Multi-voltage and multi-brightness LED lighting devices and methods of using same

Information

  • Patent Grant
  • 11297705
  • Patent Number
    11,297,705
  • Date Filed
    Monday, February 22, 2021
    3 years ago
  • Date Issued
    Tuesday, April 5, 2022
    2 years ago
Abstract
An LED lighting system is disclosed. The example LED lighting system includes a first LED circuit and a second LED circuit. The second LED circuit is configured to emit a different color light compared to the first LED circuit. The LED lighting system also includes a switch capable of at least one of switching a voltage level input to at least one of the first LED circuit or the second LED circuit, or switching the second LED circuit ‘on’ or ‘off’. The LED lighting system further includes an LED driver connected to an AC voltage power source. The LED driver is configured to provide a DC voltage output to at least one of the first LED circuit or the second LED circuit. The switch is electrically connected between the DC voltage output and at least one of the first LED circuit or the second LED circuit.
Description
TECHNICAL FIELD

The present invention generally relates to light emitting diodes (“LEDs”) for AC operation. The present invention specifically relates to multiple voltage level and multiple brightness level LED devices, packages and lamps.


FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

None.


BACKGROUND OF THE INVENTION
Field of the Invention

The present invention generally relates to light emitting diodes (“LEDs”) for multi-voltage level and/or multi-brightness level operation. The present invention specifically relates to multiple voltage level and multiple brightness level light emitting diode circuits, single chips, packages and lamps “devices” for direct AC voltage power source operation, bridge rectified AC voltage power source operation or constant DC voltage power source operation.


Description of the Related Art

LEDs are semiconductor devices that produce light when a current is supplied to them. LEDs are intrinsically DC devices that only pass current in one polarity and historically have been driven by DC voltage sources using resistors, current regulators and voltage regulators to limit the voltage and current delivered to the LED. Some LEDs have resistors built into the LED package providing a higher voltage LED typically driven with 5V DC or 12V DC.


With proper design considerations LEDs may be driven more efficiently with direct AC or rectified AC than with constant voltage or constant current DC drive schemes.


Some standard AC voltage in the world include 12 VAC, 24 VAC, 100 VAC, 110 VAC, 120 VAC, 220 VAC, 230 VAC, 240 VAC and 277 VAC. Therefore, it would be advantageous to have a single chip LED or multi-chip single LED packages that could be easily configured to operate at multiple voltages by simply selecting a voltage and/or current level when packaging the multi-voltage and/or multi-current single chip LEDs or by selecting a specific voltage and/or current level when integrating the LED package onto a printed circuit board or within a finished lighting product. It would also be advantageous to have multi-current LED chips and/or packages for LED lamp applications in order to provide a means of increasing brightness in LED lamps by switching in additional circuits just as additional filaments are switched in for standard incandescent lamps.


U.S. Pat. No. 7,525,248 discloses a chip-scale LED lamp including discrete LEDs capable of being built upon electrically insulative, electrically conductive, or electrically semi conductive substrates. Further, the construction of the LED lamp enables the lamp to be configured for high voltage AC or DC power operation. The LED based solid-state light emitting device or lamp is built upon an electrically insulating layer that has been formed onto a support surface of a substrate. Specifically, the insulating layer may be epitaxially grown onto the substrate, followed by an LED buildup of an n-type semiconductor layer, an optically active layer, and a p-type semiconductor layer, in succession. Isolated mesa structure of individual, discrete LEDs is formed by etching specific portions of the LED buildup down to the insulating layer, thereby forming trenches between adjacent LEDs. Thereafter, the individual LEDs are electrically coupled together through conductive elements or traces being deposited for connecting the n-type layer of one LED and the p-type layer of an adjacent LED, continuing across all of the LEDs to form the solid-state light emitting device. The device may therefore be formed as an integrated AC/DC light emitter with a positive and negative lead for supplied electrical power. For instance, the LED lamp may be configured for powering by high voltage DC power (e.g., 12V, 24V, etc.) or high voltage AC power (e.g., 110/120V, 220/240V, etc.).


U.S. Pat. No. 7,213,942 discloses a single-chip LED device through the use of integrated circuit technology, which can be used for standard high AC voltage (110 volts for North America, and 220 volts for Europe, Asia, etc.) operation. The single-chip AC LED device integrates many smaller LEDs, which are connected in series. The integration is done during the LED fabrication process and the final product is a single-chip device that can be plugged directly into house or building power outlets or directly screwed into incandescent lamp sockets that are powered by standard AC voltages. The series connected smaller LEDs are patterned by photolithography, etching (such as plasma dry etching), and metallization on a single chip. The electrical insulation between small LEDs within a single-chip is achieved by etching light emitting materials into the insulating substrate so that no light emitting material is present between small LEDs. The voltage crossing each one of the small LEDs is about the same as that in a conventional DC operating LED fabricated from the same type of material (e.g., about 3.5 volts for blue LEDs).


Accordingly, single chip LEDs have been limited and have not been integrated circuits beyond being fixed series or fixed parallel circuit configurations until the development of AC LEDs. The AC LEDs have still however been single circuit, fixed single voltage designs.


LED packages have historically not been integrated circuits beyond being fixed series or fixed parallel circuit configurations.


The art is deficient in that it does not provide a multi-voltage and/or multi-current circuit monolithically integrated on a single substrate which would be advantageous.


It would further be advantageous to have a multi-voltage and/or multi-brightness circuit that can provide options in voltage level, brightness level and/or AC or DC powering input power preference.


It would further be advantageous to provide multiple voltage level and/or multiple brightness level light emitting LED circuits, chips, packages and lamps “multi-voltage and/or multi-brightness LED devices” that can easily be electrically configured for at least two forward voltage drive levels with direct AC voltage coupling, bridge rectified AC voltage coupling or constant voltage DC power source coupling. This invention comprises circuits and devices that can be driven with more than one AC or DC forward voltage “multi-voltage” at 6V or greater based on a selectable desired operating voltage level that is achieved by electrically connecting the LED circuits in a series or parallel circuit configuration and/or more than one level of brightness “multi-brightness” based on a switching means that connects and/or disconnects at least one additional LED circuit to and/or from a first LED circuit. The desired operating voltage level and/or the desired brightness level electrical connection may be achieved and/or completed at the LED packaging level when the multi-voltage and/or multi-brightness circuits and/or single chips are integrated into the LED package, or the LED package may have external electrical contacts that match the integrated multi-voltage and/or multi-brightness circuits and/or single chips within, thus allowing the drive voltage level and/or the brightness level select-ability to be passed on through to the exterior of the LED package and allowing the voltage level or brightness level to be selected at the LED package user, or the PCB assembly facility, or the end product manufacturer.


It would further be advantageous to provide at least two integrated circuits having a forward voltage of at least 12 VAC or 12 VDC or greater on a single chip or within a single LED package that provide a means of selecting a forward voltage when packaging a multi-voltage and/or multi-brightness circuit using discrete die (one LED chip at a time) and wire bonding them into a circuit at the packaging level or when packaging one or more multi-voltage and/or multi-brightness level single chips within a LED package.


It would further be advantageous to provide multi-voltage and/or multi-brightness level devices that can provide electrical connection options for either AC or DC voltage operation at preset forward voltage levels of 6V or greater.


It would further be advantageous to provide multi-brightness LED devices that can be switched to different levels of brightness by simply switching additional circuits on or off in addition to a first operating circuit within a single chip and or LED package. This would allow LED lamps to switch to higher brightness levels just like 2-way or 3-way incandescent lamps do today.


The benefits of providing multi-voltage circuits of 6V or greater on a single chip is that an LED packager can use this single chip as a platform to offer more than one LED packaged product with a single chip that addresses multiple voltage levels for various end customer design requirements. This also increase production on a single product for the chip maker and improves inventory control. This also improves buying power and inventory control for the LED packager when using one chip.


The present invention provides for these advantages and solves the deficiencies in the art.


SUMMARY OF THE INVENTION

According to one aspect of the invention at least two single voltage AC LED circuits are formed on a single chip or on a substrate providing a multi-voltage AC LED device for direct AC power operation. Each single voltage AC LED circuit has at least two LEDs connected to each other in opposing parallel relation.


According to another aspect of the invention, each single voltage AC LED circuit is designed to be driven with a predetermined forward voltage of at least 6 VAC and preferably each single voltage AC LED circuit has a matching forward voltage of 6 VAC, 12 VAC, 24 VAC, 120 VAC, or other AC voltage levels for each single voltage AC LED circuit.


According to another aspect of the invention, each multi-voltage AC LED device would be able to be driven with at least two different AC forward voltages resulting in a first forward voltage drive level by electrically connecting the two single voltage AC LED circuits in parallel and a second forward voltage drive level by electrically connecting the at least two single voltage level AC LED circuits in series. By way of example, the second forward voltage drive level of the serially connected AC LED circuits would be approximately twice the level of the first forward voltage drive level of the parallel connected AC LED circuits. The at least two parallel connected AC LED circuits would be twice the current of the at least two serially connected AC LED circuits. In either circuit configuration, the brightness would be approximately the same with either forward voltage drive selection of the multi-voltage LED device.


According to another aspect of the invention, at least two single voltage series LED circuits, each of which have at least two serially connected LEDs, are formed on a single chip or on a substrate providing a multi-voltage AC or DC operable LED device.


According to another aspect of the invention, each single voltage series LED circuit is designed to be driven with a predetermined forward voltage of at least 6V AC or DC and preferably each single voltage series LED circuit has a matching forward voltage of 6V, 12V, 24V, 120V, or other AC or DC voltage levels. By way of example, each multi-voltage AC or DC LED device would be able to be driven with at least two different AC or DC forward voltages resulting in a first forward voltage drive level by electrically connecting the two single voltage series LED circuits in parallel and a second forward voltage drive level by electrically connecting the at least two single voltage level series LED circuits in series. The second forward voltage drive level of the serially connected series LED circuits would be approximately twice the level of the first forward voltage drive level of the parallel connected series LED circuits. The at least two parallel connected series LED circuits would be twice the current of the at least two serially connected series LED circuits. In either circuit configuration, the brightness would be approximately the same with either forward voltage drive selection of the multi-voltage series LED device.


According to another aspect of the invention, at least two single voltage AC LED circuits are formed on a single chip or on a substrate providing a multi-voltage and/or multi-brightness AC LED device for direct AC power operation.


According to another aspect of the invention, each single voltage AC LED circuit has at least two LEDs connected to each other in opposing parallel relation. Each single voltage AC LED circuit is designed to be driven with a predetermined forward voltage of at least 6 VAC and preferably each single voltage AC LED circuit has a matching forward voltage of 6 VAC, 12 VAC, 24 VAC, 120 VAC, or other AC voltage levels for each single voltage AC LED circuit. The at least two AC LED circuits within each multi-voltage and/or multi current AC LED device would be left able to be driven with at least two different AC forward voltages resulting in a first forward voltage drive level by electrically connecting the two single voltage AC LED circuits in parallel and a second forward voltage drive level by electrically connecting the at least two single voltage level AC LED circuits in series. The second forward voltage drive level of the serially connected AC LED circuits would be approximately twice the level of the first forward voltage drive level of the parallel connected AC LED circuits. The at least two parallel connected AC LED circuits would be twice the current of the at least two serially connected AC LED circuits. In either circuit configuration, the brightness would be approximately the same with either forward voltage drive selection of the multi-voltage LED device.


According to another aspect of the invention at least two single voltage LED circuits are formed on a single chip or on a substrate, and at least one bridge circuit made of LEDs is formed on the same single chip or substrate providing a multi-voltage and/or multi-brightness LED device for direct DC power operation. Each single voltage LED circuit has at least two LEDs connected to each other in series. Each single voltage LED circuit is designed to be driven with a predetermined forward voltage and preferably matching forward voltages for each circuit such as 12 VDC, 24 VDC, 120 VDC, or other DC voltage levels for each single voltage LED circuit. Each multi-voltage and/or multi-brightness LED device would be able to be driven with at least two different DC forward voltages resulting in a first forward voltage drive level when the two single voltage LED circuits are connected in parallel and a second forward voltage drive level that is twice the level of the first forward voltage drive level when the at least two LED circuits are connected in series.


