This disclosure generally relates to methods for controlling the transmitting of data messages to and from systems (e.g., an aircraft) and disseminating that information to the appropriate user.
Various systems may request information from other systems of interest in order to obtain information that may be relevant to the requestor's needs. The information retrieved from systems of interest may involve specific state, environment or event information that is useful for particular applications of the requesting system. Multiple systems may have an interest in different information from the same systems of interest. The transmission criteria for this information may overlap depending on the specific information requested. This criteria may include periodic reporting, event reporting, or reports that are done upon demand from requestors. For example, aircraft transmit messages on a periodic basis, in response to specific events on board the aircraft and on-demand from the flight crew or ground system. Additional messages are also available that provide information relevant to aircraft (e.g., surveillance data). The ordering, delivery method, content and timing of the messages define a messaging profile. There are many different sets of messages that may support particular services, with each service potentially having different messaging needs. In order to fulfill a real-time efficiency analysis, a specific messaging profile is required.
U.S. patent application Ser. No. 13/424,661 (the disclosure of which is incorporated by reference herein in its entirety) discloses means for enabling real-time efficiency monitoring and delta efficiency calculations between various user- or system-selected phases of flight by determining an efficiency measuring-promoting messaging profile index (MPI) that is translated into a messaging profile. That messaging profile is then used to obtain necessary flight and other information from one or more systems of interest (SOI), such as aircraft. Basically a higher-efficiency MPI translates to more messaging required between an aircraft and the ground system, ground system to ground system or between an aircraft and other aircraft.
There are many cases, however, where users are not aware of other messaging that may exist with a particular system of interest, and requests from some users may cause information that another user is dependent on to stop being reported, or may result in additional/different information being returned that is in a format, frequency or type not expected by the user requesting the information.
There is a need for systems and methods that solve the problem of how multiple users (applications, systems, etc.) can request data from the same system of interest (e.g., an aircraft), while ensuring that one user's data request does not impact other users' data requests.
The subject matter of this disclosure relates to a computer-based communications management system for managing multiple requests made by different users, in abstract or generalized formats, for data to be provided by various systems of interest. This computerized system is programmed to perform operations which ensure that requests from different users do not interfere with each other and that all information requested from the system of interest is retrieved without missing or additional (i.e., not requested) information. Additionally, the system accommodates the functional differences between various systems of interest, and also uses relevant related data from other systems of interest to achieve greater data usefulness.
One aspect of the subject matter disclosed in detail below is a communications management system comprising a computer system programmed to execute the following operations: (a) store information representing data and the status of various systems of interest in computer memory; (b) receive user requests from one or more users seeking information regarding a system of interest; (c) determine whether a user request from a first user seeks information that is stored in the computer memory or information that is not stored in the computer memory; (d) if a determination is made in operation (c) that the user request from the first user seeks information that is not stored in the computer memory, then create a messaging profile for messaging to obtain information from at least the system of interest; (e) determine whether the messaging profile conflicts with currently scheduled messaging requesting information regarding the system of interest or not; and (f) if a determination is made in operation (e) that the messaging profile is in conflict with currently scheduled messaging regarding the system of interest, then execute a conflict resolution process. The conflict resolution process is capable of determining whether the conflict can be resolved without affecting other messaging or not. If the conflict resolution process determines that the conflict cannot be resolved without impacting other messaging, the conflict resolution process is further capable of formulating a replan comprising a revised messaging profile, the replan being formulated to meet the messaging needs and requirements for users and the system of interest. In accordance with one implementation, the replan formulation comprises merging conflicting requests for information, the results of the merger being included in the revised messaging profile, or substituting one conflicting request for information for another conflicting request for information, the results of the substitution being included in the revised messaging profile.
In accordance with further aspects, the computer system is further programmed to execute the following operations: (g) construct one or more messages requesting information in accordance with the revised messaging profile; (h) send the one or more messages requesting information to the system of interest and any more messages requesting information to one or more other systems of interest; (i) receive information responsive to the sent messages; (j) filter out from the received information any system information not relevant to individual user requests; and (k) send the relevant information remaining after filtering to each requesting user.
