This invention relates to multi-tiered-recess screws, that is to say, screws comprising a driving recess for insertion of a driving tool, which recess comprises a plurality of superimposed recess-tiers of decreasing size. The recess-tiers may be concentric, in which event they are non-circular. Indeed, the invention is particularly concerned with the latter, because these have the additional feature that, whereas the driver has a fixed number of tiers, the screw may have some or all of the recess-tiers, depending on its size and torque driving requirements.
It is a particular feature of this kind of screw that there is a single driver that is suitable for driving a range of sizes of screw. Smaller screws simply have one or two small recesses, while the larger screws have larger recesses also.
GB-A-1150382 appears to be the first disclosure of a screw provided with a multi-tiered recess and a corresponding multi-tiered driver. GB-A-2285940 discloses essentially the same idea. Both these publications describe the advantages provided by the arrangements disclosed. The first is that the recesses are essentially parallel-sided and consequently eliminate cam-out problems that are associated with cross-head recesses. Secondly, they give the possibility of a single driving tool being suitable for driving a wide range of screw sizes.
The single driving tool typically has three (for example) tiers of driving surfaces which are employed to drive large screws having three recess-tiers of recess. However, the same tool can be employed with smaller screws having only two recess-tiers of recess, the largest recess-tier being omitted. Indeed, even smaller screws may have only one, the smallest recess-tier, in their recess and be driven by the smallest tier only of the tool.
GB-A-2329947 discloses a similar arrangement, and WO-A-0177538 discloses recess-tiers that have such a small extent in the recesses of screws and bolts that, at the torques at which the screws are intended to be operated, they cannot be turned unless at least two recess-tiers are both engaged by the tool. Otherwise, the screw is arranged to round out of engagement with the driving tool. This provides a security feature in that only the appropriate tool, having all the requisite driving tiers, will undo the screw.
WO03/025403 discloses a method of manufacture of such screws using cold forming punches. It is possible to make the recesses with some precision, so that the driving tool is a close fit in the recess. This has the very useful feature that recess-tiers can be shallow. Then, screw heads do not need to be large to accommodate the driving tool. Yet, adequate torque can still be applied because a large proportion of the area of each recess is used for torque transmission by virtue of the close tolerance fit. But, equally usefully, the tool fits the screw so closely that, once mated with the driving tool, the screw can be carried solely by the driver when it is offered up to a workpiece. Indeed, with self-tapping wood screws, the connection between driver and screw is so stable that some pressing and simultaneous rotation forces can be applied to the tool, without holding the screw. This can be done without significant risk that the connection will fold as may happen with, for example, Posi-Driv (registered trade mark) screws unless forces are maintained absolutely axial. With the three-tiered screws of the present applicants marketed under the registered trade mark Uni-Screw, the fit is so close that even carrying screws dangling vertically from the driver is possible if carried carefully.
Nevertheless, it would be desirable to improve this feature. This is particularly so with screws having only one or two recess-tiers of recess. It seems that it is partly the plurality of recess-tiers that, at least to some extent, explains why the screw appears to grip the driver so effectively. So, with smaller screws having just one recess-tier of recess the feature is not so evident. It is an object of the present invention to improve that feature.
In accordance with this invention there is provided a screw and driver system comprising a range of screws and a driver for said range, each screw comprising a head having a driving recess in its surface for engagement by said driver and a longitudinal axis, in which the recess of larger screws in the range have a plurality of superimposed recess-tiers of decreasing size with increasing depth from said surface, each recess-tier having substantially parallel driving surfaces substantially parallel said longitudinal axis, and in which said driver and recess are shaped so that, when the driver is engaged with the recess of any screw in said range, torque applied to the driver is transmitted to the screw through said driving surfaces; wherein, an interference is provided between the driver and the recess causing deformation of the recess when the driver is inserted therein.
Preferably, said interference comprises at least one recess-tier of at least smaller screws in said range having a rib parallel said longitudinal axis and encroaching into the space of said recess-tier occupied by said driver when it is engaged with said recess, whereby engagement of the driver with the recess causes deformation of said rib and hence creation of an interference fit of said driver in said recess.
Preferably all the screws in the range have said rib. The rib may be in a recess-tier which is common to all screws in the range. Alternatively, the rib may be in the single recess-tier of single recess-tier screws, and a different recess-tier in screws having a plurality of recess-tiers.
The invention also provides a screw that fits in said range of screws in said system, which screw includes a recess-tier having said rib.
