The present disclosure relates generally to multi-use endoscopes and associated systems and methods.
An endoscope is an illuminated optical, typically slender and tubular instrument used to look deep into the body. It is used in procedures called endoscopy. The endoscope may have a rigid or flexible casing. Additionally, the endoscope may be used for diagnostic or therapeutic procedures.
Nearly all endoscopes are designed as multi-use devices, or devices that are used over multiple procedures and multiple patients. They are sold as capital to a user, meaning they are sold once and used multiple times over an extended period. Since multi-use endoscopes are used inside patients' bodies they must be cleaned or decontaminated between procedures to not transmit infectious diseases among patients contacted by the same endoscope. Today this cleaning is done at the clinical site of care, e.g., the hospital or clinic. Manufacturers who sell multi-use endoscopes are not involved in reprocessing of the devices and as a result assume no responsibility in ensuring endoscope fitness-for-use beyond validating the cleaning protocols that should be used at the clinical site of care.
When cleaning protocols are strictly followed they have been proven to sufficiently sterilize the endoscopes. However, cleaning steps are largely manual and may be intentionally or unintentionally skipped or not sufficiently completed, which may result in dirty endoscopes that can transmit infectious diseases among patients.
An emerging solution to address dirty endoscopes is a disposable, single-use endoscope where the device is provided to the customer in a sterile, ready-for-use condition. When the procedure is completed, these endoscopes are discarded and not meant to be used in another patient. These disposable endoscopes at least reduce the risk of cross-contamination between patients, but they typically cost more per procedure than multi-use endoscopes and may offer lower performance. The single-use endoscope business model is similar to the current multi-use endoscope model to the extent that the endoscope is sold only once to the end user. There is not a selling model today where the same endoscope can be used multiple times and is sold to a user in a ready-for-use condition before or after every use or on a per use basis. Additionally, there is currently no endoscope designed to specifically facilitate this selling model.
Since multi-use endoscopes are used over many procedures it is expected that the endoscope performance will degrade unlike single-use endoscopes. This performance degradation can occur rapidly, such as when an endoscope is dropped and the internal components are damaged or it can occur progressively over time through repeated clinical use and cleaning. It can be difficult to know the endoscope's performance capability relative to its original specifications because the endoscopes are not performance-tested rigorously between cases. As a result, a clinician may not be using optimally-performing endoscopes in critical clinical procedures.
Should sufficient endoscope performance degradation be noticed by the clinical user, it is possible to send the endoscope to the original manufacturer or a third party for repair/refurbishment or exchange for a previously repaired device. This is usually done via a standing service contract with the original manufacturer structured at time of sale or contracted as needed. It is important to note that any party (original endoscope manufacturer or third party) repairing or refurbishing a multi-use endoscope under a service contract is losing profit with every endoscope serviced. As a result, the repair entity under a service contact is not incentivized to perform service at all and would prefer to extend time to or between servicing as long as possible.
The original manufacturer or third party will attempt to repair or service the device back to its original performance specifications and obtain more usable life for the device, if possible. Repair or refurbishment is not done after every clinical case, but is done only when performance of the device has been noticeably compromised, either after extended use over multiple procedures or suddenly, e.g., accidental damage.
The other challenge with a multi-use endoscope in a capital-based business model is that the multi-use feature is exploited to spread the acquisition cost over many uses and longer time. This means that a purchase decision by an end user forces the same technology to be used in every case for an extended period of time, typically years. The technology advancements in endoscopy can be rapid which means that after only a short portion of the usable life of the endoscope, it may already be antiquated. This means that the end user is forced by a financial incentive to use inferior technology, which could affect clinical outcomes. The only alternative is for the user to upgrade to a new capital asset at an incremental expense, perhaps resulting in larger than anticipated expense for the end user. Additionally, since re-using a device means that the same level of technology is used in multiple cases, it may mean inefficient spending by the clinical end user by either (a) under-spending in some cases and not utilizing the available preferred or optimal endoscope technology and thereby potentially effecting clinical outcomes or (b) over-spending in some cases by utilizing advanced technology that is not clinically necessary for a particular patient.
Today, the business transaction between the original endoscope manufacturer and the customer ends after the first sale, thus leaving the cleaning/sterility and assessing device performance obligations to the end user in a feature-constrained and cost-inefficient manner. This disclosure proposes endoscope design elements and business models that address the issues of dirty endoscopes, uncertain device performance following previous uses, endoscope affordability, and optimal per-procedure device selection.
The present disclosure relates generally to multi-use endoscopes and associated systems and methods. Specific details of several embodiments of the present technology are described herein with reference to
As used herein, the terms “distal” and “proximal” define a position or direction with respect to a clinician or a clinician's control device (e.g., a handle of an endoscope). The terms, “distal” and “distally” refer to a position distant from or in a direction away from a clinician or a clinician's control device along the length of device. The terms “proximal” and “proximally” refer to a position near or in a direction toward a clinician or a clinician's control device along the length of device. The headings provided herein are for convenience only and should not be construed as limiting the subject matter disclosed.