Another aspect of the disclosed subject matter is a communications management system comprising a computer system programmed to execute the following operations: (a) store information representing the status of various systems of interest in computer memory; (b) receive user requests from one or more users seeking information regarding a system of interest; (c) determine whether a user request from a first user seeks information that is stored in the computer memory or information that is not stored in the computer memory; (d) if a determination is made in operation (c) that the user request from the first user seeks information that is not stored in the computer memory, then create a messaging profile for current and future messaging to obtain information from at least the system of interest; (e) construct one or more messages requesting information; (f) send the one or more messages requesting information to the system of interest and any more required messages requesting information to one or more other systems of interest; (g) establish or update rules for continued processing of the future messaging for one or more systems of interest; (h) construct one or more messages requesting information in accordance with the rules for continued processing as appropriate; and (i) send the one or more messages requesting information to the system of interest and any more messages requesting information to one or more other systems of interest.
A further aspect is a method, performed by a computer system, comprising: (a) storing information representing the status of various systems of interest in computer memory; (b) receiving user requests from one or more users seeking information regarding a system of interest; (c) determining whether a user request from a first user seeks information that is stored in the computer memory or information that is not stored in the computer memory; (d) creating a messaging profile for messaging to obtain information from at least said system of interest if it was determined that the user request from the first user seeks information that is not stored in the computer memory; (e) determining whether said messaging profile conflicts with currently scheduled messaging requesting information regarding said system of interest or not; and (f) executing a conflict resolution process if it was determined that said messaging profile is in conflict with currently scheduled messaging requesting information regarding said system of interest.
Other aspects are disclosed and claimed below.
Various embodiments will be hereinafter described with reference to drawings for the purpose of illustrating the foregoing and other aspects of the invention.
The following description refers to various processes that are executed by one or more processors. These processes take the form of software running on one or more computers. It should be appreciated that the each disclosed process can be executed by a respective processor or all processes can be executed by one processor or any variation therebetween.
The communications manager disclosed in detail hereinafter is programmed to solve the problem of how multiple users (applications, systems, etc.) can request information from the same system of interest (e.g., an aircraft), while ensuring that its information request does not impact other users' information requests. The communications manager also comprises a process that enables users to request information in a simplified, generic format, so that they do not need to know the details of the system of interest they are requesting information from, only the type of information that is needed. The communications manager also ensures that the information it sends to the requesting users contains only the information that is relevant to each user; other, unrequested information that may cause unintended consequences to a user not expecting it is prohibited from being sent.
At a high level,
Referring to
The communications manager further comprises a current SOI and related information database 8, which stores all information about the current states of all systems of interest. As new information about the systems of interest is received by the communications manager, the current SOI and related information database 8 will be updated by a status updater 6. Updates may include new messages/information that are received from the systems of interest. For example, if there is periodic and event messaging in place with a system of interest, then messages from that system of interest will be received unsolicited. These messages contain updated information concerning the latest status of that system of interest. The current SOI and related information database 8 might employ a software architecture that publishes updates to all processes that are subscribers (meaning that subscribers need not transmit requests for updates). The current SOI and related information database 8 includes a multitude of specific information related to the SOI. An example would be if the SOI is an aircraft, the specific information may comprise flight information. The flight information may include, but is not limited to, aircraft-specific information (e.g., type-specific performance characteristics and parameters, messaging capabilities, software capabilities, etc.), processed flight plan and trajectory information (such as those received from a flight plan processor system, trajectory predictor system, etc.), surveillance data (e.g., radar, ADS-B, ADS-C, etc.), airline preferences/adaptation data, aircraft-generated messages (including airline operational control (AOC), air traffic services (ATS), and other types) and optionally multiple levels of optimum flight trajectories for particular aircraft.
A user of the communications manager may input information into the communications manager in different ways via a message multiplexer 2. A messaging profile index (MPI), messaging details (e.g., information by time, time interval, event, location, or specific information type), or management commands (e.g., add, monitor, delete, cancel) are submitted by a user that desires communication with a system of interest external to the communications manager. Users of the communications manager have the option of using any one of these types of input methods to request information or manage the communications manager. Additionally, the input into the message multiplexer 2 may also be from another communications manager. This would allow communications managers to share information regarding data, and message profiles for SOIs. The inputs are multiplexed into the communications manager.
