, and rows and columns are different to make it visually easier for an operator to identify a particular hole 18. When the holes 18 are all spaced equidistantly apart, then it is more difficult to identify a particular hole 18 and it is easier for an operator to lose his/her place and select a sample from the wrong hole 18.
Although the holes 18 are arranged in groups 24 and sets 26 in testing apparatuses 10 and 50 to aid human operators, other arrangements for the holes 18 may also be used. For example, when the testing apparatuses are used by robotics, instead of human operators, the holes 18 can also be spaced equidistantly apart as shown in the embodiment of the testing apparatus 60 illustrated in
Referring to
Instead of a recessed portion in the plate 12, an assembly comprising the plate and evaporation plates can be provided with spacers between the testing plate and the evaporation plates to space the openings of the through holes away from the evaporation plates. The evaporation plates could be provided with recesses portions in addition to, or instead of, spacers between the testing plate and the evaporation plates. Any combination of recessed portions in the testing plate, recessed portions in the evaporation plates, or spacers can be used to provide the spacing between the openings of the through holes and the evaporation plates.
According to an embodiment of the present invention, stackable testing plates are provided which may or may not have evaporation plates in-between testing plates. The stackable testing plates may be provided with recessed portions or evaporation plates with recessed portions can be provided between a stacked testing plate. Any combination of recessed portions in the testing plates, recessed portions in the evaporation plates, or spacers can be used to provide a stack of testing plates wherein each testing plate is spaced from the surface of an adjacent testing plate, evaporation plate, or both.
One example of one application of the present invention will be discussed with reference to testing apparatus 10 shown in
Although one example of preparing the solution S and cells C is disclosed, other methods and techniques for preparing samples to be used with the testing apparatus 10 can be used as is readily understood by one of ordinary skill in the art.
Next, a testing plate 12 with a pair of opposing surfaces 14 and 16 and a plurality of holes 18 which extend from one of the opposing surfaces 14 to the other one of the opposing surfaces 16 is provided. At least one of the opposing surfaces 14 of the testing plate is immersed in the prepared solution S. The solution S enters openings 30 and 32 for each of the holes 18 in testing plate 12 and any gases in the holes 18 may escape through openings 30 and 32 at the opposite end of the holes 18. Alternatively, the testing plate 12 may be flooded with solution S so that the solution S enters through the top opening 30 to each hole 18.
One of the advantages of the present invention is the ease with which solution S can be loaded into each of the holes 18. As illustrated in the description above, all of the holes 18 in the testing plate 12 can be loaded with samples of solution S in a relatively short period of time and without any type of specialized solution delivery system. Prior testing apparatuses with wells required specialized solution delivery system, such as large pipette devices, to be able to load solution into each of the wells. These specialized solution delivery systems are difficult to use and are expensive.
Once the solution S has been drawn into the holes 18, the testing plate 12 is removed from the solution S. Surface tension holds the solution S in each of the holes 18. In this particular embodiment, each hole 18 has a diameter of about one millimeter and holds about 5.5 microliters of solution S and cells C as shown in
Once the testing plate 12 is removed from the solution S, the testing plate 12 can be placed on a supporting surface 28. Since the holes 18 are located in a recessed portion 22 of the testing plate 12, the openings 22 to the holes 18 are spaced from the supporting surface 28 so that any solution S being held by surface tension remains in the holes 18. A pair of evaporation plates 40 and 42 may be attached to the opposing surfaces 14 and 16 of the testing plate 12 to prevent the samples of solution S in the testing plate 12 from evaporating or becoming contaminated.
In this particular example, the testing plate 12 is then optionally incubated at a controlled temperature of about 37° C. and a humidity of about 70%, although the temperature and humidity will vary based upon the particular application. During the incubation, the cells multiply and produce a protein of interest (the cells could produce an enzyme, an antibody, or a metabolite which could be of interest). The ability of the protein, such as an enzyme, to hydrolyze a substrate is analyzed, such as by measurement of fluorogenic or chromogenic groups liberated by the hydrolysis.
Although one example of processing the samples of solution S in the testing plate 12 is disclosed, other methods and techniques for processing and analysis the samples can also be used and are know to those of ordinary skill in the art.
Next, in this particular example the samples of solution S with cells C in the holes 18 (as shown in
Although one example of analyzing the samples of solution S in the testing plate 12 using optics is disclosed, other methods and techniques for analyzing the samples, such as non-optical methods, can also be used. For example, a plate containing samples of solution S with cells C could be blotted onto a membrane and used for performing Western blot analysis or alternatively, the samples S with cells C could be blotted onto substrate containing material whereby modification of the substrate is measured visually. As a result, when non-optical means are used to analyze the samples of solution in the testing plate 12, the testing plate 12 can be made of a transparent material.
