Multi-vector malware detection and analysis

Information

  • Patent Grant
  • 10523609
  • Patent Number
    10,523,609
  • Date Filed
    Tuesday, December 27, 2016
    7 years ago
  • Date Issued
    Tuesday, December 31, 2019
    4 years ago
  • Inventors
    • Subramanian; Sakthi (Milpitas, CA, US)
  • Original Assignees
  • Examiners
    • Lemma; Samson B
    Agents
    • Rutan & Tucker, LLP
Abstract
A computerized method to coordinate the detection capabilities of an email-based malware detection system with the detection capabilities of a network-based malware detection system and prevent multi-vector cyber-security attacks. The described system detects and analyzes suspicious objects via the email vector and monitors and analyzes associated objects via the network vector, collecting features of each object. The features of associated objects are analyzed, correlated and classified to determine if they are malicious.
Description
FIELD OF THE INVENTION

The present invention relates generally to cyber-security and more particularly to enhancing the detection of malware by enhancing the analysis of objects of attacks carried out using multiple vectors.


BACKGROUND OF THE INVENTION

Presently, malware (malicious software) can attack various devices of cyber infrastructure via a communication network. Malware may include any program or file that is harmful to a computer or its user, or otherwise operates without permission, such as bots, computer viruses, worms, Trojan horses, adware, spyware, or any programming that gathers information about a computer user.


Malware may be distributed via a first attack vector, by electronic messages, including email, using such protocols as POP, SMTP, IMAP, and various forms of web-based email. Malicious content may be directly attached to the message (for example as a document capable of exploiting a document reading application, such as a malicious Microsoft Excel document). Additionally, email may contain URLs (Uniform Resource Locators) to malicious content hosted on web servers elsewhere on the network (i.e., via the internet). When email recipients activate such links, they may become infected via a second vector, i.e., web-based attacks. In this way, the attack is multi-phased, with an initial email phase or stage that may appear benign and a second web download phase delivering a malicious package. These techniques for infecting recipient computers initiated via email are often used to make targeted attacks on particular “high-value” users at organizations, such as executives or key technical or operational staff.


Malware may also be distributed over a network via web sites, e.g., servers operating on a network according to an HTTP standard in response to a user navigating to a URL. Malicious network content distributed in this manner may be actively downloaded and/or installed on a user's computer, without the approval or knowledge of the user, simply by accessing the web site hosting the malicious network content. The web site hosting the malicious network content may be referred to as a malicious web site. The malicious network content may be embedded within data associated with web pages hosted by the malicious web site.


An improved system for detecting malware propagated via vectors, such as email and network content, is needed.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of this disclosure are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is an exemplary block diagram of a coordinated malware detection system, in accordance with one or more embodiments described herein;



FIG. 2 is a flowchart of an exemplary method for detecting a cyber-attack involving an email and separate network traffic in accordance with one or more embodiments described herein.



FIG. 3A is an exemplary embodiment of a logical representation of the email malware detection system 140 of FIG. 1.



FIG. 3B is an exemplary embodiment of a logical representation of the network malware detection system 150 of FIG. 1.





DETAILED DESCRIPTION

A cross-vector malware detection technique is provided to enhance the detection of a cyber-attack initiated by an electronic message (e.g., email) and furthered by a separate web download. The enhanced detection technique is configured to (i) receive an email directed to a designated recipient of an enterprise network, (ii) analyze the email to determine if the email contains suspicious objects and characteristics, (iii) associate each suspicious object with contextual information, including but not limited to the characteristics of the object and meta-information, about the email and store a flag indicating the email is suspicious, (iv) generate a suspicious object identifier for each identified suspicious object and provide to a network traffic monitoring device (v) deliver the email to the designated recipient, (vi) determine by a network traffic monitoring device at the network periphery, if network traffic is associated with the suspicious object; (vii) couple analysis of the suspicious network traffic with additional context information from the suspicious email, (viii) if the analysis determines the network traffic and email are malicious, update the stored flag for the email and issue an alert to a network administrator to indicate the email is malicious.


More specifically, electronic messages may be received by an email-based malware detection system (EMDS) for processing to determine if the email (or its attachment(s)) contains one or more objects that have a likelihood above a threshold of being malicious or at least suspicious. An object may constitute a sub-object contained within another object and separately analyzable for maliciousness. In this regard, an object may comprise, at least in part, an email message, an attachment thereto, and/or a component of another object. The EMDS may be configured to analyze the email, as an object potentially carrying malicious content, and process the object with a static analysis module and/or a dynamic analysis module which are adapted to detect and monitor features of the object. The features may include the statically detected characteristics and/or dynamically observed behaviors of the email identified during processing. For example, the email or its attachments may contain one or more URLs, each of which is treated as a feature of the email. The EMDS may extract the URLs from the analyzed email. The URLs may then be analyzed separately, as objects, by the static and/or dynamic analysis modules of the EMDS, or provided for remote analysis, to determine if they are malicious. If the EMDS determine the email is malicious or suspicious, the EMDS may store the features associated with the analyzed malicious or suspicious email to be retrieved later, and may modify the features (e.g., the URLs) embedded in the email (or its attachments) so as to include an identifier of maliciousness or suspiciousness and in so doing, prevent or block access from a designated recipient or recipient's computer to potentially malicious content. The identifier may be a static string embedded into the object, while in other embodiments may comprise a dynamic command (e.g. redirection) to be processed with the object. If the EMDS determines the email is benign, no further action is required. In some embodiments, if the EMDS identifies an email as malicious, the email is not delivered to the designated recipient of the email though an on-screen notice or warning identifying the email may be provided to the recipient, and if merely suspicious the email may be delivered to the designated recipient of the email, for example, with an on-screen notice or warning of its status.


In embodiments, where the discovered email features include one or more URLs embedded in the email (or its attachments), the EMDS may notify a network malware detection system (NMDS), on or protecting the enterprise network, to monitor network traffic between the enterprise network and websites corresponding to the URLs. The EMDS may communicate with the NMDS to provide the URLs (or other identifiers associated with suspicious objects) and contextual information to prompt the NMDS to monitor for one or more related communication sessions associated with the object of the suspicious email and conduct a malware analysis of the communications exchanged during the communication sessions.


The EMDS provides the NMDS with a suspicious object identifier, the identifier associated with a suspicious object as detected by the EMDS. The EMDS may provide the suspicious object identifier to the NMDS directly by sending a communication to the NMDS via a network link. The NMDS seek to detect any inbound traffic containing the identifier and will schedule any object contained in the detected inbound traffic for analysis. Inbound communications are network communications directed from entities (e.g. a web server or computing device) located on the public network 110 to computing devices located within the private network 120. Similarly, outbound communications are network communications directed towards the public network 110 from computing devices located within the private network 120.


Alternatively, or in addition, the EMDS may provide the suspicious object identifier to the NMDS indirectly by modifying the suspicious object (e.g., a URL contained in the email) so as to append the identifier before the suspicious object is delivered to the intended recipient of the email. When the email is delivered to the intended recipient, the recipient may elect to activate the suspicious object, e.g., by clicking on the on-screen display of the URL. When the suspicious object associated with the identifier is activated by the intended recipient, the NMDS will detect outbound traffic containing the identifier and seek to discover (“hunt”) any inbound traffic responsive to that detected outbound traffic, e.g., exchanged during the same communication session as the outbound traffic. If so detected, the NMDS will schedule any object contained in the detected inbound traffic for analysis. Accordingly, by communicating, directly or indirectly the EMDS coordinates its detection capabilities with the NMDS. After the email is received by the designated recipient (e.g., as identified by a destination address set out in the email's header) and the email opened by the recipient an object within the email may be activated by the recipient (e.g., by “clicking” on a URL, or otherwise seeking to download web content (e.g., webpages) using the recipient's browser. The recipient may activate the object in the email by viewing the email or browsing content contained in the email. If the activated object initiates a communication session over the enterprise network protected by an NMDS associating the object with a suspicious email as identified by the EMDS, the NMDS may assign a higher priority to the analysis of content received during the communication session. The higher priority for analysis in the NMDS may be reflected in a scheduler modifying an analysis queue, effectively reducing the priority of other objects for analysis. The higher priority is granted to suspicious objects first identified by the EMDS because the combined email and network attack represents a higher probability of maliciousness.