The communications manager further comprises an input manager 4 which processes each input. The input manager 4 passes the new user requests to the status updater 6, which then updates and saves the information in the current SOI and related information database 8. The input manager 4 also determines whether the status of a current system of interest should be updated or not. If an update is called for, the input manager 4 passes this information to the status updater 6. The input manager 4 also identifies any new systems of interest to be added or current systems of interest to be removed from the current SOI and related information database 8 and passes that information to the status updater 6. If there is a user or a system of interest that is completely new (i.e., has had no previous interactions with the communications manager), then these configuration details may also need to be added to the configuration data 56. Thus the input manager 4 assists in maintaining the integrity of the stored SOI and user data, and ensures that the status updater 6 is supplied with information needed to update the current SOI and related information database 8.
Management commands (e.g., add, monitor, delete, cancel) are also handled by the input manager 4. These commands are applicable to configuration data, current SOI information and user requests. If a current system of interest is to be changed, the input manager 4 passes on the information to the status updater 6, which then updates the current SOI and related information database 8. User configuration data may also be changed in this way or changed directly by other means. A user request may also be affected. For example, if there are pending transactions (i.e., the “continued processing” described below), these can be changed or canceled by the input manager 4 sending an instruction to the processor that runs the “continued processing” routines (e.g., process 40 seen in
The communications manager further comprises an MPI/input translator 14, which also receives the user requests from the input multiplexer 2. The MPI/input translator 14 breaks down those inputs to see how each input would need to be realized in order to meet the requirements of the user. The term “break down” means that the input information is parsed and potentially split into different data segments (depending on the input information) in order to process the information. This includes information that may already exist for the SOI (e.g. information retrieval from Current SOI and Related Information, 8). Systems of interest to users may also be interacting with other external users. In this case, additional messages may be received regarding a particular system of interest that were not requested by the current user. These messages may be useful or in conflict so they need to be handled. As part of this process, the MPI/input translator 14 receives updates of SOI information from the current SOI and related information database 8 to check for messaging leverage. (The term “message leveraging” means that information from systems of interest or other sources can be used to provide additional input to assist in determining the state of the system of interest that is the subject of the user request being processed.) The updates may be derived from new information (see block 50 in
The MPI/input translator 14 then determines, based on the user request and all available information (including user configuration data), the messaging profile, which identifies the types of messages needed within the constraints of the request and available information, as well as any parameters that the messages will take such as triggering events, desired contents to be returned, etc. Not all user requests will result in new messaging with the SOI. If, on the one hand, a user requests information which is already in the current SOI and related information database and the MPI/input translator 14 determines that the available information satisfies the requirements of the user request being processed, then no message requesting updated information will be constructed for that user request. If information is required to be given to a user, that information is packaged as the specific user expects it and subsequently output to the user by output processor 10. If, on the other hand, a user requests information that the MPI/input translator 14 determines is not already available or covered by messaging currently in place with the system of interest, then a normalized messaging profile will be created with the intention that one or more messages requesting the necessary information will be constructed (in accordance with the normalized messaging profile) and sent to relevant systems of interest.
A messaging profile is generally set by the ground system, and depending on the types of messages chosen, may require periodic queries, event-based messages or updates from the ground system to interrogate aircraft or other systems of interest. If the input is an MPI, the MPI/input translator 14 will manage the creation of the appropriate messaging profile corresponding to that MPI value. If a change in the value of the MPI is required, this will likely require some action by the communications manager to dynamically change the messaging of an aircraft or other system of interest.
The messaging profile index can be a major factor in dictating the messaging profiles, and allows a user to specify a desired level of SOI information. In the case of aircraft, changes in information provided may be due to changes to the aircraft's trajectory, be it from flight crew action, environmental effect, aircraft design or air traffic control intervention. The MPI can be thought of as a scale of accuracy, where more accuracy generally requires additional or different information. More accuracy commonly requires a greater level of messaging in order to provide the updated relevant information to meet the desired MPI. This also generally means an increase in cost.