Next, in this particular example the operator retrieves the samples of solution S which contain the highest concentration of converted substrate. The holes 18 with the solution S with the highest concentration of converted substrate can be identified and located based upon which set 26 of groups 24, which group 24, and which row and column within each group 24 each identified hole 18 is located. One of the advantages of the present invention is the arrangement of the holes in groups 24 and sets 26 which enables an operator to easily identify a particular hole 18 on the testing plate 12. Once the desired samples are retrieved, the operator can conduct further analysis on those samples in manners well known to those of ordinary skill in the art.
Although one example of retrieving one or more of the samples of solution S in the testing plate 12 is disclosed, other methods and techniques for retrieving samples can also be used. For example, if robotics are used to located and retrieve a particular sample, a different testing apparatus, such as testing apparatus 60 shown in
According to some embodiments of the present invention, the testing plate is in the form of an assembly or substrate. For example, the plate can comprise a plurality of individual components which together make up an assembly having opposing surfaces and a plurality of through holes extending from one surface to the other. An example of the present invention wherein the testing plate comprises such an assembly is a plate made of a bundle of capillary tubes as shown in
As shown in
As can be seen in
The capillary tubes may be hollow cylindrical in shape or may have other rounded, oval, or polygonal cross-sections. The average diameter of each capillary tube preferably ranges from about 0.001 millimeter to about 1 millimeter, and the length of each tube preferably ranges from about 1 mm to about 1 cm. The dimensions of the capillary tubes are preferably such that each tube has the capacity to hold from about 0.0001 microliter to about 10 microliters of liquid sample, for example, about 5.5 microliters, although the diameters, lengths, and holding capacities of the capillary tubes may vary as needed or desired. According to some embodiments of the present invention, it is not necessary to have a band for holding the capillary tubes together in a bundle as the tubes may instead be fused or otherwise bonded, adhered, or maintained together in a bundle.
The number of capillary tubes of the embodiment in
In embodiments such as the one shown in
The assembly shown in
Contact between a liquid sample and an opposing surface can be made by flooding, immersing, pipetting, dropping, pouring, or otherwise loading or at least partially filling a plurality of the capillary tubes or through holes such that capillary action pulls portions of the liquid sample into the respective capillary tubes or through holes. Upon removal or discontinued contact of the liquid sample with the assembly or plate, the opposing surfaces of the assembly or plate are preferably made free of liquid sample such that the portions of the sample that remain held within the respective capillary tubes are isolated from one another.
Automated filling devices can be used and are preferred if it is important that the respective liquid samples or liquid sample portions are to only contact the inner walls of the through holes and avoid contacting the opposing surfaces of the assembly.
According to embodiments of the present invention, a high throughput screening method is provided. The method can screen for at least one liquid sample that includes a target component or substance to be analyzed. Herein, the target component or substance to be analyzed may be referred to as an “analyte”. The analyte may be, but is not necessarily, a biological sample. The analyte exhibits a detectable property or produces a detectable characteristic in the presence of or upon reaction with a marker compound or the like. For example, the analyte may itself exhibit a fluorescent property. After the liquid sample is at least partially filled into a plurality of the through holes, the portions of the liquid sample that contain the analyte can be detected by determining which of the through holes contains a sample portion that exhibits the fluorescent property.
In another example, the analyte itself does not exhibit a detectable property but may instead cause a marker component to exhibit a detectable property upon reaction with the marker component. According to such an embodiment, the through holes of the testing assembly can be pre-loaded or post-loaded with one or more marker components such that after loading the liquid sample into the plurality of through holes, the sample portions containing an analyte can react with the marker compound and thus enable the marker compound to exhibit a detectable property. In such a case, it is not the analyte itself that exhibits the detectable property, but rather the analyte is detected indirectly as the presence of the analyte causes the detectable property of the marker component which in turn is directly detected. In so doing, the methods of the present invention provide a way to partition and isolate analytes from an original liquid sample.
According to the high throughput screening method, portions of the liquid sample are loaded into a testing assembly having a pair of opposing surfaces and a plurality of through holes, with each of the through holes extending from one of the opposing surfaces to the other of the opposing surfaces. Loading preferably results in at least partially filling a plurality of the through holes with at least portions of the liquid sample, and surface tension holds the respective portions in the respective plurality of through holes. Multiple liquid samples can instead be loaded into respective through holes or into respective pluralities of through holes. The method then involves detecting which of the plurality of sample portions in the through holes exhibit the detectable property.
According to embodiments of the present invention, the high throughput screening assembly preferably comprises at least about 100 through holes, more preferably at least about 500 through holes, and according to some embodiments of the present invention, up to about 1,000,000 through holes. High throughput screening methods can be used in conjunction with these devices to test over 100,000,000 samples or sample portions per assembly per day.