The NMDS may retrieve the features associated with the activated object from the EMDS to be used by the NMDS as additional context in the analysis of the network content received during the communication session. The NMDS may use static and/or dynamic analysis modules to analyze received network content for features. The features associated with suspicious email (identified by the EMDS) and the features identified by the NMDS analyzing the network content in response to the designated recipient activating the suspicious email are provided to a classification engine, which may incorporate a correlation and classification logic, to determine if the content is malicious. In some embodiments the correlation logic may be implemented in a separate correlation engine, the correlation engine receiving features from the analysis engines (e.g., a static analysis engine and/or a dynamic analysis engine, etc.) and generating a correlation with the features of labelled objects. The labelled objects are objects classified and confirmed as benign or malicious. The correlations may be used to generate a maliciousness score. The scores generated by the correlation engine are provided to the classification module for a decision as to classification of the object as benign or malicious. The classification module may combine scores associated with one or more features to determine if the object is malicious. The classification module bases its decision on a comparison of the scores or combined scores with a malicious threshold. In some embodiments the score associated with the object must exceed a fixed maliciousness threshold. In further embodiments the threshold for maliciousness may be dynamically based on context information developed by the NMDS and/or provided by the EMDS (e.g., a lower threshold may be used when a prevailing threat against the enterprise exists). If the classification module determines the object is malicious, the NMDS may issue an alert to an administrator and/or to a centralized management system for further distribution.


The enhanced malware detection system described herein coordinates the detection of malicious objects employed in a cyber-attack across attack vectors by combining analysis results from different attack phases. In this way, a cyber-attack involving a plurality of intrusions into an enterprise network can be detected and penetrations by malicious objects prevented or at least more quickly remediated and resulting damage mitigated.


Terminology

Logic may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic link library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory (computer-readable) storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.


A network communication session is semi-permanent interactive information interchange between two or more communicating devices (e.g., an endpoint and network connected server communicating via network interfaces connected through network links). An established network communication session may involve more than one message in each direction. A network communication session is typically, stateful, meaning that at least one of the communicating parts needs to save information about the session history in order to be able to communicate, as opposed to stateless communication, where the communication includes independent requests with responses.


The term “processing” may include execution of a binary or launching an application wherein launching should be interpreted as placing the application in an open state and, in some implementations, performing simulations of actions typical of human interactions with the application. For example, an internet browsing application may be processed such that the application is opened and actions such as visiting a website, scrolling the website page, and activating a link from the website are performed (e.g., the performance of simulated human interactions).


The term “network device” should be construed as any electronic device with the capability of processing data and connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, standalone appliance, a router or other intermediary communication device, firewall, IPS, etc. A network device may also include a network traffic sensor located within a network, communicatively coupled to a remote computing node, each operating on hardware, typically employing firmware and/or executable software to perform malware analysis.


The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be categorized or typed for purposes of analysis. During analysis, for example, the object may exhibit a set of expected and/or unexpected characteristics and, during processing, a set of expected and/or unexpected behaviors, which may evidence the presence of malware and potentially allow the object to be categorized or typed as malware. In one embodiment, an object may include a binary file that may be executed within a virtual machine. Herein, the terms “binary file” and “binary” will be used interchangeably.


“Features” may include characteristics, where characteristics include information about the object ascertained based on an inspection of the object, which does not require execution or other processing of the object. Characteristics may include meta-information associated with the object, anomalous formatting or structuring of the object. Features may also include behaviors, where behaviors include information about the object and its activities during its execution or processing. Behaviors may include, but are not limited to, attempted outbound communications initiated by the object over a network connection or with other processes, patterns of activity or inactivity, and/or attempts to access system resources.


The term “malicious” may represent a probability (or level of confidence) that the object is associated with a malicious attack or exploit of a known vulnerability. For instance, the probability may be based, at least in part, on (i) pattern matches; (ii) analyzed deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.) and/or proprietary document specifications (e.g., Adobe PDF document specification); (iii) analyzed compliance with certain message formats established for the protocol (e.g., out-of-order commands); (iv) analyzed header or payload parameters to determine compliance, (v) attempts to communicate with external servers during processing in one or more VMs, (vi) attempts to access, without the appropriate permissions, memory allocated for the application during processing, (vii) patterns of activity or inactivity, (viii) generation of additional files or executable binaries, (ix) generation of forms to collect sensitive user data (e.g. passwords, credit card information, etc.), and/or (x) other factors that may evidence unwanted or malicious activity.


The term “identifier” (or “signature”) designates a set of characteristics and/or behaviors exhibited by one or more malware, which may or may not be unique to the malware. Thus, a match of the signature may indicate to some level of probability that an object constitutes malware. In some contexts, those of skill in the art have used the term “signature” as a unique identifier or “fingerprint.” For example, a specific malware or malware family, may be represented by an identifier which is generated, for instance, as a hash of its machine code (executable program code), and that is a special sub-case for purposes of this disclosure.


The term “processing” may include execution of a binary, “just in time” compiling and execution of a script, or launching an application to open a document or take other action with respect to an object, wherein launching should be interpreted as placing the application in an open state and, in some implementations, performing simulations of actions typical of human interactions with the application. For example, the application, an internet browsing application (browser), may be processed such that the application is opened and actions such as visiting a website, scrolling the website page, and activating a link from the website are performed (e.g., often involving human interactions).


Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


Coordinated Malware Detection System



FIG. 1 is an exemplary block diagram of an exemplary architecture for a coordinated malware detection system 100 including an email malware detection system 140 and a network malware detection system 150. Each of the components of the coordinated malware detection system 100 may be implemented as one or more computer programs, modules, or sub-routines executable by one or more processors and stored in memory.


The coordinated malware detection system 100 includes at least an email malware detection system (EMDS) 140 and a network malware detection system (NMDS) 150 connected via network links 130. The EMDS and NMDS may be connected within a private (e.g., enterprise) network 120 or connected through a public network 110. In some embodiments, the EMDS 140 is located within the private network 120, connected to the NMDS 150 via the network links 130, while the private network is connected to the public network 110. The coordinated malware detection system 100 receives electronic messages via the public network 110 at the EMDS 140. The NMDS 150 may be located within the enterprise network, at a network ingress/egress point (the network periphery) and/or may be remotely located and connected to protect the enterprise network, however, for ease, the NMDS is described as located within the enterprise network.


The EMDS 140 receives electronic messages (“email”) via a communication interface 305 connected through network links 130 to the public network 110. The EMDS contains at least a static analysis logic 141 comprising an identifier scanner 142 and a heuristics engine 144, as well as a feature extractor 146, and a reporting engine 148. Email may be received by the EMDS according to one or more protocols (e.g. POP3, SMTP, etc.) and analyzed as an object. The EMDS is configured to analyze the object directed to the email's designated recipient 190 of the private network 120 to determine if the object is malicious and/or may be associated with maliciousness. The EMDS may be configured to intercept objects directed to the designated recipients, and upon determination of non-maliciousness direct the object to the designated recipient as an email. Alternatively, the EMDS may analyze a copy of the object directed to a designated recipient on the private network and allow the original copy of the object (the email) to be directed to the designated recipient without a determination of maliciousness. The EMDS may utilize various modules to determine the maliciousness of the object, including the identifier scanner 142, the heuristics engine 144 of the static analysis logic 141 and the feature extractor 146.