According to another aspect of the invention at least two single voltage LED circuits are formed on a single chip or on a substrate providing a multi-voltage and/or multi-brightness LED device for direct DC power operation. Each single voltage LED circuit has at least two LEDs connected to each other in series. Each single voltage LED circuit is designed to be driven with a predetermined forward voltage and preferably matching forward voltages for each circuit such as 12 VAC, 24 VAC, 120 VAC, or other DC voltage levels for each single voltage LED circuit. Each multi-voltage and/or multi-brightness LED device would be able to be driven with at least two different DC forward voltages resulting in a first forward voltage drive level when the two single voltage LED circuits are connected in parallel and a second forward voltage drive level that is twice the level of the first forward voltage drive level when the at least two LED circuits are connected in series.


According to another aspect of the invention at least two single voltage LED circuits are formed on a single chip or on a substrate, and at least one bridge circuit made of LEDs is formed on the same single chip or substrate providing a multi-voltage and/or multi-brightness LED device for direct DC power operation. Each single voltage LED circuit has at least two LEDs connected to each other in series. Each single voltage LED circuit is designed to be driven with a predetermined forward voltage and preferably matching forward voltages for each circuit such as 12 VDC, 24 VDC, 120 VDC, or other DC voltage levels for each single voltage LED circuit. Each multi-voltage and/or multi-brightness LED device would be able to be driven with at least two different DC forward voltages resulting in a first forward voltage drive level when the two single voltage LED circuits are connected in parallel and a second forward voltage drive level that is twice the level of the first forward voltage drive level when the at least two LED circuits are connected in series.


According to another aspect of the invention a multi-voltage and/or multi-current AC LED circuit is integrated within a single chip LED. Each multi-voltage and/or multi-current single chip AC LED LED comprises at least two single voltage AC LED circuits. Each single voltage AC LED circuit has at least two LEDs in anti-parallel configuration to accommodate direct AC voltage operation. Each single voltage AC LED circuit may have may have at least one voltage input electrical contact at each opposing end of the circuit or the at least two single voltage AC LED circuits may be electrically connected together in series on the single chip and have at least one voltage input electrical contact at each opposing end of the two series connected single voltage AC LED circuits and one voltage input electrical contact at the center junction of the at least two single voltage AC LED circuits connected in series. The at least two single voltage AC LED circuits are integrated within a single chip to form a multi-voltage and/or multi-current single chip AC LED.


According to another aspect of the invention, at least one multi-voltage and/or multi-brightness LED devices may be integrated within a LED lamp. The at least two individual LED circuits within the multi-voltage and/or multi-brightness LED device(s) may be wired in a series or parallel circuit configuration by the LED packager during the LED packaging process thus providing for at least two forward voltage drive options, for example 12 VAC and 24 VAC or 120 VAC and 240 VAC that can be selected by the LED packager.


According to another aspect of the invention a multi-voltage and/or multi-current AC LED package is provided, comprising at least one multi-voltage and/or multi-current single chip AC LED integrated within a LED package. The multi-voltage and/or multi-current AC LED package provides matching electrical connectivity pads on the exterior of the LED package to the electrical connectivity pads of the at least one multi-voltage and/or multi-current single chip AC LED integrated within the LED package thus allowing the LED package user to wire the multi-voltage and/or multi-current AC LED package into a series or parallel circuit configuration during the PCB assembly process or final product integration process and further providing a AC LED package with at least two forward voltage drive options.


According to another aspect of the invention multiple individual discrete LED chips are used to form at least one multi-voltage and/or multi-current AC LED circuit within a LED package thus providing a multi-voltage and/or multi current AC LED package. Each multi-voltage and/or multi-current AC LED circuit within the package comprises at least two single voltage AC LED circuits. Each single voltage AC LED circuit has at least two LEDs in anti-parallel configuration to accommodate direct AC voltage operation The LED package provides electrical connectivity pads on the exterior of the LED package that match the electrical connectivity pads of the at least two single voltage AC LED circuits integrated within the multi-voltage and/or multi-current AC LED package thus allowing the LED package to be wired into a series or parallel circuit configuration during the PCB assembly process and further providing a LED package with at least two forward voltage drive options.


According to another aspect of the invention a multi-voltage and/or multi-current single chip AC LED and/or multi-voltage and/or multi current AC LED package is integrated within an LED lamp. The LED lamp having a structure that comprises a heat sink, a lens cover and a standard lamp electrical base. The multi-voltage and/or multi-current single chip AC LED and/or package is configured to provide a means of switching on at least one additional single voltage AC LED circuit within multi-voltage and/or multi-current AC LED circuit to provide increased brightness from the LED lamp.


According to anther broad aspect of the invention at least one multi-current AC LED single chip is integrated within a LED package.


According to another aspect of the invention, at least one single chip multi-current LED bridge circuit is integrated within a LED lamp having a standard lamp base. The single chip multi-current LED bridge circuit may be electrically connected together in parallel configuration but left open to accommodate switching on a switch to the more than one on the single chip and have at least one accessible electrical contact at each opposing end of the two series connected circuits and one accessible electrical contact at the center junction of the at least two individual serially connected LED circuits. The at least two individual circuits are integrated within a single chip.


According to another aspect of the invention When the at least two circuits are left unconnected on the single chip and provide electrical pads for connectivity during the packaging process, the LED packager may wire them into series or parallel connection based on the desired voltage level specification of the end LED package product offering.


According to another broad aspect of the invention a multi-brightness single chip AC LED is provided having at least two LED circuits. Each LED circuit has at least two diodes connected to each other in opposing parallel relation, at least one of which such diodes is an LED thus forming an AC LED circuit that is integrated on a single chip. Each LED circuit within the multi-brightness single chip AC LED is designed to be driven in parallel with the same matching forward voltage such as 12 VAC, 24 VAC, 120 VAC, or other AC voltages level. Each multi-brightness single chip AC LED is designed to operate on at least one single circuit integrated within the multi-brightness single chip AC LED. The multi-brightness single chip AC LED operates on a switch having at least two positions each of which is connected to at least one circuit within the multi-brightness single chip AC LED.


It should be noted that “package” or “packaged” is defined herein as an integrated unit meant to be used as a discrete component in either of the manufacture, assembly, installation, or modification of an LED lighting device or system. Such a package includes LED's of desired characteristics with capacitors and or resistors sized relative to the specifications of the chosen opposing parallel LED's to which they will be connected in series and with respect to a predetermined AC voltage and frequency.


Preferred embodiments of a package may include an insulating substrate whereon the LEDs, capacitors and or resistors are formed or mounted. In such preferred embodiments of a package the substrate will include electrodes or leads for uniform connection of the package to a device or system associated with an AC driver or power source. The electrodes, leads, and uniform connection may include any currently known means including mechanical fit, and/or soldering. The substrate may be such as sapphire, silicon carbide, gallium nitride, ceramics, printed circuit board material, or other materials for hosting circuit components.


A package in certain applications may preferably also include a heat sink, a reflective material, a lens for directing light, phosphor, nano-crystals or other light changing or enhancing substances. In sum, according to one aspect of the invention, the LED circuits and AC drivers of the present invention permit pre-packaging of the LED portion of a lighting system to be used with standardized drivers of known specified voltage and frequency output. Such packages can be of varied make up and can be combined with each other to create desired systems given the scalable and compatible arrangements possible with, and resulting from, the invention.


According to one aspect of the invention, AC driven LED circuits (or “driven circuits”) permit or enable lighting systems where LED circuits may be added to or subtracted (either by choice or by way of a failure of a diode) from the driven circuit without significantly affecting the pre-determined desired output range of light from any individual LED and, without the need to: (i) change the value of any discrete component; or, (ii) to add or subtract any discrete components, of any of the pre-existing driven circuit components which remain after the change. During design of a lighting system, one attribute of the LEDs chosen will be the amount of light provided during operation. In this context, it should be understood that depending on the operating parameters of the driver chosen, the stability or range of the voltage and frequency of the driver will vary from the nominal specification based upon various factors including but not limited to, the addition or subtraction of the LED circuits to which it becomes connected or disconnected. Accordingly, as sometimes referred to herein, drivers according to the invention are described as providing “relatively constant” or “fixed” voltage and frequency. The extent of this relative range may be considered in light of the acceptable range of light output desired from the resulting circuit at the before, during, or after a change has been made to the lighting system as a whole. Thus it will be expected that a pre-determined range of desired light output will be determined within which the driven LED circuits of the invention will perform whether or not additional or different LED circuits have been added or taken out of the driven circuit as a whole.


According to an aspect of the invention, an LED circuit driver provides a relatively fixed voltage and relatively fixed frequency AC output such as mains power sources. The LED circuit driver output voltage and frequency delivered to the LED circuit may be higher or lower than mains power voltage and frequencies by using an LED circuit inverter driver.


The higher frequency LED circuit inverter driver may be a electronic transformer, halogen or high intensity discharge (HID) lamp type driver with design modifications for providing a relatively fixed voltage as the LED circuit load changes. Meaning if the LED circuit inverter driver is designed to have an output voltage of 12V LED circuit driver would provide this output as a relatively constant output to a load having one or more than one LED circuits up to the wattage limit of the LED circuit driver even if LED circuits were added to or removed from the output of the LED circuit driver.


The higher frequency inverter having a relatively fixed voltage allows for smaller components to be used and provides a known output providing a standard reference High Frequency LED circuit driver.


Prior art for single chip LED circuits, for example those disclosed in 02004023568 and JP2004006582 do not provide a way to reduce the number of LEDs within the chip below the total forward voltage drop requirements of the source. The present invention however, enables an LED circuit to be made with any number of LEDs within a single chip, package or module by using capacitors or RC networks to reduce the number of LEDs needed to as few as one single LEO. Improved reliability, integration, product and system scalability and solid state lighting design simplicity may be realized with LED circuits and the LED circuit drivers. Individual LED circuits being the same or different colors, each requiring different forward voltages and currents may be driven from a single source LED circuit driver. Each individual LED circuit can self-regulate current by matching the capacitor or RC network value of the LED circuit to the known relatively fixed voltage and frequency of the LED circuit driver whether the LED circuit driver is a mains power source, a high frequency LED circuit driver or other LED circuit driver capable of providing a relatively fixed voltage and relatively fixed frequency output.


According to other aspects of the invention, the LED circuit driver may be coupled to a dimmer switch that regulates voltage or frequency or may have integrated circuitry that allows for adjustability of the otherwise relatively fixed voltage and/or relatively fixed frequency output of the LED circuit driver. The LED circuits get brighter as the voltage and/or frequency of the LED circuit driver output is increased to the LED circuits.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic view of a preferred embodiment of the invention;



FIG. 2 shows a schematic view of a preferred embodiment of the invention;



FIG. 3 shows a schematic view of a preferred embodiment of the invention;



FIG. 4 shows a schematic view of a preferred embodiment of the invention;



FIG. 5 shows a schematic view of a preferred embodiment of the invention;



FIG. 6 shows a schematic view of a preferred embodiment of the invention;



FIG. 7 shows a schematic view of a preferred embodiment of the invention;



FIG. 8 shows a schematic view of a preferred embodiment of the invention;



FIG. 9 shows a schematic view of a preferred embodiment of the invention;



FIG. 10 shows a schematic view of a preferred embodiment of the invention;



FIG. 11 shows a schematic view of a preferred embodiment of the invention; and,



FIG. 12 shows a schematic view of a preferred embodiment of the invention;





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS


FIG. 1 discloses a schematic diagram of a multi-voltage and/or multi-brightness LED lighting device 10. The multi-voltage and/or multi-brightness LED lighting device 10 comprises at least two AC LED circuits 12 configured in a imbalanced bridge circuit, each of which have at least two LEDs 14. The at least two AC LED circuits have electrical contacts 16a, 16b, 16c, and 16d at opposing ends to provide various connectivity options for an AC voltage source input. For example, if 16a and 16c are electrically connected together and 16b and 16d are electrically connected together and one side of the AC voltage input is applied to 16a and 16c and the other side of the AC voltage input is applied to 16b and 16d, the circuit becomes a parallel circuit with a first operating forward voltage. If only 16a and 16c are electrically connected and the AC voltage inputs are applied to electrical contacts 16b and 16d, a second operating forward voltage is required to drive the single chip 18. The single chip 18 may also be configured to operate at more than one brightness level “multi-brightness” by electrically connecting for example 16a and 16b and applying one side of the line of an AC voltage source to 16a ad 16b and individually applying the other side of the line from the AC voltage source a second voltage to 26b and 26c.



FIG. 2 discloses a schematic diagram of a multi-voltage and/or multi-brightness LED lighting device 20 similar to the multi-voltage and/or multi-brightness LED lighting device 10 described above in FIG. 1. The at least two AC LED circuits 12 are integrated onto a substrate 22. The at least two AC LED circuits 12 configured in a imbalanced bridge circuit, each of which have at least two LEDs 14. The at least two AC LED circuits have electrical contacts 16a, 16b, 16c, and 16d on the exterior of the substrate 22 and can be used to electrically configure and/or control the operating voltage and/or brightness level of the multi-voltage and/or multi-brightness LED lighting device.