The analyte to be screened may be, for example, a biological cell, a mixture of biological cells, a mutant cell, a secretable protein, an enzyme, a microorganism, a mixture of microorganisms, a contaminant, or combinations thereof. The analyte can be a population of random mutants of one or more organisms. If the analyte is a mixture of biological cells it could be a random sample isolated from a natural environment. The detectable property may be, for example, a fluorescence or adsorption property. Prior to filling the high throughput assembly, the liquid sample may be diluted with a suitable diluent to obtain a concentration of the analyte in the liquid sample such that when the sample is filled into the plurality of through holes, at least one of the analytes is introduced into from about one-quarter to about one-half of the plurality of through holes.
In some cases, it is possible to identify an organism with desirable properties even if the organism is introduced into a plurality of through holes as a mixture with other organisms. Under such conditions, the mixture of other organisms, e.g., mixture of biological cells, may be diluted prior to filling such that several organisms or cells will be introduced into each through hole. Using such a dilution technique, it is possible to detect the presence of an analyte. For example, it is possible to detect one particular mutant from a collection of many biological cells and mutants thereof despite having many cells from the mixture present in each through hole. Thus, for example, if a sample contains 1,000,000 cells and only one of them is a target mutant cell, referred to as the “analyte”, and a testing plate having 10,000 through holes is employed, the sample can be diluted such that the 1,000,000 cells fill the through holes with sample portions wherein each portion contains about 100 cells. In cases where the detectable characteristic of the analyte is detectable despite the presence of many other cells within the same through hole, it is possible to isolate the analyte from 99.99% of the sample in a single assay.
The testing plates used in accordance with the present invention, including the plates of
According to some embodiments of the present invention, to facilitate the capillary reaction, it may be desirable to provide a hydrophilic material immediately adjacent the opening to each through hole on an opposing surface while maintaining or providing the remaining area of the opposing surface hydrophobic or non-hydrophilic. Either or both opposing surfaces of the testing plate can be made of or treated with hydrophobic, hydrophilic, or both materials as discussed above although if the through holes are to be loaded by an immersion technique, it is preferred that the opposing surface which will come in contact with the liquid sample is treated with or formed of a hydrophobic material except in areas immediately adjacent and preferably surrounding the through hole openings in the opposing surface.
Exemplary high throughput screening methods that can be used with the assemblies and other plates of the present invention include absorbance transcription assays, fluorescent transcription assays, fluorescent secreted enzyme assays, and microorganism screening assays. These and other suitable assays that can benefit from the plates and methods of the present invention are described, for example, in: Arndt et al., A rapid genetic screening system for identifying gene-specific suppression constructs for use in human cells, Nucleic Acids Res., 28 (6): E15 (2000); Rolls et al., A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein, J. Cell Biol, 146 (1): 29-44 (1999); Sieweke, Detection of transcription factor partners with a yeast one hybrid screen, Methods Mol. Biol., 130: 59-77 (2000); and WO 97/37036, all of which are herein incorporated in their entireties by reference.
Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alternations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims and equivalents thereto.
The present application is a continuation of U.S. patent application Ser. No. 13/276,179, filed Oct. 18, 2011, which is a continuation of U.S. patent application Ser. No. 10/969,104, filed Oct. 20, 2004, which is a division of U.S. patent application Ser. No. 10/223,893, filed Aug. 20, 2002, which is a continuation of U.S. patent application Ser. No. 09/970,578, filed Oct. 4, 2001, which is a continuation of U.S. patent application Ser. No. 09/528,085, filed Mar. 17, 2000, which is a continuation-in-part of prior U.S. patent application Ser. No. 09/471,852 filed Dec. 23, 1999, which in turn is a continuation of U.S. patent application Ser. No. 09/272,122, filed Mar. 19, 1999, each of which are herein incorporated in their entireties by reference.
