This application is related to human-machine input devices.
Many of today's electronic devices offer human-machine-interface through touch sensitive devices such as touch-pads or touch-screens. These touch sensitive devices may be implemented using a variety of technologies including capacitive or resistive sensors, piezoelectric or otherwise force-sensitive pads, various optical methods and the like. Every such technology has its advantages and disadvantages. Some of these technologies are capable of recognizing two or more simultaneous touches, some are able to recognize only a single touch. On the other hand, some of the single touch technologies may offer other features like better electromagnetic compatibility (EMC), additional measurement of touch pressure or force, or lower cost, and so the final choice of technology is driven by many compromises. Moreover the corresponding mass-produced sensors are often limited in the types of surface curvatures that they are able to cover. This often results in plain or only slightly curved interaction surfaces which are not the most suitable or ergonomic for the human anatomy.
Described herein is a device and method that uses multiple touch sensors on multiple ergonomically separated surfaces together with centralized, common processing to enable multi-touch performance for multi-touch applications. The device uses a combination of two or more separate touch-sensors with common processing to allow the use of a wider portfolio of touch technologies, even such, which would otherwise only offer single-touch capabilities, for multi-touch applications. Additionally, the usage of multiple separated sensors allows coverage of surfaces of forms that would, if covered with a single large sensor, cause high costs or even make it impossible for some sensor technologies to be used. The segmented ergonomically formed touch sensitive devices use ergonomic single-touch and multi-touch gestures for controlling or passing general input information to electronic devices having a human-machine input. The devices fit a variety of surface conditions and are operable via a combination of a number of different human body parts. In particular, the multiple touch sensors are ergonomically separated or dedicated to some body parts such that the user is easily able to keep for example one of their fingers (finger_1) on one sensor (sensor_1) and another finger (finger_2) on other sensor (sensor_2) without accidentally touching sensor_1 with finger_2 or vice versa.
It is to be understood that the figures and descriptions of embodiments of a device and method that uses multiple touch sensors on multiple surfaces together with centralized, common processing to enable multi-touch performance for multi-touch applications have been simplified to illustrate elements that are relevant for a clear understanding, while eliminating, for the purpose of clarity, many other elements found in typical human-machine input (HMI) systems. Those of ordinary skill in the art may recognize that other elements and/or steps are desirable and/or required in implementing the present invention. However, because such elements and steps are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements and steps is not provided herein.
The non-limiting embodiments described herein are with respect to a device and method that uses multiple touch sensors on multiple surfaces together with centralized, common processing to enable multi-touch performance for multi-touch applications. Other electronic devices, modules and applications may also be used in view of these teachings without deviating from the spirit or scope as described herein. The device and method that uses multiple touch sensors on multiple surfaces together with centralized, common processing to enable multi-touch performance for multi-touch applications may be modified for a variety of applications and uses while remaining within the spirit and scope of the claims. The embodiments and variations described herein, and/or shown in the drawings, are presented by way of example only and are not limiting as to the scope and spirit. The descriptions herein may be applicable to all embodiments of the device and method that uses multiple touch sensors on multiple surfaces together with centralized, common processing to enable multi-touch performance for multi-touch applications although it may be described with respect to a particular embodiment. Although the descriptions herein refer to hands, fingers and thumbs, any human body part may be used in any combination. In addition, a pen, stylus, prosthetics and other like devices may be used.
In general, described herein is a device and method that uses multiple touch sensors on multiple ergonomically separated surfaces together with centralized, common processing to enable multi-touch performance for multi-touch applications. The device uses a combination of two or more separate touch-sensors with common processing to allow the use of a wider portfolio of touch technologies, even such, which would otherwise only offer single-touch capabilities, for multi-touch applications. Additionally, the usage of multiple separated sensors allows coverage of surfaces of forms that would, if covered with a single large sensor, cause high costs or even make it impossible for some sensor technologies to be used. The segmented ergonomically formed touch sensitive devices use ergonomic single-touch and multi-touch gestures for controlling or passing general input information to electronic devices having a human-machine input. The devices fit a variety of surface conditions and are operable via a combination of a number of different human body parts. In particular, the multiple touch sensors are ergonomically separated or dedicated to some body parts such that the user is easily able to keep for example one of their fingers (finger_1) on one sensor (sensor_1) and another finger (finger_2) on other sensor (sensor_2) without accidentally touching sensor_1 with finger_2 or vice versa.