Preferably, said recess-tiers of said larger screws are non-circular polygons in section. The polygons may be concentric. They may be the same polygons. They may be angularly offset with respect to one another. The smaller screws in said range may have only one recess-tier in their recess.
Screws in accordance with the present invention are conveniently made by a cold forming process in which the recess is formed by a punch of corresponding shape to the recess being formed. In this event, preferably, said recess rib is formed by a groove formed in the flank of said punch.
Preferably, said rib is the full depth of only one recess-tier, where there are multiple recess-tiers.
One advantage of the present invention is that the rib can be large enough to ensure an interference fit with the driver but, when it is only in one recess-tier, it does not increase substantially the overall force required to engage the driver with the recess, particularly not on larger screws.
Preferably, it is the smallest recess-tier in each screw of the range that is provided with said rib. Indeed, it is on larger screws that the dimensions of the smallest recess-tier are most susceptible to fluctuation in dimensional tolerance.
Where the recess-tiers of the recess are polygonal in section having several flanks, the rib may be central in one flank. Alternatively, and this is preferred, the rib may be in a corner between two flanks. This has the advantage that a sharp corner of the driving tool bites into the rib more easily than the rib simply being flattened by the flank of the tool. Indeed, a smaller rib is preferably provided in each corner between the flanks of the recess-tier. This maintains the central location of the driving tool in the recess.
It is inherent in all screw and driver arrangements, whether of the type to which the present invention relates or otherwise, that the driver is constructed from a harder material than the screw. The reason for this is self-evident, in that a screw is driven once or twice, whereas a driver drives a multiplicity of screws. Therefore it is essential that screws wear preferentially compared with the driver.
Despite this, the constant engagement of part of the driver with ribs in successive screws will wear the driver in the region of its engagement with the ribs. It is therefore an option to vary the location of the rib between screws in the range so that different parts of the driver engage the rib, whereby wear of the driver is evened out.
In an alternative arrangement, said interference comprises at least one tier of the driver having a rib parallel said longitudinal axis, said rib encroaching into the space occupied by a wall of the corresponding recess-tier of a screw in said range and when the driver is engaged with said recess, whereby engagement of the driver with the recess causes deformation of said wall and hence creation of an interference fit of said driver in said recess.
Nevertheless, this alternative arrangement has the disadvantage that it is the same rib on the driver that interferes with every screw driven. Consequently the wear of the rib on the driver may ultimately cause the interference to disappear in time.
Accordingly, in a further alternative, the smallest tier of said driver comprises a distal end thereof and a proximal end, and said interference comprises a tapering of the cross-section of said smallest tier from said proximal to said distal end, the cross section of the tier intermediate said ends corresponding with the cross section of the smallest recess-tier of a screw in said range.
Therefore, when the driver is engaged with the recess of a screw, flanks of the walls of the smallest recess-tier are deformed creating an interference fit between them.
Likewise, the converse may be provided where the smallest recess-tier of the recess of each screw in said range has a bottom end and an open top end, said interference comprising a tapering of the cross-section of said smallest recess-tier from said open top end to said bottom end, the cross section of the recess-tier intermediate said ends corresponding with the cross section of the smallest tier of said driver.
Preferably, where said tiers/recess-tiers are polygonal in section and concentric, said tapering is around the entire periphery of the tier or recess-tier, as the case may be. In this way, there is no lateral displacement of the driver with respect to the screw when the driver is inserted, and also that wear on the driver is spread around the entire periphery of the affected tier. Furthermore, not only can the degree of insertion of the driver vary, but also the nature of the engagement is, or could be, more compressive and potentially elastic, rather than any plastic deformation of the screw. Both these factors will tend to reduce wear on the driver.
It is possible, although not preferred, that said tapering may be provided alternatively, or in addition, on other tiers of the driver, or recess-tiers of the screws. Between the smallest recess-tiers/tiers of the screw and driver, the tapering can be relatively great, ensuring that any tolerance in the dimensions of the recess-tier and driving-tier is taken up by the tapering and grip between the driver and screw is reliably effected every time. Nevertheless, the forces needed for insertion are not large, even if there happens to be a tight tolerance between any given driver and screw. Such would not be the case, however, with larger tiers where the force required would increase with the size of the interference between the driver and screw.
Embodiments of the present invention are further described hereinafter, by way of example only, with reference to the accompanying drawings, in which:
a and b are similar views to
In
Turning to
In
Turning to
The diameter of the groove 48 is preferably about 3.0×10−3 inches in diameter (about 0.08 millimeters) and it has a depth of about half this amount.