Number | Name | Date | Kind |
---|---|---|---|
1236137 | Bastow | Aug 1917 | A |
2745001 | Guth | May 1956 | A |
2771398 | Snyder | Nov 1956 | A |
3043669 | Charles | Jul 1962 | A |
3170980 | Pritchard | Feb 1965 | A |
3252331 | Lancaster | May 1966 | A |
3768974 | Storm | Oct 1973 | A |
3770383 | Price | Nov 1973 | A |
3873268 | McKie | Mar 1975 | A |
3894512 | Ohno | Jul 1975 | A |
4007010 | Woodbridge et al. | Feb 1977 | A |
4065263 | Woodbridge | Dec 1977 | A |
4088448 | Lilja et al. | May 1978 | A |
4110165 | Cole et al. | Aug 1978 | A |
4111754 | Park | Sep 1978 | A |
4234316 | Hevey | Nov 1980 | A |
4273877 | Anagnostopoulos | Jun 1981 | A |
4415732 | Caruthers et al. | Nov 1983 | A |
4446239 | Tsuji | May 1984 | A |
4453805 | Ashkin et al. | Jun 1984 | A |
4458066 | Caruthers et al. | Jul 1984 | A |
4493815 | Fernwood et al. | Jan 1985 | A |
4500707 | Caruthers et al. | Feb 1985 | A |
4562045 | Murata | Dec 1985 | A |
4562871 | Astle | Jan 1986 | A |
4613573 | Shibayama et al. | Sep 1986 | A |
4626509 | Lyman | Dec 1986 | A |
4682890 | de Macario et al. | Jul 1987 | A |
4683195 | Mullis et al. | Jul 1987 | A |
4683202 | Mullis | Jul 1987 | A |
4734192 | Champion et al. | Mar 1988 | A |
4761378 | Godsey | Aug 1988 | A |
4828386 | Matkovich et al. | May 1989 | A |
4834946 | Levin | May 1989 | A |
4861448 | Cantor et al. | Aug 1989 | A |
4861722 | Sano et al. | Aug 1989 | A |
4893886 | Ashkin et al. | Jan 1990 | A |
4902481 | Clark | Feb 1990 | A |
4932806 | Eklund et al. | Jun 1990 | A |
4965188 | Mullis et al. | Oct 1990 | A |
4973679 | Caruthers et al. | Nov 1990 | A |
4990459 | Maeda et al. | Feb 1991 | A |
5000921 | Hanaway et al. | Mar 1991 | A |
5009846 | Gavet et al. | Apr 1991 | A |
5038852 | Johnson et al. | Aug 1991 | A |
5047215 | Manns | Sep 1991 | A |
5100627 | Buican et al. | Mar 1992 | A |
5108704 | Bowers et al. | Apr 1992 | A |
5108926 | Klebe | Apr 1992 | A |
5153319 | Caruthers et al. | Oct 1992 | A |
5192980 | Dixon et al. | Mar 1993 | A |
5210021 | Goodwin, Jr. et al. | May 1993 | A |
5215593 | Nojo et al. | Jun 1993 | A |
5219727 | Wang et al. | Jun 1993 | A |
5229163 | Fox | Jul 1993 | A |
5234665 | Ohta et al. | Aug 1993 | A |
5234666 | Suzuki et al. | Aug 1993 | A |
5262128 | Leighton et al. | Nov 1993 | A |
5284753 | Goodwin, Jr. | Feb 1994 | A |
5290705 | Davis | Mar 1994 | A |
5310652 | Gelfand et al. | May 1994 | A |
5322770 | Gelfand | Jun 1994 | A |
5333675 | Mullis et al. | Aug 1994 | A |
5366088 | Hill | Nov 1994 | A |
5374525 | Lalouel et al. | Dec 1994 | A |
5382985 | Becker et al. | Jan 1995 | A |
5407800 | Gelfand et al. | Apr 1995 | A |
5411876 | Bloch et al. | May 1995 | A |
5445934 | Fodor et al. | Aug 1995 | A |
5453252 | Truett | Sep 1995 | A |
5455008 | Earley et al. | Oct 1995 | A |
5466583 | Thomson et al. | Nov 1995 | A |
5475610 | Atwood et al. | Dec 1995 | A |
5476774 | Wang et al. | Dec 1995 | A |
5492806 | Drmanac et al. | Feb 1996 | A |
5504007 | Haynes | Apr 1996 | A |
5506141 | Weinreb et al. | Apr 1996 | A |
5508197 | Hansen et al. | Apr 1996 | A |
5508200 | Tiffany et al. | Apr 1996 | A |
5510270 | Fodor et al. | Apr 1996 | A |
5519218 | Chang | May 1996 | A |
5525464 | Drmanac et al. | Jun 1996 | A |
5538848 | Livak et al. | Jul 1996 | A |
5554339 | Cozzette et al. | Sep 1996 | A |
5560811 | Briggs et al. | Oct 1996 | A |
5561058 | Gelfand et al. | Oct 1996 | A |
5561071 | Hollenberg et al. | Oct 1996 | A |
5593839 | Hubbell et al. | Jan 1997 | A |
5599664 | Schwartz | Feb 1997 | A |
5602756 | Atwood et al. | Feb 1997 | A |
5605662 | Heller et al. | Feb 1997 | A |
5609828 | O'Bear et al. | Mar 1997 | A |
5621094 | Roser et al. | Apr 1997 | A |