FIG. 3 discloses a schematic diagram of a multi-voltage and/or multi-brightness LED lighting device 30 similar to the multi-voltage and/or multi-brightness LED lighting device 10 and 20 described in FIGS. 1 and 2. The multi-voltage and/or multi-brightness LED lighting device 30 comprises at least two AC LED circuits 32 having at least two LEDs 34 connected in series and anti-parallel configuration. The at least two AC LED circuits 32 have electrical contacts 36a, 36b, 36c, and 36d at opposing ends to provide various connectivity options for an AC voltage source input. For example, if 36a and 36c are electrically connected together and 36b and 36d are electrically connected together and one side of the AC voltage input is applied to 36a and 36c and the other side of the AC voltage input is applied to 36b and 36d, the circuit becomes a parallel circuit with a first operating forward voltage. If only 36a and 36c are electrically connected and the AC voltage inputs are applied to electrical contacts 36b and 36d, a second operating forward voltage is required to drive the multi-voltage and/or multi-brightness lighting device 30. The multi-voltage and/or multi-brightness lighting device 30 may be a monolithically integrated single chip 38, a monolithically integrated single chip integrated within a LED package 38 or a number of individual discrete die integrated onto a substrate 38 to form a multi-voltage and/or multi-brightness lighting device 30.



FIG. 4 discloses a schematic diagram of the same multi-voltage and/or multi-brightness LED device 30 as described in FIG. 3 having the at least two AC LED circuits 32 connected in parallel configuration to an AC voltage source and operating at a first forward voltage. A resistor 40 may be used to limit current to the multi-voltage and/or multi-brightness LED lighting device 30.



FIG. 5 discloses a schematic diagram of the same multi-voltage and/or multi-brightness LED device 30 as described in FIG. 3 having the at least two AC LED circuits 32 connected in series configuration to an AC voltage source and operating at a second forward voltage that is approximately two times greater than the first forward voltage of the parallel circuit as described in FIG. 4. A resistor may be used to limit current to the multi-voltage and/or multi-brightness LED lighting device.



FIG. 6 discloses a schematic diagram of a multi-voltage and/or multi-brightness LED lighting device 50. The multi-voltage and/or multi-brightness LED lighting device 50 comprises at least two AC LED circuits 52, each of which have at least two LEDs 54 in series and anti-parallel relation. The at least two AC LED circuits 52 have at least three electrical contacts 56a, 56b and 56c. The at least two AC LED circuits 52 are electrically connected together in parallel at one end 56a and left unconnected at the opposing ends of the electrical contacts 56b and 56c. One side of an AC voltage source line is electrically connected to 56a and the other side of an AC voltage source line is individually electrically connected to 56b and 56c with either a fixed connection or a switched connection thereby providing a first brightness when AC voltage is applied to 56a and 56b and a second brightness when an AC voltage is applied to 56a, 56b and 56c. It is contemplated that the multi-voltage and/or multi-brightness LED lighting device 50 is a single chip, an LED package, an LED assembly or an LED lamp. The multi-brightness switching capability.



FIG. 7 discloses a schematic diagram similar to the multi-voltage and/or multi-brightness LED device 50 shown in FIG. 6 integrated within a lamp 58 and connected to a switch 60 to control the brightness level of the multi-voltage and/or multi-brightness LED lighting device 50.



FIG. 8 discloses a schematic diagram a multi-brightness LED lighting device 62 having at least two bridge rectified 68 series LED circuits 69. Each of the at least two bridge rectified 68 series LED circuits 69 that are connected to and rectified with an LED bridge circuit 68 comprising four LEDs 70 configured in a bridge circuit 68. The at least two bridge rectified 68 series LED circuits 69 have at least two LEDs 71 connected in series and electrical contacts 72a, 72b and 72c. When one side of an AC voltage is applied to 72a and the other side of an AC voltage line is applied to 72b and 72c individually, the brightness level of the multi-brightness LED lighting device 62 can be increased and/or decreased I a fixed manner or a switching process.



FIG. 9 discloses a schematic diagram the multi-brightness LED lighting device 62 as shown above in FIG. 8 with a switch 74 electrically connected between the multi-brightness LED lighting device 62 and the AC voltage source 78.



FIG. 9 discloses a schematic diagram of at least two single voltage LED circuits integrated with a single chip or within a substrate and forming a multi-voltage and/or multi-brightness LED device.



FIG. 10 discloses a schematic diagram of a single chip LED bridge circuit 80 having four LEDs 81 configured into a bridge circuit and monolithically integrated on a substrate 82. The full wave LED bridge circuit has electrical contacts 86 to provide for AC voltage input connectivity and DC voltage output connectivity.



FIG. 11 discloses a schematic diagram of another embodiment of a single chip multi-voltage and/or multi-brightness LED lighting device 90. The multi-voltage and/or multi-brightness LED lighting device 90 has at least two series LED circuits 92 each of which have at least two LEDs 94 connected in series. The at least two series LED circuits 92 have electrical contacts 96 at opposing ends to provide a means of electrical connectivity. The at least two series LED circuits are monolithically integrated into a single chip 98. The electrical contacts 96 are used to wire the at least two series LEDs circuit 92 into a series circuit, a parallel circuit or an AC LED circuit all within a single chip.



FIG. 12 discloses a schematic diagram of the same multi-voltage and/or multi-brightness LED lighting device 90 as shown above in FIG. 11. The multi-voltage and/or multi-brightness LED lighting device 90 has at least two series LED circuits 92 each of which have at least two LEDs 94 connected in series. The at least two series LED circuits can be monolithically integrated within a single chip or discrete individual die can be integrated within a substrate to form an LED package 100. The LED package 100 has electrical contacts 102 that are used to wire the at least two series LEDs circuit into a series circuit, a parallel circuit or in anti-parallel to form an AC LED circuit all within a single LED package.

Claims
  • 1. An LED lighting system comprising: a first operating LED circuit and at least one additional LED circuit, at least one of the first operating LED circuit or the at least one additional LED circuit including at least two LEDs connected in either series or parallel, andthe at least one additional LED circuit being configured to emit a different color light compared to the first operating LED circuit;a switch capable of at least one of: (a) switching a voltage level input to at least one of the first operating LED circuit or the at least one additional LED circuit, or(b) switching the at least one additional LED circuit on or off,wherein (a) or (b) is selectable by a user switching the switch; andan LED driver including an input configured to connect to an AC voltage power source, the LED driver configured to provide a DC voltage output to at least one of the first operating LED circuit or the at least one additional LED circuit,wherein the switch is electrically connected between the DC voltage output and at least one of the first operating LED circuit or the at least one additional LED circuit.
  • 2. The LED lighting system of claim 1, wherein the switch has at least two positions.
  • 3. The LED lighting system of claim 1, wherein the switching of the switch provides at least two different DC forward voltages to at least one of the first operating LED circuit or the at least one additional LED circuit.
  • 4. The LED lighting system of claim 1, wherein the switch, the first operating LED circuit, and the at least one additional LED circuit are mounted on a single insulating substrate.
  • 5. The LED lighting system of claim 1, wherein the switching of the switch changes light output of the LED lighting device.
  • 6. The LED lighting system of claim 1, wherein the LED driver is configured to cause the DC voltage output to have a lower voltage than the AC voltage power source.
  • 7. The LED lighting system of claim 1, further comprising a driver electrically coupled to the switch and at least one of the first operating LED circuit or the at least one additional LED circuit.
  • 8. An LED lighting system comprising: a first operating LED circuit and at least one additional LED circuit, at least one of the first operating LED circuit or the at least one additional LED circuit including at least two LEDs connected in either series or parallel, andthe at least one additional LED circuit being configured to emit a different color light compared to the first operating LED circuit;a switch capable of at least one of: (a) switching a brightness level of at least one of the first operating LED circuit or the at least one additional LED circuit, or(b) switching the at least one additional LED circuit on or off,wherein (a) or (b) is selectable by a user switching the switch; andan LED driver including an input configured to connect to an AC voltage power source, the LED driver configured to provide a DC voltage output to at least one of the first operating LED circuit or the at least one additional LED circuit,wherein the switch is electrically connected between the DC voltage output and at least one of the first operating LED circuit or the at least one additional LED circuit.
  • 9. The LED lighting system of claim 8, wherein the switch has at least two positions.
  • 10. The LED lighting system of claim 8, wherein the switching of the switch provides at least two different DC forward voltages to at least one of the first operating LED circuit or the at least one additional LED circuit.
  • 11. The LED lighting system of claim 8, wherein the switch, the first operating LED circuit, and the at least one additional LED circuit are mounted on a single insulating substrate.
  • 12. The LED lighting system of claim 8, wherein the switching of the switch changes light output of the LED lighting device.
  • 13. The LED lighting system of claim 8, wherein the LED driver is configured to cause the DC voltage output to have a lower voltage than the AC voltage power source.
  • 14. The LED lighting system of claim 8, further comprising a driver electrically coupled to the switch and at least one of the first operating LED circuit or the at least one additional LED circuit.
  • 15. An LED lighting system comprising: a first operating LED circuit and at least one additional LED circuit, the at least one additional LED circuit being configured to emit a different color light compared to the first operating LED circuit;a switch capable of at least one of: (a) switching a voltage level input to at least one of the first operating LED circuit or the at least one additional LED circuit, or(b) switching the at least one additional LED circuit on or off,wherein (a) or (b) is selectable by switching the switch; andan LED driver including an input configured to connect to an AC voltage power source, the LED driver configured to provide a DC voltage output to at least one of the first operating LED circuit or the at least one additional LED circuit,wherein the switch is electrically connected between the DC voltage output and at least one of the first operating LED circuit or the at least one additional LED circuit.
  • 16. The LED lighting system of claim 15, wherein the switch has at least two positions.
  • 17. The LED lighting system of claim 15, wherein the switching of the switch provides at least two different DC forward voltages to at least one of the first operating LED circuit or the at least one additional LED circuit.
  • 18. The LED lighting system of claim 15, wherein the switch, the first operating LED circuit, and the at least one additional LED circuit are mounted on a single insulating substrate.
  • 19. The LED lighting system of claim 15, wherein the switching of the switch changes light output of the LED lighting device.
  • 20. The LED lighting system of claim 15, wherein the LED driver is configured to cause the DC voltage output to have a lower voltage than the AC voltage power source.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/740,295, filed Jan. 10, 2020, which is a continuation of U.S. patent application Ser. No. 16/274,164, filed Feb. 12, 2019, which is a continuation of U.S. patent application Ser. No. 15/685,429, filed Aug. 24, 2017, which is a continuation of U.S. patent application Ser. No. 14/172,644, filed Feb. 4, 2014, which is a continuation of U.S. patent application Ser. No. 13/322,796, filed Nov. 28, 2011, which is a national phase application of International Application No. PCT/US2010/001597, filed May 28, 2010, which claims priority to U.S. Provisional Application No. 61/217,215, filed May 28, 2009, and is a continuation-in-part of U.S. patent application Ser. No. 12/287,267, filed Oct. 6, 2008, which claims the priority to U.S. Provisional Application No. 60/997,771, filed Oct. 6, 2007; the contents of each of these applications are expressly incorporated herein by reference.