An advantage of the present invention is that the rib 20 is only active over a small proportion of the length of engagement of a driver with a recess. At least, this is the case in connection with multi-tier recesses where the interference fit feature is not required to such an extent. With the smaller recesses, however, where it is more necessary in order to retain the screw on the driver, it occupies a greater proportion of the depth of the total recess. Thus, in smaller screws it takes on a greater role in holding the screw in place on the driver than is required in larger screws where the multiplicity of recess-tiers assists in this function.
While only one rib 20 is illustrated, it is of course feasible to provide a rib in each face or, in the case of hexagonal section recess-tiers, in every other face. With multiple ribs, the size of each rib would, of course, be less than the size of a single rib. The advantage of multiple ribs evenly distributed around the longitudinal axis (eg 100,
In
The ribs 20″ of the
Another advantage of the
In
Be that as it may, the driver is almost invariably made of harder material than the screws, particularly in the case of wood screws that are relatively soft, whereby wear preferentially occurs on the screws, rather than the drivers.
Finally, turning to
Thus, as the driver is engaged in the recess of a screw, the tapering of the bottom tier 36c′ of the driver progressively bites into the corresponding recess-tier of the screw. To begin with, it is just a gentle nipping of the flanks of the tier 36c′. However, when the driver is fully engaged, there is a more substantial deformation of the edge of the recess-tier. This is still not substantial in the sense that significant force needs to be applied to fully engage the driver: this is not the purpose. Rather, it is to ensure secure gripping of the driver by the screw so that it can reliably be carried by the driver and does not come loose except by deliberate action. Nevertheless, an additional advantage of this feature is that tight engagement between the bottom tier 36c′ of the driver and the corresponding recess-tier of the screw is ensured, despite any flexibility of the tolerances of the screw, and consequently the risk of the driver turning in the recess of the screw is reduced, particularly in connection with small, single recess-tier screws. It is true, of course, that there is a certain tendency by this arrangement to return to the camming-out problems which it is one feature of these multi-tier screws that is normally eliminated. However, the problem only occurs with smaller screws and the smallest recess where the axial force required to overcome any camming-out tendency is fairly minimal.
It is to be noted that this arrangement does not work, of course, with screws 10′ as shown in FIGS. 2A,B. However, there is no reason why these screws should not have the rib 20′ as described above, since there will be no duplication of the interference provided.
Thus, in a preferred arrangement: the diameter (that is, flat to flat dimension) of the largest tier 36a of the driver 30″ is 5.9 mm, with a minimum depth of 3.1 mm; the diameter of the middle tier 36b is 3.9 mm, with a depth of 1.1 mm; the diameter (not D, which is edge to edge) of the proximal end 138 of the smallest tier 36c′ is 2.6 mm; the diameter (likewise, not d) of the distal end 136 of the smallest tier 36c′ is 2.4 mm; and, the depth of tier 36c′ is 1.1 mm. With this arrangement, the diameter of the smallest recess-tier of the corresponding screw is 2.5 mm throughout its depth.
If, on the other hand, it is the screws (ie screw 10″″) that are provided with the tapering recess-tier: the diameter (that is, flat to flat dimension) of the largest recess-tier 16a is 5.9 mm, with a depth of 1.5 mm; the diameter of the middle recess-tier 16b is 3.9 mm, with a depth of 1.1 mm; the diameter (not D′, which is edge to edge) of the open end 118 of the smallest recess-tier 16c′″ is 2.6 mm; the diameter (likewise, not d′) of the bottom end 116 of the smallest recess-tier 16c′ is 2.4 mm; and, the depth of recess-tier 16c′″ is 1.1 mm. With this arrangement, the diameter of the smallest tier of the driver is 2.5 mm throughout its depth.
Although the tapering is shown and described as being applied to all driving faces or flanks of the tier 36c′ or recess-tier 16c′″, it is not essential that each be flared in this way. In fact only one could be flared, although this would lead to some imbalance. Thus only every other face may be flared, as preferred.
This application is a continuation-in-part of co-pending application Ser. No. 10/703,115, filed Nov. 6, 2003, entitled “Multi-tiered-recess screws”.
Number | Date | Country | |
---|---|---|---|
Parent | 10703115 | Nov 2003 | US |
Child | 10981051 | Nov 2004 | US |