The messaging profile can be applied to individual SOI or to more than one SOI in a group(s). These groups can be defined by potential influences and/or commonality in distance (e.g., from each other or from specific points), time, path (e.g., flight path including altitude), SOI type, and other factors. By grouping the SOIs, the user can, at little or no additional impact, receive more accurate information about or from other SOI in the group. The fact that some of the messaging may be shared between SOIs (e.g., downlinked meteorological information can apply to all of the aircraft in a group, where the SOIs are composed of aircraft) is also taken into consideration. In response to a user request for information regarding a particular system of interest, the MPI/input translator 14 checks the current SOI information for other systems of interest and any information available from other sources to determine if there is an opportunity to define a group that will allow the available information to be leveraged.
Referring to
Returning to
Another feature of the communications manager, when an MPI is being used, is to determine whether a next higher or next lower MPI should be calculated or not (step 20). This service may be used when the user is using the CM for real-time efficiency monitoring and delta efficiency calculations between various user- or system-selected phases of flight. A set of dynamic thresholds can be input into the communications manager that will give the next higher and lower messaging requirements for an MPI, taking into account key factors such as cost or performance limitations. This means that if a user selects an MPI value of 6 (on a scale of 1 to 10, 1 being lowest accuracy, 10 being highest), the communications manager can show that in order to realize an MPI value of 7, additional messaging is required at a particular cost and make that additional messaging at the additional cost available to the user. Likewise, an MPI value of 5 might result in less messaging or smaller message sizes with a corresponding savings. The user can then decide whether the additional messaging (and any changes resulting from it, e.g., increase in cost, increase in bandwidth utilization, etc.) is worth the additional information that would result or not. The user is also capable of manually initiating such a comparison, and can also specify checking between multiple level differences (e.g., between MPI values of 2 and 7).
If a determination is made in step 20 that the next higher or lower MPI should be calculated, the communications manager determines what the costs and information are to achieve the next higher or lower MPI (process 22). This information is then provided to the originating user and/or the system operator (step 24). This allows a user to have a better idea of the cost versus the capability that a different MPI value will provide.
Upon completion of the process comprising steps 20, 22 and 24, a conflict determination module 26 and its associated support logic, shown in
If there is no overlap/conflict, then the message solution can be implemented without affecting other users (i.e., go to step 38). If an overlap/conflict is detected, the communications manager then determines whether the overlap/conflict can be resolved without affecting existing messaging with other users (step 30) or not. If the overlap/conflict can be resolved without directly affecting other users' needs, the updated messaging solution is continued towards implementation (i.e., go to step 38).
If the overlap/conflict cannot be resolved without directly affecting other users' needs, then a determination is made (process 32 in
The conflict/replan properties (which are checked in process 32) dictate how the communications manager will attempt to resolve conflicts. Based on the conflict/replan properties, a preferred solution option is selected. In accordance with the options shown in
However, the selected replan may not provide a “full” resolution, that is, the conflict may not be fully resolved by a replan. For example, if there are some replacements in messaging that are necessary, there may be some cases where some data fidelity is lost with the solution and cannot be accommodated by alternate messaging selections or with the “continued processing” described further below. In this case the conflict has not been fully resolved by the replan, so the current messaging situation, including conflict and impact information, may be indicated for additional action by the user.
After a replan has been selected, the communications manager determines whether the selected replan will resolve the conflict (step 34 in
In
In the example shown in
In the example shown in
Once conflicts are addressed, a determination is made whether “continued processing” should be initiated or not (step 38 in
If in step 38 a determination is made to not initiate continued processing, then the communications manager will create an information package (see process 42 in
If the message does require subsequent continued processing action, rules for continued processing are established or updated and the message is added to a “continued processing list”. This is handled by process 40, which establishes a set of rules for systems of interest so that the communications manager can make the proper requests at the appropriate times in order to have the SOI provide the necessary information. Based on further external input or continuing internal communications manager events (e.g., a timer expiring, since the system of interest only has a limited time horizon), these rules are continually updated and managed by process 40.