US Referenced Citations (390)
Number Name Date Kind
3582932 Chapman Jun 1971 A
3712706 Stamm Jan 1973 A
3821662 Dewinter et al. Jun 1974 A
3869641 Goldberg Mar 1975 A
3981023 King et al. Sep 1976 A
4104562 DiCola Aug 1978 A
4145655 Caudel et al. Mar 1979 A
4170018 Runge Oct 1979 A
4218627 Kiesel Aug 1980 A
4246533 Chiang Jan 1981 A
4271408 Teshima et al. Jun 1981 A
4298869 Okuno Nov 1981 A
4350973 Petryk, Jr. Sep 1982 A
4408151 Justice et al. Oct 1983 A
4530973 Koster et al. Jul 1985 A
4563592 Yuhasz et al. Jan 1986 A
4573766 Boumay, Jr. et al. Mar 1986 A
4646398 Myhrman Mar 1987 A
4653895 Deguchi et al. Mar 1987 A
4654880 Sontag Mar 1987 A
4656398 Michael et al. Apr 1987 A
4691341 Knoble et al. Sep 1987 A
4780621 Bartleucci et al. Oct 1988 A
4797651 Havel Jan 1989 A
4816698 Hook Mar 1989 A
RE33285 Kunen Jul 1990 E
4962347 Burroughs et al. Oct 1990 A
5010459 Taylor et al. Apr 1991 A
5014052 Obeck May 1991 A
5016038 Kobayashi et al. May 1991 A
5028859 Johnson et al. Jul 1991 A
5086294 Kasegi Feb 1992 A
5267134 Banayan Nov 1993 A
5293494 Saito et al. Mar 1994 A
5324316 Schulman et al. Jun 1994 A
5353213 Paulik et al. Oct 1994 A
5408330 Squicciarini et al. Apr 1995 A
5430609 Kikinis Jul 1995 A
5457450 Deese et al. Oct 1995 A
5463280 Johnson Oct 1995 A
5469020 Herrick Nov 1995 A
5519263 Santana, Jr. May 1996 A
5521652 Shalvi May 1996 A
5532641 Balasubramanian et al. Jul 1996 A
5562240 Campbell Oct 1996 A
5596567 Demuro et al. Jan 1997 A
5621225 Shieh et al. Apr 1997 A
5636303 Che et al. Jun 1997 A
5652609 Scholler et al. Jul 1997 A
5657054 Files et al. Aug 1997 A
5661645 Hochstein Aug 1997 A
5663719 Deese et al. Sep 1997 A
5684738 Au et al. Nov 1997 A
5699218 Kadah Dec 1997 A
5728432 Imashiro et al. Mar 1998 A
5739639 Johnson Apr 1998 A
5785418 Hochstein Jul 1998 A
5790013 Hauck Aug 1998 A
5790106 Hirano et al. Aug 1998 A
5803579 Turnbull et al. Sep 1998 A
5806965 Deese Sep 1998 A
5828768 Eatwell et al. Oct 1998 A
5847507 Butterworth et al. Dec 1998 A
5874803 Garbuzov et al. Feb 1999 A
5923239 Krueger et al. Jul 1999 A
5936599 Reymond Aug 1999 A
5946348 Mizutani et al. Aug 1999 A
5963012 Garcia et al. Oct 1999 A
5965907 Huang et al. Oct 1999 A
5973677 Gibbons Oct 1999 A
5982103 Mosebrook et al. Nov 1999 A
5998925 Shimizu et al. Dec 1999 A
6016038 Mueller et al. Jan 2000 A
6019493 Kuo et al. Feb 2000 A
6023073 Strite Feb 2000 A
6028694 Schmidt Feb 2000 A
6061259 DeMichele May 2000 A
6072280 Allen Jun 2000 A
6072475 van Ketwich Jun 2000 A
6078148 Hochstein Jun 2000 A
6107744 Bavaro et al. Aug 2000 A
6127783 Pashley et al. Oct 2000 A
6164368 Furukawa et al. Dec 2000 A
6184628 Ruthenberg Feb 2001 B1
6211626 Lys et al. Apr 2001 B1
6227679 Zhang et al. May 2001 B1
6234648 Borner May 2001 B1
6246169 Pruvot Jun 2001 B1
6246862 Grivas et al. Jun 2001 B1
6265984 Molinaroli Jul 2001 B1
6292901 Lys et al. Sep 2001 B1
6300725 Zinkler et al. Oct 2001 B1
6300748 Miller Oct 2001 B1
6303238 Thompson et al. Oct 2001 B1
6307757 Porter et al. Oct 2001 B1
6319778 Chen et al. Nov 2001 B1
6323652 Collier et al. Nov 2001 B1
6324082 Keller Nov 2001 B1
6329694 Lee et al. Dec 2001 B1
6357889 Duggal et al. Mar 2002 B1
6361886 Shi et al. Mar 2002 B2
6362789 Trumbull et al. Mar 2002 B1
6380693 Kastl Apr 2002 B1
6396001 Nakamura May 2002 B1
6396801 Upton et al. May 2002 B1
6404131 Kawano et al. Jun 2002 B1
6411045 Nerone Jun 2002 B1
6412971 Wojnarowski et al. Jul 2002 B1
6439731 Johnson et al. Aug 2002 B1
6441558 Muthu et al. Aug 2002 B1
6456481 Stevenson Sep 2002 B1
6466198 Feinstein Oct 2002 B1
6489724 Smith et al. Dec 2002 B1
6489754 Blom Dec 2002 B2
6501100 Srivastava et al. Dec 2002 B1
6507159 Muthu Jan 2003 B2
6510995 Muthu et al. Jan 2003 B2
6528954 Lys et al. Mar 2003 B1
6529126 Henry Mar 2003 B1
6541800 Barnett et al. Apr 2003 B2
6541919 Roach et al. Apr 2003 B1
6548967 Dowling et al. Apr 2003 B1
6559802 Goto et al. May 2003 B2
6577072 Saito et al. Jun 2003 B2
6580228 Chen et al. Jun 2003 B1
6600243 Hara et al. Jul 2003 B1
6614103 Durocher et al. Sep 2003 B1
6618042 Powell Sep 2003 B1
6633120 Salam Oct 2003 B2
6636003 Rahm et al. Oct 2003 B2
6636005 Wacyk et al. Oct 2003 B2
6643336 Hsieh et al. Nov 2003 B1
6663246 Currens et al. Dec 2003 B2
6664744 Dietz Dec 2003 B2
6686697 Cho et al. Feb 2004 B2
6689626 Krijn et al. Feb 2004 B2
6714348 Dunn Mar 2004 B2
6717353 Mueller et al. Apr 2004 B1
6722771 Stephens Apr 2004 B1
6774582 Kwong et al. Aug 2004 B1
6781329 Mueller et al. Aug 2004 B2
6781570 Arrigo et al. Aug 2004 B1
6803732 Kraus et al. Oct 2004 B2
6814642 Siwinski et al. Nov 2004 B2
6832729 Perry et al. Dec 2004 B1
6844675 Yang Jan 2005 B2
6850169 Manavi et al. Feb 2005 B2
6856103 Hudson et al. Feb 2005 B1
6861658 Fiset Mar 2005 B2
6879319 Cok Apr 2005 B2
6879497 Hua et al. Apr 2005 B2
6882128 Rahmel et al. Apr 2005 B1
6891786 Sato May 2005 B2
6907089 Jensen et al. Jun 2005 B2
6936936 Fischer et al. Aug 2005 B2
6949772 Shimizu et al. Sep 2005 B2
6965205 Piepgras et al. Nov 2005 B2
6988053 Namaky Jan 2006 B2
7014336 Ducharme et al. Mar 2006 B1
7019662 Shackle Mar 2006 B2
7038399 Lys et al. May 2006 B2
7044627 Mertz et al. May 2006 B2
7053560 Ng May 2006 B1
7081722 Huynh et al. Jul 2006 B1
7161590 Daniels Jan 2007 B2
7176885 Troxell et al. Feb 2007 B2
7180265 Maskali et al. Feb 2007 B2
7202613 Morgan et al. Apr 2007 B2
7213940 Van De Ven et al. May 2007 B1
7226442 Sheppard, Jr. et al. Jun 2007 B2
7226644 Sheppard, Jr. et al. Jun 2007 B2
7258463 Sloan et al. Aug 2007 B2
7262559 Tripathi et al. Aug 2007 B2
7264378 Loh Sep 2007 B2
7271568 Purdy et al. Sep 2007 B2
7288902 Melanson Oct 2007 B1
7344279 Mueller et al. Mar 2008 B2
7348957 Cui et al. Mar 2008 B2
7375476 Walter et al. May 2008 B2
7419281 Porchia et al. Sep 2008 B2
7462997 Mueller et al. Dec 2008 B2
7489086 Miskin et al. Feb 2009 B2
7583901 Nakagawa et al. Sep 2009 B2
7748877 Colby Jul 2010 B1
7852009 Coleman et al. Dec 2010 B2
7859196 Lee et al. Dec 2010 B2
RE42161 Hochstein Feb 2011 E
7888888 Huang et al. Feb 2011 B2
7961113 Rabiner et al. Jun 2011 B2
8055310 Beart et al. Nov 2011 B2
8080819 Mueller et al. Dec 2011 B2
8129917 Kim et al. Mar 2012 B2
8148905 Miskin et al. Apr 2012 B2
8179055 Miskin et al. May 2012 B2
8198819 Lenk Jun 2012 B2
8203275 Ruxton Jun 2012 B2
8272757 Fan et al. Sep 2012 B1
8314571 Jonsson Nov 2012 B2
8326225 Oba et al. Dec 2012 B2
8362695 Aanegola et al. Jan 2013 B2
8373363 Zdenko Feb 2013 B2
8400081 Catalano et al. Mar 2013 B2
8471495 Muguruma et al. Jun 2013 B2
8587205 Ter Weeme et al. Nov 2013 B2
9184497 Chen et al. Jan 2015 B2
9112957 Beart et al. Sep 2015 B2
9198237 Miskin Nov 2015 B2
9615420 Miskin Apr 2017 B2
9807827 Miskin et al. Oct 2017 B2
10091842 Miskin et al. Oct 2018 B2
10154551 Miskin et al. Dec 2018 B2
10178715 Miskin et al. Jan 2019 B2
10349479 Miskin et al. Jul 2019 B2
10492251 Miskin et al. Nov 2019 B2
10492252 Miskin et al. Nov 2019 B2
10499466 Miskin et al. Dec 2019 B1
10506674 Miskin et al. Dec 2019 B2
10517149 Miskin et al. Dec 2019 B2
10537001 Miskin et al. Jan 2020 B2
10575376 Miskin et al. Feb 2020 B2
10687400 Miskin et al. Jun 2020 B2
10750583 Miskin et al. Aug 2020 B2
10757783 Miskin et al. Aug 2020 B2
10932341 Miskin et al. Feb 2021 B2
10966298 Miskin et al. Mar 2021 B2
11019697 Miskin et al. May 2021 B2
20010005319 Ohishi et al. Jun 2001 A1
20010054005 Hook et al. Dec 2001 A1
20020014630 Okazaki et al. Feb 2002 A1
20020021573 Zhang Feb 2002 A1
20020030193 Yamazaki et al. Mar 2002 A1
20020030194 Camras et al. Mar 2002 A1
20020048169 Dowling et al. Apr 2002 A1
20020048177 Rahm et al. Apr 2002 A1
20020060530 Sembhi et al. May 2002 A1
20020070914 Bruning et al. Jun 2002 A1
20020072395 Miramontes Jun 2002 A1
20020080010 Zhang Jun 2002 A1
20020080663 Kameyama et al. Jun 2002 A1
20020081982 Schwartz et al. Jun 2002 A1
20020086702 Lai et al. Jul 2002 A1
20020113244 Bamett et al. Aug 2002 A1
20020113246 Nagai et al. Aug 2002 A1
20020118557 Ohlsson Aug 2002 A1
20020130627 Morgan Sep 2002 A1
20020137258 Akram Sep 2002 A1
20020145392 Hair et al. Oct 2002 A1
20020149572 Schulz et al. Oct 2002 A1
20020158590 Saito et al. Oct 2002 A1
20020163006 Sundar et al. Nov 2002 A1
20020167016 Hoelen et al. Nov 2002 A1
20020175870 Gleener Nov 2002 A1
20020176259 Ducharme Nov 2002 A1
20020181231 Luk Dec 2002 A1
20020187675 McMullin et al. Dec 2002 A1
20020191029 Gillespie et al. Dec 2002 A1
20020195968 Sanford et al. Dec 2002 A1
20030001657 Worley Jan 2003 A1
20030011972 Koo Jan 2003 A1
20030015968 Allen Jan 2003 A1
20030020629 Swartz et al. Jan 2003 A1
20030035075 Butler et al. Feb 2003 A1
20030038291 Cao Feb 2003 A1
20030043611 Bockle et al. Mar 2003 A1
20030063462 Shimuzu et al. Apr 2003 A1
20030072145 Nolan et al. Apr 2003 A1
20030076306 Zadesky et al. Apr 2003 A1
20030085621 Potega May 2003 A1
20030085870 Hinckley May 2003 A1
20030102810 Cross et al. Jun 2003 A1
20030100837 Piepgras et al. Jul 2003 A1
20030122502 Clauberg et al. Jul 2003 A1
20030137258 Pipegras et al. Jul 2003 A1
20030144034 Hack et al. Jul 2003 A1
20030146897 Hunter Aug 2003 A1
20030156422 Tatewaki et al. Aug 2003 A1
20030169014 Kadah Sep 2003 A1
20030175004 Garito et al. Sep 2003 A1
20030179585 Lefebvre Sep 2003 A1
20030185005 Sommers et al. Oct 2003 A1
20030219035 Schmidt Nov 2003 A1
20030230934 Cordelli et al. Dec 2003 A1
20030231168 Bell et al. Dec 2003 A1
20030234621 Kriparos Dec 2003 A1
20040022058 Birrell Feb 2004 A1
20040041620 D'Angelo et al. Mar 2004 A1
20040075399 Hall Apr 2004 A1
20040080941 Jiang et al. Apr 2004 A1
20040108997 Lee Jun 2004 A1
20040130909 Mueller et al. Jul 2004 A1
20040150994 Kazar et al. Aug 2004 A1
20040164948 Kabel et al. Aug 2004 A1
20040183380 Otake Sep 2004 A1
20040189218 Leong et al. Sep 2004 A1