The reprocessable Endoscope (1) is limited to a specific number of uses and includes a re-usable Optical Module (2) and single-use or limited re-use Outer sheath (12) and single-use or limited re-use Optical Window (4). The outer body (3) includes externally exposed elements including the Outer sheath (12) mounted thereabout and Optical Window (4) and Handle (7). Outer body (3) further includes one or more inner lumens extending therethrough. In some embodiments, the Endoscope (1) may have only a single-layer tube. Therefore, the terms Outer body (3) and Outer sheath (12) may be used interchangeably throughout the description. For example, the Optical Module (2) may be removably mounted in a lumen of Outer body (3) or Outer sheath (12).
The Optical Module (2) is a high value, high cost assembly and it can be easily removed and transplanted into a new low value, low cost Outer sheath (12) when the previous Outer Body (3) deteriorates or is selectively replaced.
The Endoscope (1) can be cleaned a number of times (machine cleaning) before the external Optical Window (4) mounted on the distal end of Outer Sheath (12) deteriorates. Alternatively, this Optical Window (4) can be replaced after every cleaning cycle.
It is possible to remove the Optical Module (2) from the Outer Sheath (12) without the need to initially clean the Outer Body (3) and without contaminating the Optical Module (2) during this process.
The reprocessable Endoscope (1) has a modular design, comprising the re-usable Optical Module (2) which is sealed within the limited re-use Outer Sheath (12) and the Optical Window (4). The Outer Body (3) includes the Handle (7) with an external data connection (11) extending therefrom.
The Optical Module (2) can be accessed proximally by removing the Handle (7) or distally by removing the Optical Window (4) which are sealed to prevent fluid ingress and human tissue contamination.
The Optical Module (2) is easily removed from the Outer Sheath (12) without contaminating the surface of the Optical Module (2) such that the module may not require cleaning before re-use.
The Optical Window (4) of the Outer Body (3) may be easily removed and replaced after every cleaning cycle or after several cleaning cycles.
Alternatively, the Optical Window (4) may be permanently connected to the outer sheath (12) requiring replacement between uses should it be damaged.
The Handle (7) contains mechanical and visible alignment and holding features (5) which will enable an effective mechanical interface for automated machine cleaning of the Endoscope (1).
The Optical Module (2) and Outer Sheath (12) both contain alignment features (6) to ensure the correct radial and axial positioning of the Optical Module (2) relative to the Handle (7) and Optical Window (4).
The Optical Module (2) may contain features to enable the external adjustment of the position and alignment of internal optical components prior to being permanently fixed.
A sealing ring (23) may be disposed between the Optical Module (2) and optical window (4) to create a seal with the Outer Sheath (12) to prevent fluid or tissue ingress.
A sealing ring (23) may be used between optical module (2) and optical window (4) and outer body (3) to assist with fit and avoid rattling/motion while in use.
The Outer Body (3) contains electrical connections (11) extending proximally from the Handle (7) to enable connection to an external system. This connection (11) may be via a USB-type cable, e.g., a cable having any of various USB-type connectors including but not limited to A, B, and C types and “micro” and “mini” versions. These connections may be waterproof or water resistant. The connection (11) may have a reversible locking mechanism to avoid inadvertent disconnection during use, transport, or processing.
The Optical Module (2) connects electrically to an internal electrical connector (10A) within the Outer Sheath (12), possibly via a USB connector (8). If the Optical Window (4) is removed from the distal end of the Outer Sheath (12) then there should be sufficient slack length of a Mating Line or Cable (10) to ensure that the electrical connector (10A) can be accessed outside of the Outer Sheath (12), as shown in
The method of electrical connection between the Optical Module (2) and the Outer Sheath (12) is robust to prevent accidental dis-connection during use. This may be achieved by providing one or more mechanical anchoring points (16) on the inner wall defining the lumen of the Outer Sheath (12).
The Optical Module (2) may require a tool to remove it from the Outer Sheath (12)—either from the distal or proximal ends of the Endoscope (1). The Optical Module may contain features to help lock it to the tool.
The Optical Module (2) can be in two different configurations. In a first configuration (
The Optical Window (4) may be attached to the Outer Sheath (12) via a screw thread (17). One or more Flats (29) on the Optical Window (4) may be used to enable easy removal of the Optical Window (4), e.g. using a tool. See
In an alternative configuration, the Optical Window (4) and the Optical Module (2) may contain Interlocking Features (18) to control the rotational orientation of the Optical Module during and after assembly. The Optical Module (2) may be pressed lightly against the Optical Window (4) with a Proximal Spring Feature (19), e.g., a coil spring to control the axial position of the Optical Module (4). See
In another configuration, to control the axial position of the Optical Module (2) relative to the Outer Sheath (12), the Optical Module (2) may have a Distal Spring Feature (20), e.g., leaf springs to react against the Optical Window (4) and thereby restrain the proximal end of Optical Module (2) against a Step Feature (21), e.g., shoulder or pocket formed on the inner surface of the Outer Sheath (12). There may be additional corresponding tab and notch features (22) in the Optical Module (2) and the Outer Sheath (12) to control the relative rotational/radial position of the Optical Module (2) to the Outer Sheath (12). See
In another configuration, the Optical Module (2) may be press-fit into a Receptacle (24) within the Optical Window (4) which is then welded or bonded to a distal Neck (25) on the Outer Sheath (12). Removal of the Optical Window (4) would also result in removal of the outer sheath (12). The optical module (2) can be extracted via the proximal or handle end of the outer sheath (12). The Handle (7) may contain a feature such as a plug or removable wall which would enable extraction of the Optical Module (2) through the proximal end of the Outer Body (3). This method of extracting the Optical Module (2) may be required if the Optical Window (4) is integrated into the Outer Sheath (12) and cannot be easily removed. See
In accordance with the above alternative embodiments, the Optical Window (4) may be designed either for rapid exchange, e.g., simple, non-destructive detachment from and reattachment to the Outer Sheath (12) or for permanent or semi-permanent assembly so that removal would prevent re-attachment and re-use.