Once any continued processing requirements have been determined, the information is then put into an information package (process 42) having a format that is acceptable to the message constructor 44. The message constructor 44 is a process that takes the input from the communications manager in a mutually understandable format and creates the actual correctly formatted message based on that information. The message constructor 44 then transmits the message out over the information networks and/or other media 48 via a communications gateway 46 to the correct system of interest. The communications gateway 46 handles the actual transmission of the message. This includes using the appropriate physical connection as well as ensuring that any higher level associations (e.g., channels, sockets, etc.) are used correctly. The communications gateway 46 can also serve as the front end for receiving information from systems of interest. The message constructor and communications gateway may be considered as part of the communications manager in one implementation, or in another implementation they may be considered external to the communications manager.
As messages 50 (see
Incoming messages are also checked against a “continued processing” list (step 52) to determine whether their receipt indicates additional action is necessary by updating the “continued processing” rules or not. If the message does not require subsequent continued processing action, the communications manager simply waits for further inputs (step 56). If the message does require subsequent continued processing action, then process 54 tracks adherence to and updates the attributes of the “continued processing” rules. If new messaging needs to be created to support the continued processing, a new input (i.e., request) is generated by process 54. These updates/requests will be given to the MPI/input translator 14, which treats the new requests in the same way as if it had received a new input from an external user. In this way any updates resulting from continued processing are subjected to the same conflict checks to ensure that continued processing does not unexpectedly change a user's messaging.
The status updater 6 also monitors internal configuration parameters, so that it can update SOI information asynchronously (i.e., without external message input). This would be the case, e.g., for a timer expiry. The processing for this type of case is as described previously, i.e., it is the same as for when an external message is received.
After the current SOI information for a system of interest has been updated, the updating of the information may also trigger a new messaging input requirement. This would be the case when direct input into the configuration data of the communications manager results in a messaging update. For this case, the change will be evaluated and processed by the MPI/input translator 14 as described previously to ensure that no conflicts were introduced due to the change.
Once the current SOI information for a system of interest has been updated, that information and its associated user request(s) are sent from the current SOI and related information database 8 to the output processor 10. The output processor 10 determines whether the information that was updated needs to be given to one or more of the users that have requested information or not. If information is required to be given to the user, that information is packaged in accordance with the stored user configuration data associated with the user who requested the information. The output processor 10 is also responsible for ensuring that information irrelevant to a particular user is not given to that user, as irrelevant or unexpected data may adversely impact that user's operations. The output processor 10 filters out the information to be included in the report to the user. For example, assume that the following messaging conflict exists: (A) User A has requested a status report from a specific aircraft every 5 minutes; and (B) User B has requested a status report from the same aircraft every 10 minutes. If the communications manager has previously resolved this conflict by adopting 5-minute intervals and discarding 10-minute intervals, then output processor 10 will send reports at 5-minute intervals to User A, but will apply filtering to ensure User B only receives every other one of the reports received by User A in order to comply with its 10-minute requirement. Upon completion of output processing, the relevant information is output to the user in (step 12).
The above-described system provides a means by which multiple users are able to communicate with the same system(s) of interest without adversely impacting each other's requirements.
While a communications manager has been described with reference to various embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the teachings herein. In addition, many modifications may be made to adapt the teachings herein to a particular situation without departing from the scope thereof. Therefore it is intended that the claims not be limited to the particular embodiments disclosed.
The method claims set forth hereinafter should not be construed to require that the steps recited therein be performed in alphabetical order or in the order in which they are recited. Nor should they be construed to exclude any portions of two or more steps being performed concurrently or alternatingly.