The feature extractor 146 is configured to extract certain data from the object so as to classify the object as suspicious, malicious, or benign using heuristic rules applied to the object. The feature extractor may extract URLs from the body of emails to be analyzed by the EMDS, thereby creating additional objects for analysis by the identifier scanner 142 and heuristics engine 144. In some embodiments, the feature extractor 146 may extract characteristics (features) associated with each object, for example, characteristics related to header parameters, payload parameters, compliance with message formats established by defined protocols. Features of objects extracted by the feature extractor 146 may be analyzed by the static analysis logic to determine if they contain the hallmarks of maliciousness.


The static analysis logic 141 may comprise an identifier scanner 142 which receives features associated with each object and compares it with one or more unique identifiers (e.g., signatures) associated with a determination of suspiciousness. The determination of suspiciousness may include a classification of “benign” or not associated with maliciousness, “malicious” or identified to bear the hallmarks of maliciousness, and “suspicious” or bearing non-definitive hallmarks of maliciousness. In some embodiments, this labelling of features associated with maliciousness may be reflected in a maliciousness score. The maliciousness score may, for example, be expressed as a probability associated with maliciousness (e.g. score of 0 associated with benign features, and a score of 100 associated with malicious features). In some embodiments, the identifier scanner 142 may be configured with a whitelist (identifiers determined to be benign), a blacklist (identifiers determined to be malicious), and a graylist (identifiers that are sometimes (not definitively) indicative of maliciousness and thus associated suspicious). The comparison of labelled identifiers, by the identifier scanner 142, from a store of identifiers (not shown) may be compared with an identifier generated from a hash of its machine code or other characteristics or content of the object or email. The identifier scanner 142 may receive and store additional identifiers from the identifier generator 182 of the NMDS 150, updating the detection capabilities of the identifier scanner with identifiers the NMDS determined are malicious or benign. In some embodiments, if the object is deemed suspicious and/or cannot be determined to be either benign or malicious the EMDS may continue processing the object using the heuristics engine 144 of the static analysis logic 141.


The heuristics engine 144 associates characteristics of the objects, such as formatting or patterns of the content, and uses such characteristics to determine a probability of maliciousness. The heuristics engine 144 applies heuristics and/or probability analysis to determine if the objects might contain or constitute malware. Heuristics engine 144 is adapted for analysis of an object to determine whether it corresponds, for example, to any of the following: (i) a “suspicious” identifier, such as either a particular Uniform Resource Locator (“URL”) that has previously been determined as being associated with known malware, a particular source (IP or MAC) address related to the object that has previously been determined as being associated with known malware; or (ii) a particular malware pattern. A match of an identifier may indicate, to some level of probability, often well less than 100%, that an object is malicious. The identifiers may represent identified characteristics (features) of the potential malware. The heuristics engine 144 may create an identifier associated with one or more characteristics of the object generating a hash of the characteristics. The heuristics engine 144 may include scoring logic to correlate one or more characteristics of potential malware with a score of maliciousness, the score indicating the level of suspiciousness and/or maliciousness of the object. In one embodiment, when the score is above a first threshold, the heuristics engine 144 may generate an alert that the object is malicious to be reported by the reporting engine 148.


The EMDS may coordinate with other malware detection systems via a coordination engine 147. The coordination engine 147 may receive and/or generate a suspicious object identifier and meta-information associated with the suspicious object (identified by the suspicious object identifier) from the static analysis logic 141 and/or the feature extractor 146, respectively. In some embodiments, the suspicious object identifier may comprise a static string to be embedded in the suspicious object and in other embodiments the suspicious object identifier may comprise a characteristic of the object itself. The coordination engine of the EMDS may provide the received information and suspicious object identifier to a coordinated monitoring logic 155 of the NMDS 150 via a set of communication interfaces 305 coupled via the network links 130 (represented in FIG. 1 as a dedicated link 135). The communication between the EMDS and NMDS may, in one embodiment, be conducted through a network or through a dedicated link used only for the purpose of coordination between the two systems, via respective communication interfaces 305. The coordination engine may also receive, from the coordinated monitoring logic 155, a determination of maliciousness resulting from further analysis by the NMDS 150. Other additional information, such as features extracted by the feature extractor 146, may optionally be provided to the classification engine 180 of the NMDS 150 via the coordination engine 147 of the EMDS to be combined with features extracted by the static analysis logic 160 and/or dynamic analysis logic 170 of the NMDS to classify the object as malicious or benign. For example, the coordination engine 147 may communicate with a NMDS 150, the likelihood of maliciousness (e.g. a maliciousness score) of the processed object, the maliciousness score combined with the results of the NMDS dynamic analysis and the classification engine 180 determining maliciousness of the object.


The reporting engine 148 is adapted to receive information from the identifier scanner 142, static analysis logic 141 and optionally the feature extractor 146, and subsequently generate alerts related to malware that are sent to a network administrator, and/or expert network analyst when a malicious and/or suspicious object is detected during analysis of a received email by the EMDS, etc.


The EMDS 140 may alter delivery of an analyzed email to the indicated recipient (e.g., indicated in the “To:” field of the email header) in response to the analysis results. If the EMDS 140 determines an email is malicious through analysis of the email itself and/or one or more objects contained within the email, the EMDS may quarantine or otherwise prevent delivery of the email to the intended recipient and/or generate and issue an alert by the reporting engine 148 to a network administrator. In some embodiments, if the EMDS 140 determines an email is suspicious through analysis of the email itself or one or more objects contained within the email, the EMDS may modify one or more suspicious objects contained within the email before the email is delivered to the intended recipient. For example, a URL contained within an email is analyzed by the EMDS as an object and determined to be suspicious, it may be modified to contain a “suspicious object” identifier (i.e., the URL may be modified to indicate to a recipient (and others) and an NMDS that the URL is suspicious) before the email is delivered to an email's designated recipient at an endpoint 190. Some embodiments may also add a displayable (human readable) warning to the recipient of the suspiciousness of the embedded URL.


The NMDS 150 may, in some embodiments, be located within and operable to protect an enterprise private network 120 by monitoring the network traffic carried by the enterprise network 120. In some embodiments the NMDS may act as an intermediary device between a public network 110 and one or more endpoints 190 while in alternative embodiments the NMDS may act as a network “tap” and obtain a copy of network traffic as it transits across the enterprise network. In other embodiments the NMDS may be remotely located and operable to analyze network traffic and/or objects contained within the network traffic provided by network monitor), (e.g., as embodied in a firewall, IPS, network sensor, or network traffic device etc.) located within the enterprise network. As used herein, the NMDS may be embodied as an appliance embodied as any type of general-purpose or special-purpose computer, including a dedicated computing device, adapted to implement a variety of software architectures relating to exploit and malware detection and related functionality. The term “appliance” should therefore be taken broadly to include such arrangements, in addition to any systems or subsystems configured to support such functionality, whether implemented in one or more network computing devices or other electronic devices, equipment, systems or subsystems. Alternatively, one or more aspects of the NMDS may be embodied in as a virtualized application instance executed by a processor of a network device operable within the private network 120 or accessible via an on-premises cloud.


The NMDS 150 includes a coordinated monitoring logic 155, a static analysis logic 160 comprising at least an identifier engine 164, and a heuristics engine 166, a dynamic analysis logic 170 comprising at least a scheduler 172, one or more virtual machine(s) 174, a feature logic 176, as well as a classifying engine 180 and a reporting engine 184. The malware analysis may involve static, dynamic and/or an optional emulation analysis, as generally described in U.S. Pat. No. 9,223,972, the entire contents of which are incorporated herein by reference.