20040201988 Allen Oct 2004 A1
20040206970 Martin Oct 2004 A1
20040207484 Forrester et al. Oct 2004 A1
20040212321 Lys et al. Oct 2004 A1
20040218387 Gerlach Nov 2004 A1
20040263084 Mor et al. Dec 2004 A1
20040264193 Okumura Dec 2004 A1
20040266349 Wang Dec 2004 A1
20050001225 Yoshimura et al. Jan 2005 A1
20050040773 Lebens et al. Feb 2005 A1
20050058852 Tyan et al. Mar 2005 A1
20050078093 Peterson, Jr. et al. Apr 2005 A1
20050110426 Shao May 2005 A1
20050111234 Martin et al. May 2005 A1
20050116235 Schultz et al. Jun 2005 A1
20050128751 Roberge et al. Jun 2005 A1
20050158590 Li Jul 2005 A1
20050168156 Li et al. Aug 2005 A1
20050173990 Andersen et al. Aug 2005 A1
20050185401 Jiang et al. Aug 2005 A1
20050195600 Porchia et al. Sep 2005 A1
20050231133 Lys Oct 2005 A1
20050276053 Nortrup et al. Dec 2005 A1
20060038542 Park et al. Feb 2006 A1
20060091415 Yan May 2006 A1
20060099994 Yang et al. May 2006 A1
20060103913 Handschy et al. May 2006 A1
20060138971 Uang et al. Jun 2006 A1
20060158130 Furukawa Jul 2006 A1
20060163589 Fan et al. Jul 2006 A1
20060176692 Lee et al. Aug 2006 A1
20060226795 Walter et al. Oct 2006 A1
20060238136 Johnson, III et al. Oct 2006 A1
20060256826 Lin et al. Nov 2006 A1
20070024213 Shteynberg et al. Feb 2007 A1
20070069663 Burdalski et al. Mar 2007 A1
20070115248 Roberts et al. May 2007 A1
20070139717 Kuo et al. Jun 2007 A1
20070171145 Coleman et al. Jul 2007 A1
20070258231 Koemer et al. Nov 2007 A1
20070273299 Miskin et al. Nov 2007 A1
20070290625 He Dec 2007 A1
20080094005 Rabiner et al. Apr 2008 A1
20080094837 Dobbins et al. Apr 2008 A1
20080116816 Neuman May 2008 A1
20080116818 Shteynberg et al. May 2008 A1
20080130288 Catalano et al. Jun 2008 A1
20080136347 Lin et al. Jun 2008 A1
20080158915 Williams Jul 2008 A1
20080203405 Rooymans Aug 2008 A1
20080203936 Mariyama et al. Aug 2008 A1
20080211421 Lee et al. Sep 2008 A1
20080218098 Lee et al. Sep 2008 A1
20080218995 Gilkey Sep 2008 A1
20080252197 Li et al. Oct 2008 A1
20090009100 Rooymans Jan 2009 A1
20090017433 Belsky Jan 2009 A1
20090021185 Ng Jan 2009 A1
20090079362 Shteynberg et al. Mar 2009 A1
20090160358 Slava Jun 2009 A1
20090167190 Hickey Jul 2009 A1
20090167202 Miskin et al. Jul 2009 A1
20090174337 Miskin et al. Jul 2009 A1
20090295300 King Dec 2009 A1
20100039794 Ghanem et al. Feb 2010 A1
20100072280 McGill et al. Mar 2010 A1
20100072905 Kim et al. Mar 2010 A1
20100109564 Shin et al. May 2010 A1
20100134038 Shackle Jun 2010 A1
20100141177 George Jun 2010 A1
20100259183 Leshniak Oct 2010 A1
20100308738 Shteynberg et al. Dec 2010 A1
20110115407 Wibben et al. May 2011 A1
20110148327 Van de Ven et al. Jun 2011 A1
20110169408 Chen et al. Jul 2011 A1
20110193484 Harbers et al. Aug 2011 A1
20110260648 Hamamoto et al. Oct 2011 A1
20110273098 Grajcar Nov 2011 A1
20120043897 Miskin et al. Feb 2012 A1
20120069560 Miskin et al. Mar 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120206050 Spero Aug 2012 A1
20120293083 Miskin et al. Nov 2012 A1
20130051001 Miskin Feb 2013 A1
20140153232 Miskin Jun 2014 A1
20140361697 Miskin et al. Dec 2014 A1
20160095180 Miskin Mar 2016 A1
20160143097 Miskin May 2016 A1
20160188426 Kousha et al. Jun 2016 A1
20170354005 Miskin Dec 2017 A1
20190045593 Miskin et al. Feb 2019 A1
20190182919 Miskin Jun 2019 A1
20190268982 Miskin et al. Aug 2019 A1
20190306940 Miskin et al. Oct 2019 A1
20190313491 Miskin et al. Oct 2019 A1
20190350053 Miskin et al. Nov 2019 A1
Foreign Referenced Citations (88)
Number Date Country
2003100206 Apr 2003 AU
2003100206 Jul 2003 AU
2003100206 Jul 2013 AU
1341966 Mar 2002 CN
0515664 Dec 1992 EP
1160883 Dec 2001 EP
1215944 Jun 2002 EP
1502483 Feb 2005 EP
1 953 825 Aug 2008 EP
1953825 Aug 2008 EP
1953825 Jul 2013 EP
2202414 Mar 1987 GB
2202414 Sep 1988 GB
2202414 Sep 1988 GB
2264555 Sep 1993 GB
2372609 Aug 2002 GB
123123 Mar 2004 IL
S6230386 Feb 1987 JP
08137429 May 1996 JP
H08149063 Jun 1996 JP
11-330561 Nov 1999 JP
2000030877 Jan 2000 JP
200050512 Feb 2000 JP
2000156526 Jun 2000 JP
2000278383 Oct 2000 JP
2001004753 Jan 2001 JP
2001176677 Jun 2001 JP
2001284065 Dec 2001 JP
2002050798 Feb 2002 JP
2002057376 Feb 2002 JP
2002208301 Jul 2002 JP
2003047177 Feb 2003 JP
2001291406 Apr 2003 JP
2003298118 Oct 2003 JP
2004-111104 Apr 2004 JP
2004111104 Apr 2004 JP
2005-524960 Aug 2005 JP
2005222750 Aug 2005 JP
2007059260 Mar 2007 JP
3162876 Sep 2010 JP
2011-040701 Feb 2011 JP
2011159495 Aug 2011 JP
100367215 Jan 2003 KR
20030073747 Sep 2003 KR
9750168 Dec 1997 WO
97050168 Dec 1997 WO
9922338 May 1999 WO
9939319 Aug 1999 WO
0101385 Jan 2001 WO
2001001385 Jan 2001 WO
D101385 Jan 2001 WO
0215320 Feb 2002 WO
0221741 Mar 2002 WO
0223956 Mar 2002 WO
0223958 Mar 2002 WO
2002023956 Mar 2002 WO
WO0223956 Mar 2002 WO
0231406 Apr 2002 WO
02062623 Aug 2002 WO
03009535 Jan 2003 WO
03026358 Mar 2003 WO
2003019072 Mar 2003 WO
03055273 Jul 2003 WO
03075126 Sep 2003 WO
2004055654 Jul 2004 WO
2004094896 Nov 2004 WO
2009045548 Apr 2005 WO
2005084080 Sep 2005 WO
2006023149 Mar 2006 WO
2007001116 Jan 2007 WO
2008062941 May 2008 WO
2008124701 Oct 2008 WO
2010016002 Feb 2010 WO
2010138211 Feb 2010 WO
2010035155 Apr 2010 WO
2010103480 Sep 2010 WO
2010126601 Nov 2010 WO
20101266011 Nov 2010 WO
2010138211 Dec 2010 WO
20100138211 Dec 2010 WO
2011049613 Apr 2011 WO
2011082168 Jul 2011 WO
2011143510 Nov 2011 WO
2011082168 Nov 2011 WO
2011143510 Nov 2011 WO
20110143510 Nov 2011 WO
2013026053 Feb 2013 WO
2013082609 Jun 2013 WO
Non-Patent Literature Citations (466)
Entry
European Search Report dated Oct. 22, 2012 in related European Application—7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2010/001597 dated Jul. 30, 2010—14 pages.
Examination Report Under Sections 12 & 13 of the Patent Act for Indian Application No. 9150/delnp/2011 dated April 5, 2018—6 pages.
Examination Report Under Sections 12 & 13 of the Patent Act for Indian Application No. 5795/delnp/2012 dated Aug. 29, 2018—6 pages.
Canadian Office Action Application No. 2,763,598 dated Jul. 3, 2018—3 pages.
US Office Action U.S. Appl. No. 16/443,759 dated Aug. 9, 2019—7 pages.
US Office Action U.S. Appl. No. 15/334,001 dated Sep. 13, 2019—17 pages.
Extended European Search Report dated Jan. 14, 2020, Application No. EP19177733.3—10 pages.
Samsung Electronics Co. Ltd. And Samsung Electronics America, Inc. v. Lynk Labs, Inc. Case No. 1:21-cv-02665, Samsung's Initial Non-Infringement, Unenforceability, and Invalidity Contentions dated Sep. 21, 2021—85 pages.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-01—Lys '262.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-02—KR '747.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-03—KR '215.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-04—iColor System.
U.S. Pat. No. 10,492251 ('251 Patent″)—Exhibit A-05—Miskin '299.
U.S. Pat. No. 10,492,252 ('252 Patent″)—Exhibit B-01—Piepgrass.
U.S. Pat. No. 10,492,252 ('252 Patent″)—Exhibit B-02—Hitachi.
U.S. Pat. No. 10,492,252 ('252 Patent″)—Exhibit B-03—Mueller.
U.S. Pat. No. 10,492,252 ('252 Patent″)—Exhibit B-04—NEC.
U.S. Pat. No. 10,492,252 ('252 Patent″)—Exhibit B-05—Miskin '299.
U.S. Pat. No. 10,492,252 ('252 Patent″)—Exhibit B-06—Mac Powerbook G3.
U.S. Pat. No. 10,492,252 ('252 Patent″)—Exhibit B-07—iPod G3.
U.S. Pat. No. 10,492,252 ('252 Patent″)—Exhibit B-08—iPAQ H5500.
U.S. Pat. No. 10,499,466 ('466 Patent″)—Exhibit C-01—Piepgrass.
U.S. Pat. No. 10,499,466 ('466 Patent″)—Exhibit C-02—Hitachi.
U.S. Pat. No. 10,499,466 ('466 Patent″)—Exhibit C-03—Mueller.
U.S. Pat. No. 10,499,466 ('466 Patent″)—Exhibit C-04—NEC.
U.S. Pat. No. 10,499,466 ('466 Patent″)—Exhibit C-05—Miskin '299.
U.S. Pat. No. 10,499,466 ('466 Patent″)—Exhibit C-06—Mac Powerbook G3.
U.S. Pat. No. 10,499,466 ('466 Patent″)—Exhibit C-07—iPod G3.
U.S. Pat. No. 10,499,466 ('466 Patent″)—Exhibit C-08—iPAQ H5500.
U.S. Pat. No. 10,506,674 ('674 Patent″)—Exhibit D-01—Piepgrass.
U.S. Pat. No. 10,506,674 ('674 Patent″)—Exhibit D-02—Hitachi.
U.S. Pat. No. 10,506,674 ('674 Patent″)—Exhibit D-03—Mueller.
U.S. Pat. No. 10,506,674 ('674 Patent″)—Exhibit D-04—NEC.
U.S. Pat. No. 10,506,674 ('674 Patent″)—Exhibit D-05—Miskin '299.
U.S. Pat. No. 10,506,674 ('674 Patent″)—Exhibit D-06—Mac Powerbook G3.
U.S. Pat. No. 10,506,674 ('674 Patent″)—Exhibit D-07—iPod G3.
U.S. Pat. No. 10,506,674 ('674 Patent″)—Exhibit D-08—iPAQ H5500.
U.S. Pat. No. 10,517,149 ('149 Patent″)—Exhibit E-01—Lys '626.
U.S. Pat. No. 10,517,149 ('149 Patent″)—Exhibit E-02—KR '747.
U.S. Pat. No. 10,517,149 ('149 Patent″)—Exhibit E-03—KR '215.
U.S. Pat. No. 10,517,149 ('149 Patent″)—Exhibit E-04—iColor System.
U.S. Pat. No. 10,517,149 ('149 Patent″)—Exhibit E-05—Miskin '299.
U.S. Pat. No. 10,687,400 ('400 Patent″)—Exhibit F-01—Lys '626.
U.S. Pat. No. 10,687,400 ('400 Patent″)—Exhibit F-02—KR '747.
U.S. Pat. No. 10,687,400 ('400 Patent″)—Exhibit F-03—CK LEDs.
U.S. Pat. No. 10,687,400 ('400 Patent″)—Exhibit F-04—Miskin '299.
U.S. Pat. No. 10,750,583 ('583 Patent″)—Exhibit G-01—Lys '626.
U.S. Pat. No. 10,750,583 ('583 Patent″)—Exhibit G-02—KR 747.
U.S. Pat. No. 10,750,583 ('583 Patent″)—Exhibit G-03—KR 215.
U.S. Pat. No. 10,750,583 ('583 Patent″)—Exhibit G-04—iColor System.
U.S. Pat. No. 10,750,583 ('583 Patent″)—Exhibit G-05—Piepgrass.
U.S. Pat. No. 10,750,583 ('583 Patent″)—Exhibit G-06—Miskin 299.
U.S. Pat. No. 10,966,298 ('298 Patent″)—Exhibit H-01—Piepgrass.
U.S. Pat. No. 10,966,298 ('298 Patent″)—Exhibit H-02—Hitachi.
U.S. Pat. No. 10,966,298 ('298 Patent″)—Exhibit H-03—Mueller.
U.S. Pat. No. 10,966,298 ('298 Patent″)—Exhibit H-04—NEC.
U.S. Pat. No. 10,966,298 ('298 Patent″)—Exhibit H-05—Miskin '299.