5632957 | Heller et al. | May 1997 | A |
5641391 | Hunter et al. | Jun 1997 | A |
5641864 | Gelfand | Jun 1997 | A |
5656493 | Mullis et al. | Aug 1997 | A |
5667972 | Drmanac et al. | Sep 1997 | A |
5670329 | Oberhardt | Sep 1997 | A |
5744101 | Fodor et al. | Apr 1998 | A |
5759779 | Dehlinger | Jun 1998 | A |
5763263 | Dehlinger | Jun 1998 | A |
5770440 | Berndt | Jun 1998 | A |
5770860 | Franzen | Jun 1998 | A |
5773238 | Shukla | Jun 1998 | A |
5780233 | Guo et al. | Jul 1998 | A |
5785926 | Seubert et al. | Jul 1998 | A |
5786226 | Bocker et al. | Jul 1998 | A |
5795748 | Cottingham et al. | Aug 1998 | A |
5807522 | Brown et al. | Sep 1998 | A |
5720923 | Haff et al. | Oct 1998 | A |
5840862 | Bensimon et al. | Nov 1998 | A |
5843767 | Beattie et al. | Dec 1998 | A |
5849598 | Wilson et al. | Dec 1998 | A |
5856100 | Hayashizaki | Jan 1999 | A |
5871908 | Henco et al. | Feb 1999 | A |
5879632 | Demers | Mar 1999 | A |
5888723 | Sutton et al. | Mar 1999 | A |
5897842 | Dunn et al. | Apr 1999 | A |
5910287 | Cassin et al. | Jun 1999 | A |
5922604 | Stapleton et al. | Jul 1999 | A |
5928907 | Woudenberg et al. | Jul 1999 | A |
5929208 | Heller et al. | Jul 1999 | A |
5942432 | Smith et al. | Aug 1999 | A |
5944652 | Miller et al. | Aug 1999 | A |
5955377 | Maul et al. | Sep 1999 | A |
5958345 | Turner et al. | Sep 1999 | A |
5962316 | Beach et al. | Oct 1999 | A |
5985214 | Stylli et al. | Nov 1999 | A |
5994056 | Higuchi | Nov 1999 | A |
6001586 | Schellenberger | Dec 1999 | A |
6004744 | Goelet et al. | Dec 1999 | A |
6020141 | Pantoliano et al. | Feb 2000 | A |
6024925 | Little et al. | Feb 2000 | A |
6027873 | Schellenberger et al. | Feb 2000 | A |
6060240 | Kamb et al. | May 2000 | A |
6071702 | Yamamoto et al. | Jun 2000 | A |
6071748 | Modlin et al. | Jun 2000 | A |
6083763 | Balch | Jul 2000 | A |
6086825 | Sundberg et al. | Jul 2000 | A |
6088100 | Brenan et al. | Jul 2000 | A |
6090251 | Sundberg et al. | Jul 2000 | A |
6103199 | Bjornson et al. | Aug 2000 | A |
6121048 | Zaffaroni et al. | Sep 2000 | A |
6136566 | Sands et al. | Oct 2000 | A |
H1919 | Caspar et al. | Nov 2000 | H |
6143496 | Brown et al. | Nov 2000 | A |
6147198 | Schwartz | Nov 2000 | A |
6149815 | Sauter | Nov 2000 | A |
6174670 | Wittwer et al. | Jan 2001 | B1 |
6197563 | Erlich et al. | Mar 2001 | B1 |
6235473 | Friedman et al. | May 2001 | B1 |
6245505 | Todd et al. | Jun 2001 | B1 |
6251343 | Dubrow et al. | Jun 2001 | B1 |
6271024 | Sve et al. | Aug 2001 | B1 |
6284113 | Bjornson et al. | Sep 2001 | B1 |
6296702 | Bryning et al. | Oct 2001 | B1 |
6306578 | Schellenberger et al. | Oct 2001 | B1 |
6309600 | Hunter et al. | Oct 2001 | B1 |
6309828 | Schleifer et al. | Oct 2001 | B1 |
6312103 | Haluzak | Nov 2001 | B1 |
6337435 | Chu et al. | Jan 2002 | B1 |
6353774 | Goldenberg et al. | Mar 2002 | B1 |
6376256 | Dunnington et al. | Apr 2002 | B1 |
6387331 | Hunter | May 2002 | B1 |
6391559 | Brown et al. | May 2002 | B1 |
6399396 | Bass | Jun 2002 | B1 |
6399952 | Maher et al. | Jun 2002 | B1 |
6404166 | Puchianu | Jun 2002 | B1 |
6410331 | Schultz et al. | Jun 2002 | B1 |
6436632 | Schellenberger et al. | Aug 2002 | B2 |
6454924 | Jedrzejewski et al. | Sep 2002 | B2 |
6485690 | Pfost et al. | Nov 2002 | B1 |
6485944 | Church et al. | Nov 2002 | B1 |
6495104 | Unno et al. | Dec 2002 | B1 |
6496369 | Nakamura | Dec 2002 | B2 |
6503757 | Chow | Jan 2003 | B1 |
6544737 | Blumenfeld et al. | Apr 2003 | B1 |
6565813 | Garyantes | May 2003 | B1 |
6572828 | Potyrailo et al. | Jun 2003 | B1 |
6579358 | Delucas et al. | Jun 2003 | B2 |
6582914 | Caldwell et al. | Jun 2003 | B1 |
6638761 | Shin et al. | Oct 2003 | B2 |
6642000 | Strizhkov et al. | Nov 2003 | B1 |