The NMDS 150 interoperates with the EMDS 140, the interoperation resulting from the cooperation of the EMDS coordination engine 147 and the NMDS coordinated monitoring logic 155. The coordinated monitoring logic 155 identifies network communication sessions associated with a suspicious object identifier, the suspicious object identifier generated by coordination engine 147 and provided to the coordinated monitoring logic. If the coordinated monitoring logic 155 detects a suspicious object, the object and associated content is scheduled by the scheduler 172 for analysis by the dynamic analysis logic 170. In some embodiments, the suspicious object may be extracted from the monitored network traffic, while in other embodiments the suspicious object may be stored in the EMDS and later retrieved from a suspicious object store for analysis in the NMDS when the NMDS detects network communication sessions associated with the suspicious object identifier. In some embodiments, the NMDS monitors the network traffic between the private network 120 and another network, e.g., the public network 110, via the communication interface 305 of the NMDS for traffic associated with the suspicious object identifier. The coordinated monitoring logic 155 coordinates suspicious object identifiers and their respective features between the EMDS 140 and the NMDS 150. The coordinated monitoring logic 155 may store suspicious object identifiers received from the EMDS 140 via the coordination engine 147 in a coordination store 316. The coordinated monitoring logic may update the coordination store 316 based on additional analysis conducted by the static analysis logic 160 and/or the dynamic analysis logic 170 of the NMDS 150. The coordinated monitoring logic operates by analyzing received objects within network traffic by the communication interface 305 and if associated with a received suspicious object identifier submits each object to the scheduler 172 for further analysis by the dynamic analysis logic 170. In some embodiments, the coordinated monitoring logic 155 determines network traffic is associated with a suspicious object identified by the EMDS 140 by examining network requests originating within the private network to determine if it contains a modified URL pattern (i.e. an HTTP request originating within the private network 120, directed to the public network 110 monitored by the coordinated monitoring logic of the NMDS). In some other embodiments, the coordinate monitoring logic may receive an object containing a static suspicious object identifier (e.g. string in a URL, etc.) indicating to the NMDS that the object is suspicious, further requiring the NMDS to modify the object to its original form (such that object will function as the author intended). For example, if the URL had been modified by the EMDS 140, the coordinated monitoring logic 155 receives the modified URL pattern and reverses the modification of the URL, and reissues the network request with the original URL. In still further embodiments the coordinated monitoring logic 155 receives an identifier associated with the suspicious object via the EMDS coordination engine 147 issuing a signal to the coordinated monitoring logic and stored in the coordination store 316. The coordinated monitoring logic 155 analyzes monitored network traffic to determine if the traffic is associated with an identifier stored in the coordination store 316. The network traffic related to this network request is monitored and objects extracted for further analysis by the NMDS 150 using the static analysis logic 160 and the dynamic analysis logic 170. If the coordinated monitoring logic 155 detects network traffic associated with a suspicious object identifier, the coordinated monitoring logic 155 communicates to the scheduler 172 to schedule the detected network traffic for analysis. In some embodiments the scheduler prioritizes the analysis of the NMDS detected suspicious objects.


The static analysis logic 160 of the NMDS 150 may receive network traffic from which objects, as well as related meta-information, may be extracted and analyzed for maliciousness. In some embodiments suspicious objects may be received by the static analysis logic 160 for analysis from the coordinated monitoring logic 155. In other embodiments the static analysis logic 160 may receive monitored network traffic, via the communication interface 305, from which objects must be extracted for analysis. The static analysis logic 160 may provide the objects to the identifier engine 164 to identify if the objects match known identifiers of malware. The identifier engine 164 may incorporate, in memory (not separately shown), a database of known malware identifiers. The database of known malware identifiers may be updated by receiving through the public network 110 or the private network 120, via network interconnects 130, new identifiers of malware.


The heuristics engine 166 analyzes characteristics of objects in the monitored network traffic, such as formatting or patterns of their content, and uses such characteristics to determine a probability of maliciousness. The heuristics engine 166 applies heuristics and/or probability analysis to determine if the objects might contain or constitute malware. The heuristics engine 166 is adapted for analysis of objects to determine whether it corresponds to malware to a level of confidence, based on one or more of the following: (i) a “suspicious” identifier such as either a particular Uniform Resource Locator “URL” that has previously been determined as being associated with known malware, or a particular source or destination (IP or MAC) address that has previously been determined as being associated with known malware; (ii a particular pattern contained in the object that is associated with malware, or (iii) non-compliance with at least one rule, which non-compliance is associated with malware based on experiential knowledge and machine learning with respect to previously analyzed malware and benign samples. To illustrate, the heuristics engine 166 may be adapted to perform comparisons of an object under analysis against one or more pre-stored (e.g., pre-configured and/or predetermined) attack patterns stored in memory (not shown). The heuristics engine 166 may also be adapted to identify deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.) exhibited by the traffic packets containing the object, since these deviations are often characteristic of malware. A match of an identifier may indicate, to some level of probability, often well less than 100%, that an object constitutes malware. The identifiers may represent identified characteristics (features) of the potential malware. The heuristics engine 166 may include scoring logic to correlate one or more characteristics of potential malware with a score of maliciousness, the score indicating the level of suspiciousness and/or maliciousness of the object. In one embodiment, when the score is above a first threshold, the heuristics engine 166 may generate an alert that the object is malicious. When the score is greater than a second threshold but lower than the first threshold, the object may be provided to the static analysis logic and/or the dynamic analysis logic for further analysis. When the score is less than the second threshold, the threat detection system may determine no further analysis is needed (e.g., the object is benign).


If the coordinated monitoring logic 155 detects a suspicious object by associating the monitored network communications with the suspicious object identifier, the suspicious object is provided to the dynamic analysis logic 170, via the scheduler 172, for further analysis. The suspicious object detected by the coordinated monitoring logic is associated with an object determined by the EMDS to be suspicious. In some embodiments the scheduler 172 is responsible for provisioning and instantiating a virtual machine to execute the suspicious object at a scheduled time and/or order. In some embodiments, the coordinated monitoring logic 155 may provide the scheduler 172 with further information which may be used to associate an analysis priority with the suspicious object scheduled for analysis by the dynamic analysis logic 170. The coordinated monitoring logic 155 may associate a higher priority to suspicious objects associated with objects deemed suspicious by the EMDS 140 and otherwise a lower priority. In some embodiments, the heuristics module 166 transmits the meta-information identifying a destination device to the scheduler 172, which may be used to provision a virtual machine with appropriate software.


Processing of a suspicious object may occur within one or more virtual machine(s), which may be provisioned by the scheduler 172 with one or more software profiles. The software profile may be configured in response to configuration information provided by the scheduler 172, information extracted from the meta-information associated with the object, and/or a default analysis software profile. Each software profile may include an operating system (OS), one or more applications, and possibly other components appropriate for execution of the object. In some cases, the software profile includes those software components necessary for processing the object, as installed at or of the same type or brand as those installed at the destination endpoint. A virtual machine is executable software that is configured to mimic the performance of a device (e.g., the destination device). Each of the one or more virtual machine(s) 174 may further include one or more monitors (not separately shown), namely software components that are configured to observe, capture and report information regarding run-time behavior of an object under analysis during processing within the virtual machine. In other embodiments, the monitors may be located outside the virtual machines and operable to capture and report information regarding the virtual machine run-time behavior. The observed and captured run-time behavior information as well as effects on the virtual machine, otherwise known as features, along with related meta-information may be provided to a feature logic 176.


The feature logic 176 may correlate one or more characteristics and monitored behaviors (features) with a weight of maliciousness. The weight of maliciousness reflects experiential knowledge and machine learning of the respective features (characteristics or monitored behaviors) with those of known malware and benign objects. To illustrate, during processing, the dynamic analysis logic 170 may monitor for several behaviors of an object processed in the one or more virtual machine(s) 174, where, during processing, the object may, for example, execute a program that identifies personally identifiable data (e.g. login information), generate and encrypt the data in a new file, and send the encrypted data via a network connection to a remote server (exfiltrates the data). Each individual event may generate an independent score, weighted by the feature logic 176, the weight based on experiential knowledge as to the maliciousness of each associated event. The individual scores or a combined score may be provided to the classifying engine 180. Alternatively, in some embodiments, the generation of a combined score may be performed by the classifying engine 180, or the feature logic 176 and classifying engine 180 may be combined into a single engine.