Lynk Labs, Inc., v. Home Depot USA, Inc. The Home Dept Inc., and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Home Depot's Preliminary Invalidity Contentions and Additional Disclosure Pursuant to Scheduling Order dated Aug. 18, 2021—22 pages.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-01—Takeo '301.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-02—Lynam '623.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-03—Filipovsky '319.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-04 Deese '719.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-05 Okuno.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-06 —Ohishi '319.
U.S. Pat. No. 10,492,251 ('251 Patent″)—Exhibit A-07 Teshima.
U.S. Pat. No. 10,349,479 (“'479 Patent”)—Exhibit B-01 Dowling.
U.S. Pat. No. 10,349,479 (“'479 Patent”)—B-02 Ter Weeme.
U.S. Pat. No. 10,349,479 (“'479 Patent”)—Exhibit B-03 Lin.
U.S. Pat. No. 10,349,479 (“'479 Patent”)—Exhibit B-04 Lys '483.
U.S. Pat. No. 10,349,479 (“'479 Patent”)—Exhibit B-05 Leong '814.
U.S. Pat. No. 10,349,479 (“'479 Patent”)—Exhibit B-06 Calon.
U.S. Pat. No. 10,349,479 (“'479 Patent”)—Exhibit B-07 Nakagawara.
U.S. Pat. No. 10,757,783 (“'783 Patent”)—Exhibit C-01 Grajcar.
U.S. Pat. No. 10,757,783 (“'783 Patent”)—Exhibit C-02 Reymond.
U.S. Pat. No. 10,757,783 (“'783 Patent”)—Exhibit C-03 Walter.
U.S. Pat. No. 10,757,783 (“'783 Patent”)—Exhibit C-04 Lyos '901.
U.S. Pat. No. 10,757,783 (“'783 Patent”)—Exhibit C-05 Hair.
U.S. Pat. No. 10,757,783 (“'783 Patent”)—Exhibit C-06 Cho.
U.S. Pat. No. 10,757,783 (“'783 Patent”)—Exhibit C-07 Coleman.
U.S. Pat. No. 10,757,783 (“'783 Patent”)—Exhibit C-08 Shimizu.
U.S. Pat. No. 10,154,551 (“'551 Patent”)—Exhibit D-01 Saito.
U.S. Pat. No. 10,154,551 (“'551 Patent”)—Exhibit D-02 Hochstein '168.
U.S. Pat. No. 10,154,551 (“'551 Patent”)—Exhibit D-03 Reymond.
U.S. Pat. No. 10,154,551 (“'551 Patent”)—Exhibit D-04 Panagotacos.
U.S. Pat. No. 10,154,551 (“'551 Patent”)—Exhibit D-05 Liu.
U.S. Pat. No. 10,154,551 (“'551 Patent”)—Exhibit D-06 Deese 450.
U.S. Pat. No. 10,154,551 (“'551 Patent”)—Exhibit D-07 Lys.
U.S. Pat. No. 10,154,551 (“'551 Patent”)—Exhibit D-08 Shimizu.
U.S. Pat. No. 10,517,149 (“'149 Patent”)—Exhibit E-01 Takahashi.
U.S. Pat. No. 10,517,149 (“'149 Patent”)—Exhibit E-02 Saito '590.
U.S. Pat. No. 10,517,149 (“'149 Patent”)—Exhibit E-03 Lys '399.
U.S. Pat. No. 10,517,149 (“'149 Patent”)—Exhibit E-04 Catalano '081.
U.S. Pat. No. 10,517,149 (“'149 Patent”)—Exhibit E-05 Deese 719.
U.S. Pat. No. 10,652,979 (“'979 Patent”)—Exhibit F-01 Coats '555.
U.S. Pat. No. 10,652,979 (“'979 Patent”)—Exhibit F-02 Birrell '406.
U.S. Pat. No. 10,652,979 (“'979 Patent”)—Exhibit F-03 Muthu '159.
U.S. Pat. No. 10,652,979 (“'979 Patent”)—Exhibit F-04 Teshima '408.
U.S. Pat. No. 10,652,979 (“'979 Patent”)—Exhibit F-05 Takeo.
U.S. Appl. No. 10,652,979 (“'979 Patent”)—Exhibit F-06 Deese '719.
U.S. Appl. No. 60/839,453, dated on Aug. 23, 2006, entitled “Lighting Device and Lighting Method” to Van de Ven and Negley, (“453 Provisional”).
U.S. Appl. No. 60/793,524, dated on Apr. 20, 2006, entitled “Lighting Device and Lighting Method” to Van de Ven and Negley, (“524 Provisional”).
U.S. Appl. No. 60/844,325, dated Sep. 13, 2006, entitled “Boost/Flyback Power Supply. Topology With Low Side Mosfet Current Control” to Myers (“Myers”).
Interim LED Purchase Specifications of the Institute of Transportation Engineers, Jul. 1998 (“1998 Specification”).
“Comparison of Control Options in Private Offices in an Advanced Lighting Controls Testbed,” by Judith D. Jennings et al., and published in Apr. 1999 (“Jennings”).
“Vehicle Detection Using a Magetic Field Sensor,” by Stanely V. Marshall, and published in May 1978 (“Marshall”).
U.S. Pat. No. 10,091,842 (“'842 Patent”)—Exhibit G-01 Bruning.
U.S. Pat. No. 10,091,842 (“'842 Patent”)—Exhibit G-02 Ohishi '319.
U.S. Pat. No. 10,091,842 (“'842 Patent”)—Exhibit G-03 Ruxton.
U.S. Pat. No. 10,091,842 (“'842 Patent”)—Exhibit G-04 Walding.
U.S. Pat. No. 10,091,842 (“'842 Patent”)—Exhibit G-05 Bohn.
U.S. Pat. No. 10,091,842 (“'842 Patent”)—Exhibit G-06 Dowling.
U.S. Pat. No. 10,537,001 (“'001 Patent”)—Exhibit H-01 Lys '321.
U.S. Pat. No. 10,537,001 (“'001 Patent”)—Exhibit H-02 Lys '321.
U.S. Pat. No. 10,537,001 (“'001 Patent”)—Exhibit H-03 Miskin.
U.S. Pat. No. 10,537,001 (“'001 Patent”)—Exhibit H-04 Leong '003.
U.S. Pat. No. 10,537,001 (“'001 Patent”)—Exhibit H-05 Konno.
U.S. Pat. No. 10,932,341 (“'341 Patent”)—Exhibit 1-01 Ohishi '009.
U.S. Pat. No. 10,932,341 (“'341 Patent”)—Exhibit 1-02 Muthu '558.
U.S. Pat. No. 10,932,341 (“'341 Patent”)—Exhibit 1-03 Dowling.
U.S. Pat. No. 10,932,341 (“'341 Patent”)—Exhibit 1-04 Konno.
U.S. Pat. No. 10,932,341 (“'341 Patent”)—Exhibit 1-05 Leong '003.
U.S. Pat. No. 10,932,341 (“'341 Patent”)—Exhibit 1-06 Reymond.
“White Light Emitting Diode Development for General Illumination Applications” to James Ibbetson, published on May 1, 2006 (“Ibbetson”).
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. Patent Owner—U.S. Pat. No. 10,154,551 Petition for Inter Partes Review of U.S. Pat. No. 10,154,551—90 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. Patent Owner—U.S. Pat. No. 10,154,551 Power of Attorney for Petitioner Samsung Electronics, Co., Ltd. U.S. Pat. No. 10,154,551—3 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. Patent Owner—U.S. Pat. No. 10,652,979 Petition for Inter Partes Review of U.S. Pat. No. 10,652,979—84 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. Patent Owner—U.S. Pat. No. 10,652,979 Power of Attorney for Petitioner Samsung Electronics, Co., Ltd. U.S. Pat. No. 10,652,979—3 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. Patent Owner—U.S. Pat. No. 10,154,551 Declaration of R. Jacob Baker, Ph.D., Re in support of Petition for Inter Partes Review of U.S. Pat. No. 10,154,551—175 pp. Ex. 1002.
R. Jacob (Jake) Baker, Ph.D., P.E. CV—36 pages, Patents '252, '298, '466, '551, '674, '697, '979—Ex-1003.
File History US 10154551 U.S. Appl. No. 15/797,806 dated Oct. 30, 2017—Ex. 1004.
Williams, Tim, “The Circuit Designer's Companion,” 2021, 314 pages—(Parts 1 and 2), '551 Ex. 1013.
Chambers, Dictionary of Science and Technology, published Chambers Harrap Publishers Ltd 1999, 8 pages, '551—Ex. 1024.
Samsung Electronics Co. Ltd. and Samsung Electronics America, Inc. v. Lynk Labs, Inc. Defendant Lynk Labs, Inc.'s Supplement to Second Amended Preliminary Infringement Contentions ('551 Patent and '979 Patent), Case No. 1:21w-02665, filed Sep. 22, 2021, 14 pages—Ex. 1072.
Lynk Labs, Inc. v. Samsung Electronics Co. Ltd. and Samsung Electronics America, Inc. Case No. 6:21-cv-00526 Complaint for Patent Infringement dated May 25, 2021, '551 12 pages—Ex. 1074.
Lynk Labs, Inc. v. Samsung Electronics Co. Ltd. and Samsung Electronics America, Inc. Case No. 6:21-cv-00526 First Amended Complaint for Patent Infringement dated Jun. 9, 2021, 18 pages—Ex. 1075.
Samsung Electronics Co. Ltd. and Samsung Electronics America, Inc. v. Lynk Labs, Inc. Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc's Second Amended Complaint for Declaratory Judgment of Non-Infringement, Case No. 1:21-cv-02665, dated Sep. 8, 2021, 44 pages—Ex. 1076.
Samsung Electronics Co. Ltd. et al. v. Lynk Labs, Inc. Civil Docket for Case #1:21-cv-02665 dated Sep. 27, 2021 '551 12 pages—Ex. 1077.
Lynk Labs, Inc. v. Samsung Electronics Co. Ltd. et al. Civil Docket for Case #6:21-cv-00526-ADA dated Sep. 27, 2021 '551 8 pages—Ex. 1078.
Lynk Labs, Inc. v. Samsung Electronics Co. Ltd. et al. Civil Docket for Case #1:21-cv-05126 dated Sep. 29, 2021 '551 8 pages—Ex. 1079.
Lynk Labs, Inc. v. Samsung Electronics Co. Ltd. et al. Case No. 6:21-cv-00526-ADS Order Granting Plaintiff Lynk Labs, Inc.'s Stipulation to Transfer '551 2 pages—Ex. 1080.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. Patent Owner—U.S. Pat. No. 10,652,979 Declaration of R. Jacob Baker, Ph.D., P.E. In support of Petition for Inter Partes Review of U.S. Pat. No. 10,652,979—174 pages—Ex. 1002.
McGraw-Hill Dictionary of Scientific and Technical Term, Sixth Edition, '979—9 pages—Ex. 1018.
Declaration of R. Jacob Baker. Ph.D., P.E. U.S. Pat. No. 10,154,551, Inter Partes Review of U.S. Pat. No. 10,154,551, 176 pages—Ex 1002.
Petition for Inter Partes Review, Home Depot USA, Inc., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case PR2021-01369 U.S. Pat. No. 10,492,251, dated Nov. 26, 2019, Title: “AC Light Emitting Diode and AC LED Drive Methods and Apparatus,” 53 pages dated Aug. 18, 2021.
Petitioners' Power of Attorney, Home Depot USA, Inc., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-01369 U.S. Pat. No. 10,492,251, dated Nov. 26, 2019, Title: “AC Light Emitting Diode and AC LED Drive Methods and Apparatus,” 53 pages dated Aug. 17, 2021.
Declaration of Dr. Lebby U.S. Pat. No. 10,492,251 dated Aug. 18, 2021, 134 pages—Ex 1002.
U.S. Appl. No. 16/148,945 dated Oct. 1, 2018—Ex. 1003.
Complaint for Patent Infringement, Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 6:21-cv-00097-ADA, dated Jan. 29, 2021, 88 pages—Ex. 1010.
Plaintiff Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions, Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 6:21-cv-00097-ADA, dated Jun. 23, 2021, 7 pages—Ex. 1011.
Scheduling Order, Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 6:21-cv-00097-ADA, dated Aug. 13, 2021, 4 pages—Ex. 1012.
Petition for Inter Partes Review, Home Depot USA, Inc., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-01370 U.S. Pat. No. 10,349,479, dated Jul. 9, 2019, Title: “Color Temperature Controlled and Low THD LED Lighting Devices and Systems and Methods of Driving the Same,” 52 pages dated Aug. 18, 2021.