Number | Name | Date | Kind |
---|---|---|---|
6014729 | Lannan | Jan 2000 | A |
6080202 | Strickland | Jun 2000 | A |
6408336 | Schneider | Jun 2002 | B1 |
6522958 | Dwyer | Feb 2003 | B1 |
6538581 | Cowle | Mar 2003 | B2 |
7196621 | Kochis | Mar 2007 | B2 |
7349773 | Berard | Mar 2008 | B2 |
7433779 | Deker et al. | Oct 2008 | B2 |
7647140 | Demortier et al. | Jan 2010 | B2 |
7797102 | Fortier | Sep 2010 | B2 |
8010288 | Bouchet et al. | Aug 2011 | B2 |
8200377 | Marty et al. | Jun 2012 | B2 |
8200514 | Crean | Jun 2012 | B1 |
8782738 | Lynch | Jul 2014 | B2 |
8880243 | Duvall | Nov 2014 | B1 |
8989561 | Radloff | Mar 2015 | B1 |
9037169 | Cabos | May 2015 | B2 |
20020039072 | Gremmert et al. | Apr 2002 | A1 |
20020184060 | Schmitz | Dec 2002 | A1 |
20030027560 | Jammal | Feb 2003 | A1 |
20030074482 | Christensen | Apr 2003 | A1 |
20030078719 | Zobell | Apr 2003 | A1 |
20030217363 | Brady, Jr. | Nov 2003 | A1 |
20040078821 | Frisco | Apr 2004 | A1 |
20050055228 | Boyer, Jr. | Mar 2005 | A1 |
20050137917 | Agapi | Jun 2005 | A1 |
20050216139 | Laughlin | Sep 2005 | A1 |
20050216317 | Medellin | Sep 2005 | A1 |
20050262250 | Batson | Nov 2005 | A1 |
20050278753 | Brady, Jr. | Dec 2005 | A1 |
20060106655 | Lettovsky | May 2006 | A1 |
20060271967 | So | Nov 2006 | A1 |
20070156469 | Bird | Jul 2007 | A1 |
20070240203 | Beck | Oct 2007 | A1 |
20080154448 | Mead | Jun 2008 | A1 |
20080240062 | Lynch | Oct 2008 | A1 |
20080288164 | Lewis et al. | Nov 2008 | A1 |
20090012663 | Mead et al. | Jan 2009 | A1 |
20090100476 | Frisco | Apr 2009 | A1 |
20090157288 | Bailey et al. | Jun 2009 | A1 |
20090171782 | Stolbun | Jul 2009 | A1 |
20090276250 | King | Nov 2009 | A1 |
20090281844 | Probst | Nov 2009 | A1 |
20090282469 | Lynch | Nov 2009 | A1 |
20100049382 | Akalinli et al. | Feb 2010 | A1 |
20100064327 | Lynch | Mar 2010 | A1 |
20100114633 | Sislak | May 2010 | A1 |
20100152932 | Das | Jun 2010 | A1 |
20100191624 | Sharir | Jul 2010 | A1 |
20100191754 | Baker | Jul 2010 | A1 |
20100241345 | Cornell et al. | Sep 2010 | A1 |
20100332122 | Weichbrod | Dec 2010 | A1 |
20110029650 | Shah | Feb 2011 | A1 |
20110050458 | Bailey et al. | Mar 2011 | A1 |
20110054718 | Bailey | Mar 2011 | A1 |
20110160940 | Schapiro | Jun 2011 | A1 |
20120078577 | Allen | Mar 2012 | A1 |
20130073120 | Bailey | Mar 2013 | A1 |
20130085672 | Stewart | Apr 2013 | A1 |
20130132419 | Befort | May 2013 | A1 |
20130204484 | Ricci | Aug 2013 | A1 |
20130211701 | Baker | Aug 2013 | A1 |
20130227030 | Eidelson | Aug 2013 | A1 |
20130304758 | Gruber | Nov 2013 | A1 |
20140164713 | Sim | Jun 2014 | A1 |
20140173755 | Wahl | Jun 2014 | A1 |
20140344374 | Attar | Nov 2014 | A1 |
20150006548 | Huang | Jan 2015 | A1 |
Entry |
---|
Results of Fast and Focused search 492903 for U.S. Appl. No. 13/911,398. Search conducted Aug. 14, 2015 by Mark Hutcherson, 2400 Electronic Information Center (Randolph 4B28). |