The classifying engine 180 may be configured to classify a suspicious object based on the features detected by the static analysis logic 141 of the EMDS 140 and the behaviors (expected and unexpected/anomalous) monitored by the dynamic analysis logic 170 of the NMDS and/or characteristics identified by the static analysis logic 160 of the NMDS. In some embodiments, the classifying engine 180 may use only the correlation information provided by the feature logic 176. That is, a determination of maliciousness of the object may be rendered by correlating the monitored behaviors against behaviors of known malware without regard to results of the static analysis logic 160 or the analysis results of the EMDS 140. The classification engine may also receive meta-information originated by the EMDS 140 and associated with the suspicious object or its associated email to be combined with the behavioral information monitored by the dynamic analysis logic 170 to generate the classification by the classification engine 180. Analysis results from the static analysis conducted by the static analysis logic 160 may also be used in the correlation and classification, e.g., by being combined with the results of the dynamic analysis and analysis of the email by the EMDS 140 to yield a combined score. A classification of “maliciousness” may be reported to a network and/or security analyst by the reporting engine 184 issuing an alert.


In an embodiment, the classifying engine 180 may be configured to use the scoring information provided by feature logic 176 (and, in some embodiments, provided by the EMDS with respect to the associated email) to classify the suspicious object as malicious, suspicious, or benign. In one embodiment, when the score is above a first threshold, the reporting engine may generate and issue an alert that the object is malicious. When the score is greater than a second threshold but lower than the first threshold, the object remains suspicious and the object may be provided to a network security analyst or an advanced malware analysis engine for further analysis. When the score is less than the second threshold, the classifying engine 180 may determine no further analysis is needed (e.g., the object is benign). The threshold of maliciousness may be fixed, modified by as security administrator, and/or modified based on network conditions (for example, if a network is experiencing anomalous network conditions, if other clients of a similar type are under confirmed attack, etc.). Having classified the suspicious object, as analyzed by the NMDS in response to submission for scheduling by the coordinate monitoring logic, as “benign” or “malicious”, the classifying engine 180 may provide the object to an identifier generator 182 to generate identifiers associated with the classified object for use by the coordinated monitoring logic 155 and identifier engine 164 of the NMDS 150 and the identifier scanner 142 of the EMDS 140. The identifier scanner 142 may receive newly generated identifiers associated with malicious objects (malware) from the NMDS 150 via the communicatively coupled communication interfaces 305 in the NMDS 150 and EMDS 140. In some embodiments, the identifiers generated by the identifier generator 182 may be “fingerprint” type signatures, formed as a hash of the object. Alternatively, or in addition, the identifiers may include observed features, including characteristics and behaviors. The identifiers thus generated may be provided to the identifier scanner 142 of the email malware detection system 140 via signaling over the network links 130 and the communication interface 305. The identifier generator 182 may alternatively bypass the generation of an identifier if the classifying engine determines that the analyzed object is not malicious.


If the NMDS 150 classifies the object as malicious based on a static analysis results and/or dynamic analysis results, the reporting engine 184 may signal to a network or security administrator for action by an appropriate alert.



FIG. 2 is an example computerized method 200 for operating the coordinated malware detection system. The term “computerized” generally represents that operations are conducted by hardware in combination with executable software and/or firmware. The procedure 200 starts at step 205 and proceeds to step 210 where an email malware detection system 140 receives network traffic directed to an email's designated recipient on an endpoint 190 within the private network 120. In some embodiments, the email malware detection system (EMDS) 140 may be located outside the private network 120 however, accessible to the endpoint 190 via the public network 110. The endpoint 190 may comprise an application for viewing and/or accessing an email using resources associated with the private network 120 (e.g., an email application running on a desktop or laptop computer connected to the private network, a browser-based email application used for accessing email while connected to the private network 120 through the public network 110, etc.).


At step 215 the EMDS 140 analyzes the received email, as an object, using an identifier scanner 142 to determine if the object (including, but not limited to, URLs) has previously been classified as malicious or benign, as well as processing by a feature extractor 146 and heuristics engine 144 to determine if features (characteristics of maliciousness extracted from the object corresponding to the email) of the objects (including the email) bear the hallmarks of suspiciousness. In some embodiments, an optional step 217 may be implemented, wherein objects analyzed in step 215 are further examined to determine if there are sub-objects. If a sub-object, as described above, is identified by step 217, the procedure returns to step 215 for feature extraction by the feature extractor 146 of EMDS 140. The sub-objects are extracted from objects recursively.


If an object is matched with a corresponding identifier by the identifier scanner 142 (previously described), the object may be determined to not be suspicious in step 220 (if the object's corresponding identifier has been classified as malicious or benign). If the identifier scanner 142 does not identify the object as benign or malicious, the processing of the object may continue by the feature extractor 146 cooperating with the heuristics engine 144. In some embodiments the feature extractor 146 may analyze an object and extract meta-information and/or content of the object that may be relevant to determining if the content is suspicious and/or malicious (i.e. characteristics or features). The features extracted from an object are processed by the heuristics engine 144 (as described above) to determine if the object is benign, suspicious, or malicious. In some embodiments, if the object cannot be classified as benign or malicious, the object will be determined to be suspicious. If an object is found to be suspicious by step 220, analysis will continue through step 225, otherwise processing will end at step 260.


In step 225, the EMDS 140, having determined the object to be suspicious, causes the coordination engine 147 to send a suspicious object identifier to the NMDS 150. The suspicious object identifier may be generated by the coordination engine 147 and provided via the communication link 135 to the coordinated monitoring logic 155 of the NMDS.


In some embodiments, the coordination engine 147 modifies the suspicious object (e.g., the URL of the email) to append the suspicious object identifier. The communication interface 305 of the EMDS 140 delivers the email with the modified suspicious object to the designated recipient. If the recipient activates the modified suspicious object (e.g., by clicking” on the on-screen display of the URL), the suspicious object associated with the identifier is activated, and the NMDS will detect the ensuing outbound traffic containing the identifier (e.g., requesting download of a webpage associated with the URL). The coordinated monitoring logic 155 of NMDS will seek to discover (“hunt”) any inbound traffic (e.g., the webpage) responsive to that detected outbound traffic, e.g., exchanged during the same communication session as the outbound traffic. If so detected, the NMDS will schedule any object contained in the detected inbound traffic (e.g., a JavaScript) for analysis.


For example, an EMDS may identify a URL in an email as suspicious, and accordingly, before the email is provided to the intended recipient, the EMDS may flag the suspicious object (i.e., suspicious URL) by appending a suspicious object identifier, for example, “SOI-20160101” (so as to generate a modified suspicious URL of http://suspiciousdomain.com/index.html?t=SOI-20160101). When the modified suspicious object is activated by the designated recipient 190, initiating a network communication session, the NMDS's coordinated monitoring logic 155 identifies that network communication session which is associated with (e.g., contains) the suspicious object identifier “SOI-20160101” and provides any object extracted from the inbound traffic of the communication session to the scheduler 172 for the initiation of dynamic analysis. In some embodiments, if the coordinated monitoring logic 155 identifies network communications associated with the suspicious object identifier, the coordinated monitoring logic 155 may retrieve the original suspicious object (as detected by the EMDS) from a remote object store (not shown) for use in behavioral analysis of the extracted object since some advanced malware may only exhibit malicious behavior in the presence of the original object.