6649402 | Van der Weide et al. | Nov 2003 | B2 |
6664044 | Sato | Dec 2003 | B1 |
6677151 | Sandell | Jan 2004 | B2 |
6682702 | Barth et al. | Jan 2004 | B2 |
6689323 | Fisher et al. | Feb 2004 | B2 |
6703236 | Atwood | Mar 2004 | B2 |
6706538 | Karg et al. | Mar 2004 | B1 |
6713309 | Anderson et al. | Mar 2004 | B1 |
6737026 | Bergh et al. | May 2004 | B1 |
6743633 | Hunter | Jun 2004 | B1 |
6821486 | Akporiaye et al. | Nov 2004 | B1 |
6827831 | Chow et al. | Dec 2004 | B1 |
6893877 | Hunter et al. | May 2005 | B2 |
7133726 | Atwood et al. | Nov 2006 | B1 |
7332271 | O'Keefe et al. | Feb 2008 | B2 |
7390457 | Schembri | Jun 2008 | B2 |
7666360 | Schellenberger et al. | Feb 2010 | B2 |
20010046702 | Schembri | Nov 2001 | A1 |
20010053334 | Chen et al. | Dec 2001 | A1 |
20010055765 | O'Keefe et al. | Dec 2001 | A1 |
20020001546 | Hunter et al. | Jan 2002 | A1 |
20020072096 | O'Keefe et al. | Jun 2002 | A1 |
20020110900 | Jovanovich et al. | Aug 2002 | A1 |
20020119578 | Zaffaroni et al. | Aug 2002 | A1 |
20020151040 | O'Keefe et al. | Oct 2002 | A1 |
20020155460 | Schellenberger et al. | Oct 2002 | A1 |
20020176804 | Strand et al. | Nov 2002 | A1 |
20030003036 | Rouleau et al. | Jan 2003 | A1 |
20030064507 | Gallagher et al. | Apr 2003 | A1 |
20030124716 | Hess et al. | Jul 2003 | A1 |
20040109793 | McNeely et al. | Jun 2004 | A1 |
20040141880 | Handler et al. | Jul 2004 | A1 |
20040171166 | Hunter | Sep 2004 | A1 |
20040191924 | Hunter et al. | Sep 2004 | A1 |
20050079105 | Hunter et al. | Apr 2005 | A1 |
20050118073 | Facer et al. | Jun 2005 | A1 |
20050148066 | O'Keefe et al. | Jul 2005 | A1 |
20050214173 | Facer et al. | Sep 2005 | A1 |
20050266582 | Modlin et al. | Dec 2005 | A1 |
20060194108 | Drews et al. | Aug 2006 | A1 |
20080108112 | O'Keefe et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
10046224 | Mar 2002 | DE |
0236069 | Sep 1987 | EP |
0402888 | Dec 1990 | EP |
0506993 | Oct 1992 | EP |
0882593 | Dec 1998 | EP |
1155742 | Nov 2001 | EP |
11061498 | Mar 1999 | JP |
200028623 | Jan 2000 | JP |
2000088863 | Mar 2000 | JP |
2000287670 | Oct 2000 | JP |
2001083163 | Mar 2001 | JP |
2001211873 | Aug 2001 | JP |
2002189033 | Jul 2002 | JP |
2002283305 | Oct 2002 | JP |
2002335950 | Nov 2002 | JP |
2002-27984 | Jan 2004 | JP |
9501559 | Jan 1995 | WO |
9511755 | May 1995 | WO |
9113335 | Sep 1995 | WO |
9715394 | May 1997 | WO |
9736167 | Oct 1997 | WO |
9737036 | Oct 1997 | WO |
9845406 | Oct 1998 | WO |
9847003 | Oct 1998 | WO |
9911373 | Mar 1999 | WO |
9919510 | Apr 1999 | WO |
9934920 | Jul 1999 | WO |
9939829 | Aug 1999 | WO |
9947922 | Sep 1999 | WO |
9952560 | Oct 1999 | WO |
9961152 | Dec 1999 | WO |
0001798 | Jan 2000 | WO |
0051735 | Sep 2000 | WO |
0056456 | Sep 2000 | WO |
0161054 | Aug 2001 | WO |
0226394 | Apr 2002 | WO |
0230561 | Apr 2002 | WO |
0240158 | May 2002 | WO |
025519 | Jul 2002 | WO |
0278834 | Oct 2002 | WO |
0287764 | Nov 2002 | WO |
0289982 | Nov 2002 | WO |
0302226 | Nov 2003 | WO |
Entry |
---|
“Rev. Geophys”, vol. 33 Suppl., (C) 1995 American Geophysical Union (Abstract Only). |
Arndt et al., “A Rapid Genetic Screening System for Identifying Gene-Specific Suppresion Constructs for use in Human Cells,”, Nucleic Acids Research, vol. 28, No. 6, pp. e15-i-viii (2000). |
Ausubel et al., “Current Protocols in Molecular Biology”, iii-xii (1987). |
Birren, et al., “Genome Analysis Laboratory Manuel Series”, B. Birren, ed., Cold Spring Harbor Laboratory Press. vols. 1-4,1997-1999. |
Brown, J.H. et al., “Charts for Counting Bacterial Colonies,” 37 Am. J. Public Heath Nations Health, vol. 37, pp. 206-207 (1947). |
Cadus, Cadus Pharmaceutical Corp1 1997 Annual Report, 1-29, May 8, 1998. |