The Handle (7) may be attached to the Outer Sheath (12) via a screw thread (17) similar to those shown in
In an alternative configuration, the Handle (7) may have retractable/deployable Teeth (26) or detents that can lock into mating holes in the Outer Sheath (12) to lock the Handle (7) and Outer Sheath (12) together.
A Sealing Ring (23) may be used between the Handle (7) and the Outer Sheath (12) to create a seal to prevent fluid or tissue ingress.
The Handle (7) may contain a radio-frequency identification (RFID) chip (28) or other identification device(s) for quantifying the number of endoscopes in a container without requiring physical, manual counting, and potential contamination of the person doing the counting.
The Handle (7) may alternatively, or additionally contain an RFID chip (28) or other technology that prevents device from functioning after a single use, e.g. after connection to an external instrument during a clinical procedure. Such a re-use prevention component may prevent cross-contamination between patients, and can be replaced or re-set during reprocessing of the endoscope.
The Handle (7) may alternatively, or additionally, contain a Memory Module (27) to collect and record performance information from the device during clinical use. Such information may indicate the need for replacement of under-performing sub-components during reprocessing of the endoscope.
The Handle (7) may alternatively, or additionally, contain a Memory Module (27) to record unique identification of components used in device. Such information regarding installed components may inform replacement decisions based, for example on known reprocessing cycle life of a component or on a desire to upgrade the endoscope to a higher level of technology.
From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the technology. Accordingly, the technology is not limited except as by the appended claims.
Several aspects of the present technology are set forth in the following examples.
This application is a continuation of U.S. application Ser. No. 16/769,813, filed Jun. 4, 2020, now allowed, which is a national stage application of PCT/US2018/064984, filed Dec. 11, 2018, which claims priority to U.S. Appl. No. 62/597,865, filed Dec. 12, 2017, each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3858577 | Bass et al. | Jan 1975 | A |
5711756 | Chikama | Jan 1998 | A |
6019719 | Schulz et al. | Feb 2000 | A |
20030205029 | Chapolini et al. | Nov 2003 | A1 |
20040143162 | Krattiger | Jul 2004 | A1 |
20050182299 | D'Amelio | Aug 2005 | A1 |
20050277808 | Sonnenschein | Dec 2005 | A1 |
20060217594 | Ferguson | Sep 2006 | A1 |
20070049794 | Glassenberg | Mar 2007 | A1 |
20070106119 | Hirata | May 2007 | A1 |
20070142711 | Bayer | Jun 2007 | A1 |
20070162095 | Kimmel | Jul 2007 | A1 |
20070167681 | Gill et al. | Jul 2007 | A1 |
20100204546 | Hassidov et al. | Aug 2010 | A1 |
20100298640 | Oneda et al. | Nov 2010 | A1 |
20110028790 | Farr | Feb 2011 | A1 |
20120040305 | Karazivan | Feb 2012 | A1 |
20120100729 | Edidin et al. | Apr 2012 | A1 |
20120329312 | Oue | Dec 2012 | A1 |
20140142383 | Blumenzweig | May 2014 | A1 |
20140204188 | Ariyoshi et al. | Jul 2014 | A1 |
20150112132 | Neiman et al. | Apr 2015 | A1 |
20160296104 | Smith | Oct 2016 | A1 |
20170035277 | Kucharski et al. | Feb 2017 | A1 |
20180028250 | O'Connor | Feb 2018 | A1 |
20180084162 | Stephenson | Mar 2018 | A1 |
20180132703 | Reever et al. | May 2018 | A1 |
20210186316 | Thommen | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
10 2009 038979 | Mar 2011 | DE |
2009273571 | Nov 2009 | JP |
9315648 | Aug 1993 | WO |
Entry |
---|
The International Search Report and The Written Opinion of the International Searching Authority issue date Jul. 9, 2019 in international application No. PCT/US2018/064984. |
Number | Date | Country | |
---|---|---|---|
20240041302 A1 | Feb 2024 | US |
Number | Date | Country | |
---|---|---|---|
62597865 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16769813 | US | |
Child | 18490237 | US |