In another embodiment, the EMDS's coordination engine 147 may directly provide the NMDS's coordinated monitoring logic 155 with a suspicious object identifier. The NMDS may use the identifier to discover (hunt) any inbound traffic or outbound traffic associated with (e.g., containing) the identifier. In such an embodiment, the NMDS monitors network traffic exchanged between the private network 120 and the public network 110 for any communications associated with (e.g., containing) the identifier, and captures those communications for further analysis by the NMDS. For this, the NMDS's coordinated monitoring logic 155 provides those captured communications as a flow (i.e., group of related packets) or at least one or more objects extracted from the captured communications to dynamic analysis logic 170 for scheduling by the scheduler 172 of behavioral analysis.


For example, if an email containing a suspicious object (e.g., such as a macro where a macro is an instruction that expands into a set of instructions to perform a particular task and are most commonly written in a scripting language, with direct access to the features of the underlying application or system) is identified by the EMDS, the coordination engine 147 may communicate a suspicious object identifier associated with the macro contained in the email to the coordinated monitoring logic 155 of the NMDS. When a recipient of the email activates the suspicious object (e.g., by opening the macro), the activation may initiate a communication session with an external entity (e.g., a web server located in the public network responsive to communications from the suspicious network object). The coordinated monitoring logic 155 monitors that communication session to hunt for and capture an object in any inbound communication included in that session. For example, the NMDS may detect the network connection associated with the suspicious object (e.g., URL or macro) by examining meta-information associated with the communication (e.g. HTTP 301 “Moved Permanently”), and extract any object contained in inbound communication in that session. The coordinated monitoring logic provides the scheduler with the communication meta-information and object (both associated with the suspicious object identifier) for further analysis by the dynamic analysis logic 170.


In step 230, when the coordinated monitoring logic 155 identifies a network communication associated with the suspicious object identifier generated by the EMDS 140, it is scheduled for further analysis by the NMDS. The NMDS 150 may prioritize analysis, in the dynamic analysis logic 170, of objects associated with the suspicious object identifier by instructing the scheduler 172 to prioritize analysis of objects provided by the coordinated monitoring logic 155. For example, having received a suspicious object from the coordinated monitoring logic 155, the scheduler 172 may schedule objects associated with a suspicious object identifier generated by the EMDS before other objects. The analysis of the network traffic associated with the suspicious object, in step 235, is conducted by the dynamic analysis logic 170, and in some embodiments, the static analysis logic 160. The analysis of an object described in step 235 is conducted by the analysis logic and includes the detection of features (including characteristics identified by the static analysis logic 160 and behaviors monitored by dynamic analysis logic 170) associated with the object. The features detected by the analysis logic is combined in step 240.


In step 240, the features detected in step 245 by the analysis logic are received by the classifying engine 180. The classifying engine 180 may combine the features to generate a score associated with maliciousness (as described above). The score would be used to determine if the object analyzed is malicious in step 245. In some embodiments the features detected by the EMDS 140 and the NMDS 150 may be combined to determine if the object is malicious. In further embodiments, the score for each feature may be considered separately to determine if the object is malicious. In still further embodiments, the scores for related features may be combined to determine if the score of the combined features exceed a maliciousness threshold and determinative of maliciousness. If the classifying engine 180 determines the object is not malicious the method proceeds to step 260, where analysis ends. In some embodiments, if the classifying engine 180 determines that an object is not malicious, the meta-information associated with this determination (e.g., one or more scores, etc.) as well as the classification may be provided to the reporting engine 184 and alert issued to a network security administrator. Similarly, in step 255, if the classifying engine determines that the object is benign, the reporting engine 184 may issue an alert to the EMDS 140 and the identifier engine 164 of the NMDS 150 containing an identifier for the benign object to be stored in a “whitelist” (i.e. a predefined list of benign objects) for future object analyses. If, in step 245, the classifying engine 180 determines that the object is malicious, the method proceeds to step 245.


During step 250 the reporting engine 184 may issue an alert to the EMDS 140 and the identifier engine 164, of the NMDS 150, containing an identifier for the malicious object to be stored in a “blacklist” (i.e. a predefined list of malicious objects) for future object analyses. The NMDS 150 may also generate a separate identifier associated with the network traffic generated by the suspicious object, based on the features detected in step 235, to generate a network identifier associated with the malicious object. The network identifier may be provided by the reporting engine 184 to the identifier engine 164 to identify similarly malicious network traffic by the NMDS 150 in step 255.


The coordinated malware detection system 100, having initial identified a suspicious object received via an email by the EMDS 140, communicating an identifier to the NMDS 150 for network traffic monitoring, the NMDS analyzing network traffic associated with the suspicious object, and determining the maliciousness of that object and communicating the determination to the EMDS and NMDS identifier engine 164 for future blocking as well as to a security analyst. Once the maliciousness determination is reported by the reporting engine 184, the procedure ends at step 260.



FIG. 3A is an exemplary embodiment of a logical representation of the EMDS 140 of FIG. 1. The email malware detection system 140, in an embodiment may include a housing, which is made entirely or partially of a hardened material (e.g., hardened plastic, metal, glass, composite or any combination thereof) that protect circuitry within the housing, namely one or more processors 310 that are coupled to a communication interface 305 via a first transmission medium 307. The communication interface 305, in combination with a communication logic 320, enables communications with external network devices and/or other network appliances to receive updates for the email malware detection system 140. In some embodiments, a dedicated link 135 (shown in FIG. 1) communicatively couples the EMDS coordination engine 147 and the NMDS coordinated monitoring engine 155 to enable the interoperation of their respective detection capabilities. In other embodiments, the communicative link between the EMDS coordination engine and the NMDS coordinated monitoring engine is given effect via the private network via the communication interface 305. According to one embodiment of the disclosure, the communication interface 305 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, the communication interface 305 may be implemented with one or more radio units for supporting wireless communications with other electronic devices. The communication interface logic 320 may include logic for performing operations of receiving and transmitting one or more objects via the communication interface 305 to enable communication between the email malware detection system 140 and network devices via the a network (e.g., the internet) and/or cloud computing services.


The processor(s) 310 is further coupled to a persistent storage 315 via a second transmission medium 313. According to one embodiment of the disclosure, the persistent storage 315 may include, an identifier scanner 142, a heuristics engine 144, a feature extractor 146, and the communication interface logic 320. Of course, when implemented as hardware, one or more of these logic units could be implemented separately from each other or combined as appropriate.



FIG. 3B is an exemplary embodiment of a logical representation of the NMDS 150 of FIG. 1, (where like numbers used in FIG. 3A and FIG. 3B indicate like components). The NMDS 150, may also be embodied in a housing, as described above, to protect circuitry within the housing, namely one or more processors 310 that are coupled to a communication interface 305 via a first transmission medium 307. A communication interface 305 is coupled with one or more hardware processor(s) 310 and a persistent storage 315 via a first transmission medium 307 and a second transmission medium 313, respectively.


According to one embodiment of the disclosure, the persistent storage 315 may include, a coordinated monitoring logic 155, a static analysis logic 160, a dynamic analysis logic 170, a reporting engine 184, and the communication interface logic 320. The static analysis logic 160 may further include, in some embodiments an identifier engine 164, and/or a heuristics engine 166. Similarly, the dynamic analysis logic 170, in some embodiments, may further include a scheduler 172, one or more virtual machine(s) 174, and a feature logic 176. Of course, when implemented as hardware, one or more of these logic units could be implemented separately from each other or combined as appropriate.