Cheng, Tian-Lu et al., “Membrane-Tethered Proteins for Basic Research, Imaging and Therepy,”Medical Research Reviews (May 14, 2008). |
Coleman, et al., “Phospholipid Synthesisi in Isolated Fat Cells,”, 252 J. of Biological Chemistry, vol. 252, pp. 3050-3056 (1977). |
Cooper, Colin S. et al., “Applications of microarray technology in breast cancer research,” 3(3) Breast Cancer Res. 158-175 (2001). |
Crameri, Andreas et al., “Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling”, Nature Biotechnology, vol. 14, Mar. 1, 1996, 315-319. |
De Macario, et al., 121 Methods in Ezymology, 509-25 (1986). |
De Macario, et al., “Adaption of the Slide Immuneozymatic Assay for Quantification of DNA Hybridization: SIA-DNA,” 8 Biotechniques, 210-217 (1990). |
De Macario, et al., “Slide Immunoenzymatic Assay for Human IgE(SIA-IgE),” 90 J. Immunological Methods 137-141 (1986). |
Eckstein, et al., “Oligonucleotides and Analogues. A Practical Approach”, IRL Press, 1991. |
Erfle, H. et al., “Simultaneous loading of 200 sample lanes for DNA sequencing on vertical and horizontal, standard and ultrathin gels”, vol. 25, No. 11, pp. 2229-2230, Oxford University Press, 1997. |
Gait, “Oligonucleotide Synthesis—A Practical Approach”, IRL Press at Oxford University Press, vii-xiii (1984). |
Gillmor, S D. et al., “Low-Contact-Angle Polydimethyl Siloxane (PDMS) Membranes for Fabricating Micro-Bioarrays,”, Proc. 2d. Ann. Int'l IEEE-EMBS Spec Topic Conf. On Microtechnologies in Med. & Bio. 51 (A. Dittmar, ed. 2002). |
Green, ED, “Mapping Genomes”, vol. 4, Cold Spring Harbor Laboratory Press, 1999. |
Gregory, G L., “High-throughout gene expression analysis for drug-discovery”, 5(2) Drug Discovery Today 59-66 (Feb. 2000). |
Hansson, et al., “Single-Step Recovery of a Secreted Recombinant Protein by Expanded Bed Adsorption”, Bio/Technology, 1994, vol. 12, pp. 285-288. |
Huhmer, Afr et al., “Noncontact Infrared-Mediated Thermocycling for Effective Polymerase Chain Reaction Amplification of DNA in Nanoliter Volumes,” 72 Anal Chem. 5507-5512 (2000). |
Kanigan, Tanya et al., “Living Chips for Drug Discovery,” 3926 Proc SPIE 172-180 (2000). |
Kricka, L J. et al., “Microchip PCR”, 377 Analytical and Bioanalytical Chemistry, 377, pp. 820-825 (2003). |
Lee, Da-Sheeng et al., “A novel real-time PCR machine with a miniature spectrometer for fluorescence sensing in a micro liter volue glass capillary”, 100 Sensors and Actuators B, 401-410, 2004. |
Lennon, G.G., Mapping Genomes, vol. 4, Cold Spring Harbor Laboratory Press, 1999. |
Macbeath, G. et al., “Printing Proteins as Microarrays for High-Throughput Function Determination”, Science 289, Sep. 2000, 1760-1763. |
Maniatis, et al., “Molecular Cloning”, Cold springHarbor Laboratory, 1982, 468-469. |
Matsubara, Y. et al., “Microchamber Array Based DNA Quantification and Specific Sequence Detection from a Single Copy Via PCR in Nanoliter Volumes”, 20 Biosensors and Bioelectronics 1482-1490 (2005). |
Matsubara, Y. et al., “On-chip Nanoliter-Volume Multiplex Taqman Polymerase Chain Reaction From a Single Copy Based on Counting Fluorescence Released from Microchambers,”, 21 Anal Chem., 6434-6439 (2004). |
Moerman, R. et al., “Miniaturized Electrospraying as a Technic for the Production of Microarrays of Reproducible Micrometer Sized Protein Spots, in Micro Total Analysis Systems 2000: Proceedings of the u TAS 2000 Symposium”, (May 14-18, 2000). |
Nagai, H et al., “Development of a Microchamber Array for Picoliter PCR”, 73 Anal. Chemistry 1043-1047 (2001). |
Nagai, H. et al., “High-Throughput PCR in Silicon Based Microchamber Array,”, 16 Biosensors & Bioelectronics 1015-1019 (2001). |
