This application claims priority to Taiwanese Application No. 100116135, filed on May 9, 2011.
1. Field of the Invention
The invention relates to a touch detection method and device for a touch pad, and more particularly to a Multi-touch Detection Method and Device thereof.
2. Description of the Related Art
With providing of multi-touch functional products in the market, touch sensing component, like capacitive touch screen, become very important in the industry.
Traditionally, capacitive touchscreens achieves touch sensing function by performing capacitance measurement in mainly two ways: self-inductance and mutual inductance.
Mentioned self-inductance, please referring to
Once a finger touch is on the touch screen, for example, capacitance variations of electrode rows (X2, X4, Y3, Y5) are detected. In such, touch events are determined to occur at positions (X2, Y3), (S2, Y5), (X4, Y3), and (X4, Y5).
However, in fact, only the points at (X2, Y3) and (X4, Y5) are real touched points, whereas the points at (X2, Y5) and (X4, Y3) are non-real touched points. Mentioned non-real touched points, in the industry, are commonly regard as “ghost points”. Thus, a problem is existing in the self-inductance that it cannot correctly determine the real touched points, plus additional complicated mathematical operations are required. Foreseeably, in this case, it is required to tediously scan the electrode rows (X1˜X4, Y1˜Y7) for 11 times (4 times for the electrode rows (X1˜X4), and 7 times for the electrode rows (Y1˜Y7)).
In order to solve the problems of ghost points, mutual-inductance as show in
Therefore, improvements may be made to the above techniques.
Therefore, an object of the present invention is to provide a multi-touch detection method and device that can overcome the aforesaid drawbacks of the prior art.
According to one aspect of the present invention, a multi-touch detection method and device thereof is provided. The multi-touch detection device includes a plurality of first electrode rows arranged along a first direction and a plurality of second electrode row arranged along a second direction transverse to the first direction. Each of the first electrode rows has a plurality of a plurality of first electrodes connected in series and extends in the second direction. Each of the second electrode rows has a plurality of second electrodes connected in series and extends in the first direction.
The second electrode rows are spacedly intersecting with the first electrode rows.
The method is applying to a touch screen having a plurality of first electrode rows and a plurality of second electrode rows, the method comprises the steps of:
a) applying a first electrical signal to each of the first electrode rows and detecting capacitance variations of the first electrode rows, applying a second electrical signal to each of the second electrode rows and detecting capacitance variations of the second electrode rows, and determining at least one first candidate electrode row from the first electrode rows and at least one second candidate electrode row from the second electrode rows based on the capacitance variations; and
b) applying third electrical signals to the first candidate electrode row and detecting capacitance variations at the second candidate electrode rows, and determining real touched positions on the device based on the capacitance variations.
According to another aspect of the present invention, a multi-touch detection method and device thereof is provided. The touch screen includes a plurality of first electrode rows arranged along a first direction and extending in a second direction transverse to the first direction, and a plurality of second electrode row arranged along the second direction, extending in the first direction and spacedly intersecting with the first electrode rows. Each of the first electrode rows has a plurality of first electrodes connected in series. Each of the second electrode rows has a plurality of second electrodes connected in series. The method comprising the steps of:
a) detecting capacitance variations of first self-inductional capacitances at each of the first electrode rows, and capacitance variations of second self-inductional capacitances at each of the second electrode rows and to determine multiple first candidate electrode rows from the first electrode rows and multiple second candidate electrode rows from the second electrode rows based on the capacitance variations of the first self-inductional capacitances and the capacitance variations of the second self-inductional capacitances;
b) detecting capacitance variations at each of the second candidate electrode rows so as to determine, based on the capacitance variations of the mutual-inductional capacitances, real touched points on the touch screen, which correspond respectively to the fingers touching on the touch screen.
For more clarity of description, above mentioned self-inductional capacitance and mutual-inductional capacitance are further illustrated in below:
The self-inductional capacitance means the capacitance that is measured in traditional self-induction measurement manner, in present embodiment, may be obtained at the electrode rows which electrical signal is applying. The mutual-inductional capacitance means the capacitance that is measure in traditional mutual-induction measurement, in present embodiment, may be obtained at the electrode rows which electrical signal is not applying.
According to a further aspect of the present invention, a multi-touch detection method and device thereof is provided. The touch screen includes a plurality of first electrode rows arranged along a first direction and extending in a second direction transverse to the first direction, and a plurality of second electrode row arranged along the second direction, extending in the first direction and spacedly intersecting with the first electrode rows. Each of the first electrode rows has a plurality of first electrodes connected in series. Each of the second electrode rows has a plurality of second electrodes connected in series. The multi-touch detection device comprises:
a controller adapted to be coupled to the first electrode rows and the second electrode rows of the touch screen.
During touching of multiple fingers on the touch screen, the controller is configured to
detect capacitance variations of first self-inductional capacitances at each of the first electrode rows, and capacitance variations of second self-inductional capacitances at each of the second electrode rows so as to determine multiple first candidate electrode rows from the first electrode rows and multiple second candidate electrode rows from the second electrode rows based on the capacitance variations of the first self-inductional capacitances and the capacitance variations of the second self-inductional capacitances, and
detect capacitance variations of mutual-inductional capacitances at each of the second candidate electrode rows so as to determine, based on the capacitance variations of the mutual-inductional capacitances, real touched points on the touch screen, which correspond respectively to the fingers touching on the touch screen.