In another embodiment, the TSPs are not co-located but are electrically connected so that activation members that are not part of the same hand, for example, may operate the touch sensitive device. For example, a user driving a car may have TSPs on different sections of the steering wheel to perform certain types of activities. In this embodiment, an activity requiring a multiple touch gesture would not require the user to take the user's hands off of the steering wheel and can be accomplished by touching the TSPs with two different fingers located on two different hands.
Referring now to
Referring now to
In an embodiment, the TSPs, for example, TSPs 410 and 420, are capable of measuring one dimension (1D), such as the x axis position or y axis position as shown in
Referring now to
Each SCM is specifically designed for the touch technology of the respective TSP. When various touch technologies are used for different TSPs, the corresponding SCMs will have various implementations accordingly. Depending on the TSP's technology and system requirements, SCMs may incorporate but are not limited to amplifiers, impedance converters, overvoltage or other protections, sampling circuits, A/D converters or combinations thereof. Generally the tasks of such SCMs may include but are not limited to supplying the TSPs with electrical or other energy, gathering information from the TSPs by measuring physical quantities carrying information about touch events, amplifying, modulating, sampling or otherwise converting the measured signals so that they can be further processed.
The SCMs, SCM #1512, SCM #2514, through SCM #n 516 transfer the conditioned signals to coordinate computation modules (CCM) #1522, CCM #2524, through CCM #n 526. Specifically, the SCMs, SCM #1512, SCM #2514, through SCM #n 516 are connected to the CCM #1522, CCM #2524, through CCM #n 526, respectively. The CCMs, for example CCM #1522, CCM #2524, through CCM #n 526, calculate the position or force from the measured values received from the TSPs, TSP #1502, TSP #2504, through TSP #n 506. These coordinates or force determinations are then used by the gesture recognition module 530 to determine the nature of the action performed at the TSP #1502, TSP #2504, through TSP #n 506 by the user. Specifically, the outputs from all the TSPs are processed together in a gesture recognition module (GRM) 530 by determining touch events based on the determined coordinates in each of the separate TSPs, by analyzing their respective movements or appearances, including time properties like speed of the movements, or order of appearance of particular events and thus recognizing the gestures and their properties. The information about determined gestures and other information about touch events is then processed by an appropriate system or application or action decision module (ADM) 540 which decides about appropriate actions.
The functional blocks in the block diagram of the touch sensitive device 500 in
In an example embodiment, but not limited to, the touch sensitive device as described herein may be used with a painting or drawing application. Referring now to
In another embodiment, the TSP#1 may be located under user's left foot, while TSP#2 would be located under user's right foot. Optionally, a TSP#3 and TSP#4 may be located ergonomically to be operated by a user's left and right hand, respectively. Such an input device might be used to control complex motions, like in special vehicles, manipulation or surgical robots, or to play computer games.
In another embodiment illustrated in
The methods described herein are not limited to any particular element(s) that perform(s) any particular function(s) and some steps of the methods presented need not necessarily occur in the order shown. For example, in some cases two or more method steps may occur in a different order or simultaneously. In addition, some steps of the described methods may be optional (even if not explicitly stated to be optional) and, therefore, may be omitted. These and other variations of the methods disclosed herein will be readily apparent, especially in view of the description of the systems described herein, and are considered to be within the full scope of the invention.
Although features and elements are described above in particular combinations, each feature or element can be used alone without the other features and elements or in various combinations with or without other features and elements.