In some embodiments, the static analysis logic of the EMDS may be, at least in part, implemented in an endpoint 190, such as personal computer, laptop or other network device. The endpoint static analysis logic may monitor electronic messages received via a dedicated application (e.g. an email client) or a browser based email client (e.g. monitoring may be achieved via a browser-plugin) and analyzed using an identifier scanner and/or heuristics engine to determine if objects contained within the received emails are suspicious. In an endpoint implementation, a coordination engine would be implemented to coordinate suspicious object identifiers with an NMDS.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computer-implemented method for detecting a cross-vector cyber-attack initiated via an email, the method comprising: receiving, by a network malware detection system (NMDS) from an email malware detection system (EMDS), (i) a suspicious object identifier associated with an object extracted from a suspicious email and (ii) one or more features of the object detected by the EMDS, the NMDS having at least one hardware processor;monitoring network traffic, by the NMDS, for communications associated with the suspicious object identifier, and extracting a suspicious network object from the communications;analyzing the suspicious network object by the NMDS to detect features of the suspicious network object;correlating, by the NMDS, the detected features of the suspicious network object with the one or more features detected by the EMDS in order to determine a classification of the object extracted from the suspicious email; andissuing, by a reporting engine, an alert to an administrator when the object extracted from the suspicious email is classified as malicious.
  • 2. The method of claim 1, wherein the correlating step combines features detected by a static analysis logic of the NMDS.
  • 3. The method of claim 1, wherein the suspicious object identifier is received by the NMDS from the EMDS via a network link.
  • 4. The method of claim 1, wherein the suspicious object identifier is incorporated into the object by the EMDS and the object is activated, wherein activating the object generates network traffic.
  • 5. The method of claim 1, wherein the correlating results in a determination of a maliciousness score for the object extracted from the suspicious email.
  • 6. The method of claim 5, wherein the maliciousness score is used in classifying the object extracted from the suspicious email as benign or malicious.
  • 7. The method of claim 1, wherein the correlating results in a determination of a maliciousness score for each of a plurality of features of the object extracted from the suspicious email.
  • 8. The method of claim 7, wherein the maliciousness score of two or more features of the plurality of features are combined to determine an overall maliciousness score for the object extracted from the suspicious email.
  • 9. The method of claim 1, wherein meta-information originated by the EMDS is utilized in a classification of the object extracted from the suspicious email.
  • 10. A non-transitory computer-readable medium deployed within a network malware detection system (NMDS) including contents that, when executed by a processor, are configured to cause a detection of a multi-vector cyber-attack by performing operations comprising: receive a suspicious object identifier and first features of a suspicious object, from an email malware detection system (EMDS) and monitor network communications to detect and extract one or more objects associated with the suspicious object identifier, wherein the EMDS analyzed a received email to detect the suspicious object and the first features of the suspicious object and associated the suspicious object identifier with the suspicious object;analyze the one or more extracted objects associated with the suspicious object identifier in a virtual machine within a dynamic analysis logic of the NMDS to detect second features of the one or more extracted objects associated with the suspicious object identifier that are associated with malware; andcorrelate the first features with the second features in order to determine a classification of the suspicious object by a classification engine of the NMDS.
  • 11. The non-transitory computer-readable medium of claim 10 wherein, the EMDS provides the suspicious object identifier to the NMDS through respective communication interfaces to monitor network communications.
  • 12. A system for detecting a cross-vector cyber-attack received via an email, the system comprising: an email malware detection system (EMDS), with one or more first hardware processors and logic adapted to analyze the email and detect a suspicious object and first features of the suspicious object, and in response, generate a suspicious object identifier; anda network malware detection system (NMDS), the NMDS including logic adapted to receive the suspicious object identifier and the first features, monitor traffic on a private network for traffic associated with the suspicious object identifier and extract and analyze a network object in the traffic by the NMDS analysis logic for second features of the network object that are associated with malware;wherein the NMDS comprises a classification engine to receive and correlate the first features and the second features in order to determine a classification of the suspicious object.
  • 13. The system of claim 12, wherein the EMDS further comprises a coordination engine to generate a suspicious object identifier for each suspicious object of the email.
  • 14. The system of claim 12, wherein the suspicious object identifier is added to the first object and activation of the first object initiates network traffic.
  • 15. The system of claim 12, wherein the NMDS generates a malicious object identifier in response to classifying the object as malicious and provides the malicious object identifier to the EMDS.
  • 16. A computer-implemented method for detecting a cross-vector cyber-attack initiated via an email, the method comprising: monitoring network traffic, by a network malware detection system (NMDS), for communications associated with the suspicious object identifier, and extracting a suspicious network object from the communications, wherein the suspicious object identifier corresponds to a suspicious object detected in the email received by an email malware detection system (EMDS) and is received by the NMDS with first features of the suspicious from the EMDS, wherein the EMDS includes at least a second hardware processor and analyzes the email to detect the first features;analyzing the suspicious network object by a dynamic analysis logic of the NMDS, the dynamic analysis logic configured to detect second features based on processing of suspicious network object in a virtual machine, the second features being of the suspicious network object;correlating the second features with the first features in order to determine, by a classification engine, a classification of the first object; andissuing, by reporting engine, an alert to an administrator when the first object is classified as malicious.
  • 17. The method of claim 16, wherein the classification engine receives and combines third features detected by a static analysis logic of the NMDS with the second features to correlate with known features of malware in order to determine a classification of the first object.
  • 18. The method of claim 16, wherein associating each object with a suspicious object identifier comprises, modifying the first object with the suspicious object identifier; anddelivering the email to the intended recipient with the modified first object.
  • 19. The method of claim 16, wherein the monitoring of the network traffic associated with the suspicious object identifier further comprises, detecting outbound network communications associated with the suspicious object identifier;indicating to a scheduler the first object has been activated and scheduling dynamic analysis of the first object within the virtual machine; andremoving the suspicious object identifier from the outbound network request and relaying the outbound network request to a designated destination.
  • 20. The method of claim 16, wherein the EMDS uses a heuristic or blacklist to determine whether the object is malicious.
  • 21. The method of claim 16, wherein the EMDS is communicatively coupled, via a public network, to the private network.
US Referenced Citations (721)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5319776 Hile et al. Jun 1994 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5802277 Cowlard Sep 1998 A
5842002 Schnurer et al. Nov 1998 A
5878560 Johnson Mar 1999 A
5960170 Chen et al. Sep 1999 A
5978917 Chi Nov 1999 A
5983348 Ji Nov 1999 A
6013455 Bandman et al. Jan 2000 A