Patrick Adlecreutz & Bo Mattiass, ““Oxygen Supply to Immobilized Cells””, 16 Eur. J. Appl. Biotechnology 165-170 (1982). |
PCT/US00/07140, International Search Report dated Jul. 19, 2000, 3 pgs. |
Brazillian appl. No. PI0009164-2, Unfavorable Technical Opinion, Nov. 11, 2008. |
Polokoff, et al., “Isolation of Somatic Cell Mutants Defective in the Biosynthesis of Phoshatidylethanolamine”, 256 J. Biological Chemistry, pp. 7687-7690 (1981). |
Prescott, et al., “Microbiology”, Wm. C. Brown Publishers, 1990, pp. 31; 114-116. |
Rolls, et al., “A Visual Screen of GFP-Fusion Library Identifies a New Type of Nuclear Envelope Membrane Protein,” J. Cell Biol., vol. 146, No. 1, pp. 29-43 (1999). |
Sambrook, et al., “Molecular Cloning—A Laboratory Manual”, Second Edition, Cold Springs Harbor Laboratory Press (1989), 2.53-2.54, 16.8-16.9, 16.20 and 16.22. |
Sauter, A D. , “Nanoliters onto media: Use of Electric Induction,” American Laboratory 40-45 (Oct. 2001). |
Shoffner, Mann A. et al., “Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR,”, 24(2) Nucleic Acids Research 375-379 (1996). |
Sieweke, , “Direction of Transcription Factor Partners with a Yeast One Hybrid Screen,” Methods of Mol. Biol., vol. 130, pp. 59-77 (2000). |
Singh-Gasson, et al., “Maskless fabrication of light-directed oligonucleotide microarrays using a digital Micromirror array”, Nature Biotechnology, vol. 17, 1999, 974-978. |
Smith, et al., “Dynamical Scaling of DNA Diffusion Coefficients”, vol. 29, pp. 1372-1373, Macromolecules, 1996. |
Steel, Adam et al., “The Flow-Thru Chip: A Three Dimensional Biochip Platform, in Microarray Biochip Technology”, 87-117 Mark Schena ed., 2000. |
Taylor, Theresa B. et al., “Optimization of the Performance of the Polyermase Chain Reaction in Silicon-Based Microstructures”, vol. 25, No. 15, Nucleic Acids Research pp. 3164-3168 (1997). |
Thortstenson, et al., “Global Analysis of ATM Polymorphism Reveals Significant Functional Constraint”, vol. 69, pp. 396-412, Am J. Hum. Genet., 2001. |
Vogelstein, et al., “Digital PCR”, Proc. Natl. Acad. Sci. USA,vol. 96, Aug. 1999, 9236-9241. |
Weast, Phd, Robert C. “CRC Handbook of Chemistry and Physics, Ed.”, 65th Edition, pp. F-20-F-35,1984-1985. |
Wittwer, “Current Protocols in Molecular Biology”, vol. 1, John Wiley & Sons, Inc., 1995. |
Wittwer, C. T. et al., “Continous Fluorescence Monitoring of Rapid Cycle DNA Amplification”, Biotechniques, Informa Life Sciences Publishing, Westborough, MA. vol. 22, No. 1, Jan. 1, 1997. |
Wittwer, C.T. et al., “The LightCycler™: A Microvolume Multisample Fluorimeter with Rapid Temperature Control”, BioTechniques, vol. 22 (1), Jan. 1997, 176-181. |
Zhao, et al., Combinatorial protein design: strategies for screening protein libraries, Current Opinion in structural biology vol. 7, 1997, pp. 480-485. |
Zhao, et al., “Directed Evolution Converts Subtilisin E into a Functional Equivalent of Thermitase,”, Protein Eng., vol. 12. No. 1, pp. 47-53 (1999). |
Patrick Adlecreutz & Bo Mattiasson, Oxygen Supply to Immobilized Cells, 16 Eur. J. Appl. Biotechnology, 165-170 (1982). |
Number | Date | Country | |
---|---|---|---|
20160089649 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10223893 | Aug 2002 | US |
Child | 10969104 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13276179 | Oct 2011 | US |
Child | 14873005 | US | |
Parent | 10969104 | Oct 2004 | US |
Child | 13276179 | US | |
Parent | 09970578 | Oct 2001 | US |
Child | 10223893 | US | |
Parent | 09528085 | Mar 2000 | US |
Child | 09970578 | US | |
Parent | 09272122 | Mar 1999 | US |
Child | 09471852 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09471852 | Dec 1999 | US |
Child | 09528085 | US |