According to still another aspect of the present invention, a touch device comprises:
a touch screen including
a controller coupled to the first electrode rows and the second electrode rows of the touch screen.
During touching of multiple fingers on the touch screen, the controller is configured to
detect capacitance variations of first self-inductional capacitances at each of the first electrode rows, and capacitance variations of second self-inductional capacitances at each of the second electrode rows so as to determine multiple first candidate electrode rows from the first electrode rows and multiple second candidate electrode rows from the second electrode rows based on the capacitance variations of the first self-inductional capacitances and the capacitance variations of the second self-inductional capacitances, and
detect capacitance variations of mutual-inductional capacitances at each of the second candidate electrode rows so as to determine, based on the capacitance variations of the mutual-inductional capacitances, real touched points on the touch screen, which correspond respectively to the fingers touching on the touch screen.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiment with reference to the accompanying drawings, of which:
Referring to
The touch screen 10 includes a substrate 12, such as a transparent glass substrate, a first ITO conductive film 13 formed on a first surface of the substrate 12, and a second ITO conductive film 15 formed on a second surface of the substrate 12 opposite to the first surface. The first conductive film 13 is formed with a plurality of first electrode rows (X1˜X4) arranged along a first direction (X) and extending in a second direction (Y) transverse to the first direction (X). The second conductive film 15 is formed with a plurality of second electrode rows (Y1˜Y7) arranged along the second direction (Y), extending in the first direction (X) and spacedly intersecting with the first electrode rows (X1˜X4). Each of the first electrode rows (X1˜X4) has a plurality of first electrodes 17 connected in series. Each of the second electrode rows (Y1˜Y7) has a plurality of second electrodes 18 connected in series.
The controller 11 is connected electrically to the first electrode rows (X1˜X4) and the second electrode rows (Y1˜Y7).
In step S1, during touching of multiple fingers on the touch screen 10, for example, as shown in
Referring to
In step S2, similar to step S1, the controller 11 detects capacitance variations at each of the second electrode rows (Y1˜Y7) using self-inductance, and selects multiple second candidate electrode rows from the second electrode rows (Y1˜Y7) based on the capacitance variations at each of the second electrode rows (Y1˜Y7). In detail, the controller 11 applies a second electrical signal to each of the second electrode rows (Y1˜Y7) to measure second sensed capacitances at each of the second electrode rows (Y1˜Y7), and detects capacitance variations of the first sensed capacitances. In this case, the second sensed capacitances serve as second self-inductional capacitances. When the second electrical signal is applied to each of the second electrode rows (Y1˜Y7), the first electrode rows (X1˜X4) are grounded. Upon charging any one of the second electrode rows (Y1˜Y7), the other ones of the second electrode rows (Y1˜Y7) are grounded. As shown in
In step S3, the controller 11 detects capacitance variations at each of at least the second candidate electrode rows using mutual-inductional capacitance sensing, and determines, based on the capacitance variations at each of at least the second candidate electrode rows (Y3, Y5), real touched points on the touch screen 10. In order to minimize the number of times of scanning, in this embodiment, only the capacitance variations at each of the second candidate electrode rows (Y3, Y5) are detected. In other embodiments, not only the capacitance variations corresponding to the second candidate electrode rows (Y3, Y5) but capacitance variations corresponding to the other second electrode rows (Y1, Y2, Y4, Y6, Y7) can also be detected. In detail, the controller 11 applies respectively individual third electrical signals to the first candidate electrode rows, i.e., the first electrode rows (X2, X4), to measure third sensed capacitances of the second candidate electrode rows, i.e., the second electrode rows (Y3, Y5), in response to each of the third electrical signals being applied to a corresponding one of the first candidate electrode rows (X2, X4), and detects capacitance variations at each of the second candidate electrode rows (Y3, Y5) based on the third sensed capacitances measured thereby. In this case, the third sensed capacitances serve as mutual-inductional capacitances. In this embodiment, the third electrical signals may be identical to each other. The third electrical signals are applied respectively and sequentially to the first candidate electrode rows (X2, X4) such that the third sensed capacitances of the second candidate electrode rows (Y3, Y5) are measured sequentially. In other embodiments, each of the third electrical signals is an AC electrical signal with a phase and a frequency, such as a triangular wave signal, a sine wave signal, a square wave signal or a PWM signal. Each of the third electrical signals differs from the other third electrical signals in at least one of the phase and the frequency.
Referring to
Therefore, in this embodiment, the two-touch detection can be exactly completed by the multi-touch detection method through scanning of 15 (=4+7+2×2) times, wherein 4 times for the first sensed capacitances, 7 times for the second sensed capacitances, and 4 time for the third sensed capacitances, thereby reducing the number of times of scanning and power consumption as compared to the prior art using mutual-inductional capacitance sensing. In addition, the multi-touch detection method of the present invention can exactly determine real touched points on the touch screen without the complicated mathematical operations required in the prior art that used self-inductance.
While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
100116135 | May 2011 | TW | national |