6088803 Tso et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6154844 Touboul et al. Nov 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 Sorhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7058822 Edery et al. Jun 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7251215 Turner et al. Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7516488 Kienzle et al. Apr 2009 B1
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7546638 Anderson et al. Jun 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937387 Frazier et al. May 2011 B2
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566476 Shiffer et al. Oct 2013 B2
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793278 Frazier et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881271 Butler, II Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8949257 Shiffer et al. Feb 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106630 Frazier et al. Aug 2015 B2
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9268936 Butler Feb 2016 B2
9275229 LeMasters Mar 2016 B2
9282109 Aziz et al. Mar 2016 B1
9292686 Ismael et al. Mar 2016 B2
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9355247 Thioux et al. May 2016 B1
9356944 Aziz May 2016 B1
9363280 Rivlin et al. Jun 2016 B1
9367681 Ismael et al. Jun 2016 B1
9398028 Karandikar et al. Jul 2016 B1
9413781 Cunningham et al. Aug 2016 B2
9426071 Caldejon et al. Aug 2016 B1
9430646 Mushtaq et al. Aug 2016 B1
9432389 Khalid et al. Aug 2016 B1
9438613 Paithane et al. Sep 2016 B1
9438622 Staniford et al. Sep 2016 B1
9438623 Thioux et al. Sep 2016 B1
9459901 Jung et al. Oct 2016 B2
9467460 Otvagin et al. Oct 2016 B1
9483644 Paithane et al. Nov 2016 B1
9495180 Ismael Nov 2016 B2
9497213 Thompson et al. Nov 2016 B2
9507935 Ismael et al. Nov 2016 B2
9516057 Aziz Dec 2016 B2
9519782 Aziz et al. Dec 2016 B2
9536091 Paithane et al. Jan 2017 B2
9537972 Edwards et al. Jan 2017 B1
9560059 Islam Jan 2017 B1
9565202 Kindlund et al. Feb 2017 B1
9591015 Amin et al. Mar 2017 B1
9591020 Aziz Mar 2017 B1
9594904 Jain et al. Mar 2017 B1
9594905 Ismael et al. Mar 2017 B1
9594912 Thioux et al. Mar 2017 B1
9609007 Rivlin et al. Mar 2017 B1
9626509 Khalid et al. Apr 2017 B1
9628498 Aziz et al. Apr 2017 B1
9628507 Haq et al. Apr 2017 B2
9633134 Ross Apr 2017 B2
9635039 Islam et al. Apr 2017 B1
9641546 Manni et al. May 2017 B1
9654485 Neumann May 2017 B1
9661009 Karandikar et al. May 2017 B1
9661018 Aziz May 2017 B1
9674298 Edwards et al. Jun 2017 B1
9680862 Ismael et al. Jun 2017 B2
9690606 Ha et al. Jun 2017 B1
9690933 Singh et al. Jun 2017 B1
9690935 Shiffer et al. Jun 2017 B2
9690936 Malik et al. Jun 2017 B1
9736179 Ismael Aug 2017 B2
9740857 Ismael et al. Aug 2017 B2
9747446 Pidathala et al. Aug 2017 B1
9756074 Aziz et al. Sep 2017 B2
9773112 Rathor et al. Sep 2017 B1
9781144 Otvagin et al. Oct 2017 B1
9787700 Amin Oct 2017 B1
9787706 Otvagin et al. Oct 2017 B1
9792196 Ismael et al. Oct 2017 B1
9824209 Ismael et al. Nov 2017 B1
9824211 Wilson Nov 2017 B2
9824216 Khalid et al. Nov 2017 B1
9825976 Gomez et al. Nov 2017 B1
9825989 Mehra et al. Nov 2017 B1
9838408 Karandikar et al. Dec 2017 B1
9838411 Aziz Dec 2017 B1
9838416 Aziz Dec 2017 B1
9838417 Khalid et al. Dec 2017 B1
9846776 Paithane et al. Dec 2017 B1
9876701 Caldejon et al. Jan 2018 B1
9888016 Amin et al. Feb 2018 B1
9888019 Pidathala et al. Feb 2018 B1
9910988 Vincent et al. Mar 2018 B1
9912644 Cunningham Mar 2018 B2
9912681 Ismael et al. Mar 2018 B1
9912684 Aziz et al. Mar 2018 B1
9912691 Mesdaq et al. Mar 2018 B2
9912698 Thioux et al. Mar 2018 B1
9916440 Paithane et al. Mar 2018 B1
9921978 Chan et al. Mar 2018 B1
9934376 Ismael Apr 2018 B1
9934381 Kindlund et al. Apr 2018 B1
9946568 Ismael et al. Apr 2018 B1
9954890 Staniford et al. Apr 2018 B1
9973531 Thioux May 2018 B1
10002252 Ismael et al. Jun 2018 B2
10019338 Goradia et al. Jul 2018 B1
10019573 Silberman et al. Jul 2018 B2
10025691 Ismael et al. Jul 2018 B1
10025927 Khalid et al. Jul 2018 B1
10027689 Rathor et al. Jul 2018 B1
10027690 Aziz et al. Jul 2018 B2
10027696 Rivlin et al. Jul 2018 B1
10033747 Paithane et al. Jul 2018 B1
10033748 Cunningham et al. Jul 2018 B1
10033753 Islam et al. Jul 2018 B1
10033759 Kabra et al. Jul 2018 B1
10050998 Singh Aug 2018 B1
10068091 Aziz et al. Sep 2018 B1
10075455 Zafar et al. Sep 2018 B2
10083302 Paithane et al. Sep 2018 B1
10084813 Eyada Sep 2018 B2
10089461 Ha et al. Oct 2018 B1
10097573 Aziz Oct 2018 B1
10104102 Neumann Oct 2018 B1
10108446 Steinberg et al. Oct 2018 B1
10121000 Rivlin et al. Nov 2018 B1
10122746 Manni et al. Nov 2018 B1
10133863 Bu et al. Nov 2018 B2
10133866 Kumar et al. Nov 2018 B1
10146810 Shiffer et al. Dec 2018 B2
10148693 Singh et al. Dec 2018 B2
10165000 Aziz et al. Dec 2018 B1
10169585 Pilipenko et al. Jan 2019 B1
10176321 Abbasi et al. Jan 2019 B2
10181029 Ismael et al. Jan 2019 B1
10191861 Steinberg et al. Jan 2019 B1
10192052 Singh et al. Jan 2019 B1
10198574 Thioux et al. Feb 2019 B1
10200384 Mushtaq et al. Feb 2019 B1
10210329 Malik et al. Feb 2019 B1
10216927 Steinberg Feb 2019 B1
10218740 Mesdaq et al. Feb 2019 B1
10242185 Goradia Mar 2019 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020032717 Malan Mar 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030021728 Sharpe et al. Jan 2003 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040006473 Mills et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070019286 Kikuchi Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gable et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080018122 Zierler et al. Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222728 Chavez et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shifter et al. Aug 2009 A1
20090198670 Shifter et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100100718 Srinivasan Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110179487 Lee Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120096553 Srivastava et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140123279 Bishop May 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shifter et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140254379 Sampath Sep 2014 A1
20140280245 Wilson Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham et al. Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq et al. Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150199513 Ismael et al. Jul 2015 A1
20150199531 Ismael et al. Jul 2015 A1
20150199532 Ismael et al. Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150372980 Eyada Dec 2015 A1
20160004869 Ismael et al. Jan 2016 A1
20160006756 Ismael et al. Jan 2016 A1
20160044000 Cunningham Feb 2016 A1
20160127393 Aziz et al. May 2016 A1
20160191547 Zafar et al. Jun 2016 A1
20160191550 Ismael et al. Jun 2016 A1
20160261612 Mesdaq et al. Sep 2016 A1
20160269422 McDougal Sep 2016 A1
20160285914 Singh et al. Sep 2016 A1
20160301703 Aziz Oct 2016 A1
20160335110 Paithane et al. Nov 2016 A1
20170083703 Abbasi et al. Mar 2017 A1
20180013770 Ismael Jan 2018 A1
20180048660 Paithane et al. Feb 2018 A1
20180121316 Ismael et al. May 2018 A1
20180288077 Siddiqui et al. Oct 2018 A1
Foreign Referenced Citations (16)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
2003-256469 Sep 2003 JP
2004-240945 Aug 2004 JP
2005-056048 Mar 2005 JP
0206928 Jan 2002 WO
0223805 Mar 2002 WO
2007022454 Feb 2007 WO
2007-117636 Oct 2007 WO
2008041950 Apr 2008 WO
2008084259 Jul 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (80)
Entry
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub_--mining.pdf-.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
Anonymous, “Inside Adobe Reader Protected Mode—Part 1—Design”, Oct. 5, 2010, XP055116424, Retrieved from Internet: URL:http//blogs.adobe.com/security/2010/10/inside-adobe-reader-protected-- mode-part-1-design.html [retrieved on May 6, 2014].
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001).
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P. , “Zlib compressed data format specification version 3.3” RFC 1950, (1996).
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009).
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003).
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th Intemational Conference on Parallel and Distributed Systems, pp. 706-711.
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003).
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014].
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.-N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Rautiainen et al., “A look at Portable Document Format Vulnerabilities”, Information Security Technical Report, Elsevier Advanced Technology, Amsterdam, NL, vol. 14, No. 1, Feb. 1, 2009, pp. 30-33, XP026144094, ISSN: 1363-4127, DOI: 10.1016/J.ISTR.2009.04.001.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doom, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Appl. No. 13/089,191, filed Apr. 18, 2011 Non-Final Office Action dated Feb. 13, 2013.
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14.
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4.
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013).
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8.
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012).