Petitioner's Power of Attorney, Home Depot USA, Inc., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-01370 U.S. Pat. No. 10,349,479, dated Jul. 9, 2019, Title: “Color Temperature Controlled and Low THD LED Lighting Devices and Systems and Methods of Driving the Same,” 2 pages dated Aug. 17, 2021.
Declaration of Dr. Dean Neikirk U.S. Pat. No. 10,349,479, Inter Partes Review No.: IPR2021-01370, 98 pages—Ex 1002.
U.S. Appl. No. 15/369,218 dated Dec. 5, 2016, 617 pages—Ex 1003.
U.S. Appl. No. 61/630,025 dated Dec. 2, 2011, 39 pages—Ex 1011.
U.S. Appl. No. 61570200 dated Dec. 13, 2011, 51 pages—Ex 1012.
Complaint for Patent Infringement, Case No. 6:21-cv-00097, Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, dated Jan. 29, 2021, 88 pages—Ex 1014.
Plaintiff Amended Preliminary Infringement Contentions, Lynk Lab's, Inc.'s, Case No. 6:21-cv-00097-ADA, Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, dated Jun. 23, 2021, 7 Pages—Ex 1015.
Scheduling Order, Case No. 6:21-cv-00097-ADA, Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, dated Aug. 13, 2021, 4 pages—Ex 1016.
U.S. Pat. No. 10,966,298 ('298 Patent″)—Exhibit H-06—Mac Powerbook G3.
U.S. Pat. No. 10,966,298 ('298 Patent″)—Exhibit H-07—iPod G3.
U.S. Pat. No. 10,966,298 ('298 Patent″)—Exhibit H-08—iPAQ H5500.
U.S. Pat. No. 11,019,697 ('697 Patent″)—Exhibit 1-01—Piepgrass.
U.S. Pat. No. 11,019,697 ('697 Patent″)—Exhibit 1-02—Hitachi.
U.S. Pat. No. 11,019,697 ('697 Patent″)—Exhibit 1-03—Mueller.
U.S. Pat. No. 11,019,697 ('697 Patent″)—Exhibit 1-04—NEC.
U.S. Pat. No. 11,019,697 ('697 Patent″)—Exhibit 1-05—Miskin '299.
U.S. Pat. No. 11,019,697 ('697 Patent″)—Exhibit 1-06—Mac Powerbook G3.
U.S. Pat. No. 11,019,697 ('697 Patent″)—Exhibit 1-07—iPod G3.
U.S. Pat. No. 11,019,697 ('697 Patent″)—Exhibit 1-08—iPAQ H5500.
Macintosh PowerBook G3, 1999.
Apple iPod Third Generation User's Guide, released Apr. 29, 2003.
“HP iPAQ Pocket PC H5500,” GadgetSpeak, published Nov. 6, 2003.
Light-Emitting Diodes by E. Fred Schubert, published in 2003 (“Schubert”).
Fundamentals of LED Drivers by A. Hernandez et al., published in 2003 (“Hernandez”).
Color System by Kinetics iColor MR Data Sheet.
WDS Wireless Dimming System Operator's Manual published in 2003 (“WDS-Manual”).
AND8137/D—High Current LED—Isolated Low Voltage AC Drive—Application Note by Carl Walding, published in Oct. 2003 (“AND8137/D”).
Characteristics of high-efficient InGaN-based white LED lighting by Yuji Uchida, published in 2011 (“Uchida”).
U.S. Appl. No. 61/333,963 dated May 12, 2010, 52 pages—IPR2021-01299 Ex 1036; IPR2021-10347 Ex 1055' IPR2021-01346 Ex 1036, IPR2021-01345 Ex 1037; IPR2021-01300 Ex 1036.
U.S. Appl No. 61/284,927 dated Dec. 28, 2009, 54 pages—IPR2021-01299 Ex 1037; IPR2021-10347 Ex 1056; IPR2021-01346 Ex 1037, IPR2021-01345 Ex 1037; IPR2021-01300 Ex 1037.
U.S. Appl. No. 61/335,069 dated Dec. 31, 2009, 65 pages—IPR2021-01299 Ex 1038; IPR2021-10347 Ex 1057; IPR2021-01346 Ex 1038, IPR2021-01345 Ex 1038, IPR2021-01300 Ex 1038.
U.S. Appl. No. 60/997,771 dated Oct. 6, 2007, 26 pages—IPR2021-01299 Ex 1039; IPR2021-10347 Ex 1058; IPR2021-01346 Ex 1039, IPR2021-01345 Ex 1039; IPR2021-01300 Ex 1039.
U.S. Appl. No. 60/547,653 dated Feb. 25, 2004, 84 pages—IPR2021-01299 Ex 1040; IPR2021-10347 Ex 1059; IPR2021-01346 Ex 1040, IPR2021-01345 Ex 1040; IPR2021-01300 Ex 1040.
U.S. Appl. No. 60/559867 dated Feb. 25, 2004, 90 pages—IPR2021-01299 Ex 1041; IPR2021-10347 Ex 1060; IPR2021-01346 Ex 1041, IPR2021-01345 Ex 1041; IPR2021-01300 Ex 1041.
U.S. Appl. No. 61/217,215 dated May 28, 2008, 47 pages—IPR2021-01299 Ex 1042; IPR2021-10347 Ex 1061; IPR2021-01346 Ex 1042, IPR2021-01345 Ex 1042; IPR2021-01300 Ex 1042.
U.S. Appl. No. 61/215,144 dated May 1, 2009, 11 pages—IPR2021-01299 Ex 1043; IPR2021-10347 Ex 1062; IPR2021-01346 Ex 1043, IPR2021-01345 Ex 1043; IPR2021-01300 Ex 1043.
Watson, John, Mastering Electonics, Third Ed., McGraw Hill Inc., published in 1990—IPR2021-01299 Ex 1080; IPR2021-10347 Ex 1026; IPR2021-01346 Ex 1062; IPR2021-01345 Ex 1060; IPR2021-01300 Ex 1006.
Sedra, A., et al, Microelectronic Circuits, Fourth Ed., Oxford University Press, published in 1998—IPR2021-01299 Ex 1081; IPR2021-10347 Ex 1027; IPR2021-01346 Ex 1063; IPR2021-01345 Ex 1061 (4 parts); IPR2021-01300 Ex 1007.
Compaq Comp. Corp. et al, Universal Serial Bus Specification Revision 2.0 published in 2000, 650 pages—IPR2021-01299 Ex 1091; IPR2021-10347 Ex 1095; IPR2021-01346 Ex 1069; IPR2021-01345 Ex 1072; IPR2021-01300 Ex 1055.
Declaration of R. Jacob Baker. Ph.D., P.E. US Patent No. 10,966,298, Inter Partes Review No: IPR2021-01347, 152 pages—Ex 1002.
Gilbisco, Stan, Handbook of Radio & Wireless Technology, published in 1999, 188 pages, McGraw-Hill—IPR2021-10347 Ex 1013.
Petition for Inter Partes Review, Samsung Electronics Co., Ltd., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-01347 U.S. Pat. No. 10,966,298, Issue Dated Dec. 3, 2019, Title: “AC Light Emitting Diode and AC LED Drive Methods and Apparatus,” 70 pages. dated Sep. 7, 2021.
Petition for Inter Partes Review, Samsung Electronics Co., Ltd., Petitioner, v. Lynk Labs, Inc., Patent Dwner, Case IPR2021-01346 U.S. Pat. No. 10,499,466, Issue Date Dec. 10, 2019, Title: “AC Light Emitting Diode and AC LED Drive Methods and Apparatus,” 70 pages dated Sep. 7, 2021.
Petition for Inter Partes Review, Samsung Electronics Co., Ltd., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-01345 U.S. Pat. No. 10,492,252, Issue Date Nov. 26, 2019, Title: “AC Light Emitting Diode and AC LED Drive Methods and Apparatus,” 65 pages dated Sep. 7, 2021.
Petition for Inter Partes Review, Samsung Electronics Co., Ltd., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-01300 U.S. Pat. No. 11,019,697, Issue Date May 25, 2019, Title: “AC Light Emitting Diode and AC LED Drive Methods and Apparatus,” 71 pages dated Sep. 7, 2021.
Petition for Inter Partes Review, Samsung Electronics Co., Ltd., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-01299 U.S. Pat. No. 10,506,674, Issue Date Dec. 10, 2019, Title: “AC Light Emitting Diode and AC LED Drive Methods and Apparatus,” 70 pages dated Sep. 7, 2021.
Plaintiff's First Amended Complaint for Patent Infringement, Case no. 6:21-cv-00526-ADA, Lynk Labs, Inc. v. Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc. dated Jun. 9, 2021, 18 pages—IPR2021-01346 Ex 1080, PR2021-01345 Ex 1056; IPR2021-01300 Ex 1086.
Defendant's Preliminary Infringement Contentions, Case No. 1:21-cv-2655, Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc. v. Lynk Labs, Inc., dated Jul. 21, 2021, 9 pages—IPR2021-01346 Ex 1081, IPR2021-01345 Ex 1057, IPR2021-01300 Ex 1080.
Defendant's Answer and Counterclaims, Case No. 1:21-cv-2665, Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc. v. Lynk Labs, Inc., dated Aug. 3, 2021, 67 pages—IPR2021-01346 Ex 1083, IPR2021-01345 Ex 1077, IPR2021-01300 Ex 1082.
Defendant's Amended Preliminary Infringement Contentions, Case No. 1:21-cv-2665, Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc. v. Lynk Labs, Inc., dated Aug. 31, 2021, 9 pages—IPR2021-01346 Ex 1086; IPR2021-01345 Ex 1086; IPR2021-01300 Ex 1087.
Scheduling Order, Case No. 1:21-cv-2665, Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc. v. Lynk Labs, Inc., dated Aug. 19, 2021—IPR2021-01346 Ex 1085, IPR2021-01345 Ex 1085, IPR2021-01300 Ex 1084.
Notification of Docket Entry, Case No. 1:21-cv-2665, Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc. v. Lynk Labs, Inc., dated Jul. 27, 2021, 1 page—IPR2021-01346 Ex 1084, IPR2021-01345 Ex 1084, IPR2021-01300 Ex 1083.
Declaration of R. Jacob Baker. Ph.D., P.E. U.S. Pat. No. 10,499,466, 187 pages, Inter Partes Review No: IPR2021-01346—Ex 1002.
Declaration of R. Jacob Baker. Ph.D., P.E. U.S. Pat. No. 10,492,252, 148 pages, Inter Partes Review No: IPR2021-01345—Ex 1002.
Declaration of R. Jacob Baker. Ph.D., P.E. U.S. Pat. No. 11,019,697, 261 pages, Inter Partes Review No: IPR2021-01300—Ex 1002.
Declaration of R. Jacob Baker. Ph.D., P.E. U.S. Pat. No. 10,506,674, 172 pages, Inter Partes Review No: IPR2021-01299—Ex 1002.
Declaration of R. Jacob Baker. Ph.D., P.E. U.S. Pat. No. 10,999,298, 152 pages, Inter Partes Review No: IPR2021-01347—Ex 1002.
Plaintiff's Complaint, Case No. 1:21-cv-2665, Lynk Labs, Inc. v. Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc., dated May 25, 2021, 12 pages—IPR2021-01300 Ex 1074.
Plaintiff's First Amended Complaint, Case No. 1:21-cv-2665, Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc. v. Lynk Labs, Inc., dated May 25, 2021, 33 pages—IPR2021-01300 Ex 1075.
Plaintiff's Complaint, Case No. 1:21-cv-2665, Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc. v. Lynk Labs, Inc., dated May 17, 2021, 30 pages—IPR2021-01300 Ex 1076.
The Microarchitecture of the Pentium 4 Processor by Hinton et al., published in 2001, 13 pages—IPR2021-01300 Ex 1017.
Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs) by IEEE Computer Society, 1018 IEEE 812.15.1, published in 2002, 1168 pages—IPR2021-01300 Ex 1018.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc. Patent Owner—Power of Attorney for Petitioner Samsung Electronics Co., Ltd. U.S. Pat. No. 10,492,252, dated Jul. 21, 2021—3 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01345 , U.S. Pat. No. 10,492,252—Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response dated Sep. 7, 2021—5 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01345 , U.S. Pat. No. 10,492,252—Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. Section 42.8—dated Sep. 28, 2021—5 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc. Patent Owner—Power of Attorney for Petitioner Samsung Electronics Co., Ltd. U.S. Pat. No. 10,966,298 dated Jul. 21, 2021—3 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01347, U.S. Pat. No. 10,966,298—Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response dated Sep. 7, 2021—5 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01347 , U.S. Pat. No. 10,966,298—Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. Section 42.8—dated Sep. 28, 2021—5 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc. Patent Owner—Power of Attorney for Petitioner Samsung Electronics Co., Ltd. U.S. Pat. No. 10,499,466 dated Jul. 21, 2021—3 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01346, U.S. Pat. No. 10,499,466—Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response dated Sep. 7, 2021—5 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01346 , U.S. Pat. No. 10,499,466—Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. Section 42.8—dated Sep. 28, 2021—5 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Patent Owner—Power of Attorney for Petitioner Samsung Electronics Co., Ltd. U.S. Pat. No. 11,019,697 dated Jul. 21, 2021—3 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01300, U.S. Pat. No. 11,019,697—Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response dated Sep. 7, 2021—6 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01300 , U.S. Pat. No. 11,019,697—Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. Section 42.8—dated Sep. 28, 2021—5 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01300 , U.S. Pat. No. 11,019,697—Petitioner's Response to Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response (Paper No. 3) dated Sep. 20, 2021—3 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01300, U.S. Pat. No. 11,019,697—Notice of Accepting Corrected Petition dated Sep. 20, 2021—2 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc. Patent Owner—Power of Attorney for Petitioner Samsung Electronics Co., Ltd. U.S. Pat. No. 10,506,674 dated Jul. 21, 2021—3 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc., Case IPR2021-01299, U.S. Pat. No. 10,506,674—Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response dated Sep. 7, 2021—6 pages.
Petition for Inter Partes Review, Home Depot USA, Inc., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-001367 U.S. Pat. No. 10,154,551, Issue Date Dec. 11, 2018, Title: “AC Light Emitting Diode and AC LED Drive Methods and Apparatus,” 93 pages dated Aug. 18, 2021.
Petitioners' Power of Attorney, Home Depot USA, Inc., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-001367 U.S. Pat. No. 10,154,551, Issue Date Dec. 11, 2018, Title: “AC Light Emitting Diode and AC LED Drive Methods and Apparatus,” 2 pages dated Aug. 17, 2021.
Declaration of Dr. Dean Neikirk—U.S. Pat. No. 10,154,551, Claims 1, 3, 4, 5, 7, 8—141 pages—Ex 1002.
U.S. Appl. No. 15/797,806—Now U.S. Pat. No. 10154551—Ex 1003.
U.S. Appl. No. 11/066,414—Now U.S. Pat. No. 7,489,086 dated Feb. 10, 2009—Ex 1005.
IEEE 100, The Authoritative Dictionary of IEEE Standards Terms—Seventh Edition, 3 pages—Ex 1010.
Complaint for Patent Infringement Lynk Labs, Inc. Plaintiff v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC Defendants, Case No. 6:21-cv-00097, dated Jan. 20, 2021—Ex. 1011.
Azazi et al., “Review of Passive and Active Circuits for Power Factor Correction in Single Phase, Low Power AC-DC converters,” Proceedings of the 14th International Middle East Power Systems Conference (MEPCON'10) Cairo University, Egypt, Dec. 19-21, 2010, Paper ID 154, 8 pages—Ex 1016.
U.S. Appl. No. 60/547,653 dated Feb. 25, 2004—Ex 1017.
U.S. Appl. No. 60/559,867 dated Feb. 25, 2004—Ex 1018.
U.S. Appl. No. 60/997,771 dated Oct. 6, 2007—Ex 1019.
U.S. Appl. No. 61/215,144 dated May 1, 2009—Ex 1022.
U.S. Appl. No. 61/217,215 dated May 28, 2009—Ex 1023.
U.S. Appl. No. 61/284,927 dated Dec. 28, 2009—Ex 1024.
U.S. Appl. No. 61/335,069 dated Dec. 31, 2009—Ex 1025.
U.S. Appl. No. 61/333,963 dated May 12, 2010—Ex 1026.
Plaintiff Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions, Case No. 6:21-cv-00097-ADA dated Jun. 23, 2021, 7 pages—Ex 1034.
U.S. Appl. No. 60/379,079 dated May 9, 2002—Ex 1035.
U.S. Appl. No. 60/391,627 dated Jun. 26, 2002—Ex 1036.
Institute of Transportation Engineers Publication No. ST-017B, 1997 ISBN: 0-935403-16-7, ITE Specification (1833694151), Chapter 2 Vehicle Traffic Control Signal Heads, 25 pages—Ex 1038.
Osorno, “Fourier Analysis of a Single-Phase Full Bridge Rectifier Using Matlab,” California State University Northridge, 2002-774, 9 pages—Ex 1039.
Scheduling Order Lynk Labs, Inc. Plaintiff v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC Defendants, Case No. 6:21-cv-00097, dated Aug. 13, 2021—Ex. 1040.
Vachak et al., “Power Factor Correction Circuits: Active Filters,” International Journal of Engineering Research and General Science, Vol. 2, Issue 5, Aug.-Sep. 2014, ISSAN 2091-2730, 9 pages—Ex 1041.
Petition for Inter Partes Review, Home Depot USA, Inc., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-001368 U.S. Pat. No. 10,757,783, Issue Date Aug. 25, 2020, Title: “Color Temperature Controlled and Low THD LED Lighting Devices and Driving the Same,” 95 pages dated Aug. 18, 2021.
Petitioners' Power of Attorney, Home Depot USA, Inc., Petitioner, v. Lynk Labs, Inc., Patent Owner, Case IPR2021-001368 U.S. Pat. No. 10,757,783, Issue Date Aug. 25, 2020, Title: “Color Temperature Controlled and Low THD LED Lighting Devices and Driving the Same,” 2 pages dated Aug. 17, 2021.
Declaration of Dr. Lebby U.S. Pat. No. 10,757,783 dated Aug. 18, 2021, 187 pages—Ex 1002.
U.S. Appl. No. 16,440,884, dated Jun. 13, 2019, 341 pages—Ex 1003.
Institute of Transportation Engineers, Publication No. ST-017B 300/IG/102, ISBN 0-935403-16-7 (1998), 25 pages—Ex 1007.
Complaint for Patent Infringement Lynk Labs, Inc. v. Home Depot USA Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 6:21-cv-00097, dated Jan. 29, 2021, 86 pages—Ex. 1010.
U.S. Appl. No. 61/630,025 dated Dec. 2, 2011, 39 pages—Ex 1012.
U.S. Appl. No. 61/570,200 dated Dec. 13, 2011, 51 pages—Ex 1013.
Plaintiff Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions, Case No. 6:21-cv-00097-ADA, dated Jun. 23, 2021, 7 pages—Ex 1019.
Okon et al., “The First Practical LED”, Received: Nov. 9, 2015, 14 pages—Ex 1020.
Scheduling Order, Case No. 6:21-cv-00097-ADA dated Aug. 13, 2021, 4 pages—Ex 1021.
U.S. Appl. No. 61/233,829, dated Aug. 14, 2009, 36 pages—Ex 1022.
Home Depot USA, Inc., v. Lynk Labs, Inc. Case IPR2021-01540, U.S. Pat. No. 10,091,842—Declaration of Dr. Lebby; Issue Date Oct. 2, 2018—158 pages—Ex. 1002.
U.S. Appl. No. 15/334,029 dated Oct. 25, 2016—646 pages—Ex. 1003.
Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc. and Home Depot Product Authority, LLC, Case No. 6:21-cv-00097-ADA, Complaint for Patent Infringement filed Jan. 29, 2021—88 pages—Ex. 1004.
Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc. and Home Depot Product Authority, LLC, Case No. 6:21-cv-00097-ADA, Scheduling Order filed Aug. 13, 2021—4 pages—Ex. 1006.
Signalized Intersection Safety in Europe, Dec. 2003, Publication No. FHWA-PL-02-020, Office of International Programs; International ©fhwa.dot.gov; www.international.fhwa.dot.gov—126 pages—Ex 1010.
Ohno et al., “Traffic Light Queues with Departure Headway Depending Upon Positions,” Kyoto University, J. Operations Research So. of Japan, vol. 17, No. 3, Sep. 1974—pp. 146-169—Ex. 1011.
U.S. Appl. No. 61/333,963 dated May 12, 2010—52 pages—Ex. 1021.
U.S. Appl. No. 61/284,927 dated Dec. 28, 2009—26 pages—Ex. 1022.
U.S. Appl. No. 61/335,069 dated Dec. 31, 2009—36 pages—Ex. 1023.
U.S. Appl. No. 60/997,771 dated Oct. 6, 2007—24 pages—Ex. 1024.
U.S. Appl. No. 60/547,653 dated Feb. 25, 2004—83 pages—Ex. 1025.
U.S. Appl. No. 60/559,867 dated Feb. 25, 2004—89 pages—Ex. 1026.
U.S. Appl. No. 61/217,215 dated May 28, 2009—32 pages—Ex. 1027.
U.S. Appl. No. 61/215,144 dated May 1, 2009—11 pages—Ex. 1028.
E. Fred Schubert, “Light Emitting Diodes,” Rensselaer Polytechnic Institute, Cambridge University Press, 2002—327 page—Ex. 1030.
IEEE 100 The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition—4 pages—Ex. 1032.
Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc. and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Preliminary Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions dated Jun. 23, 2021, 264 pages—Ex. 1005 (excerpts).
Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc. and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Preliminary Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions dated Jun. 23, 2021, 100 pages—Ex. 1012 (Part 1).
Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc. and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Preliminary Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions dated Jun. 23, 2021, 102 pages—Ex. 1012 (Part 2).
Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc. and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Preliminary Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions dated Jun. 23, 2021, 102 pages—Ex. 1012 (Part 3).
Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Depot Inc. and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Preliminary Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions dated Jun. 23, 2021, 142 pages—Ex. 1012 (Part 4).
Home Depot USA, Inc., v. Lynk Labs, Inc., Case No. IPR2021-01540, U.S. Pat. No. 10,091,842, Petition for Inter Partes Review, Dated Oct. 2, 2018—74 pages.
Home Depot USA, Inc., v. Lynk Labs, Inc., Case No. IPR2021-01540, U.S. Pat. No. 10,091,842, Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response—dated Oct. 15, 2021—6 pages.
Home Depot USA, Inc., v. Lynk Labs, Inc., Case No. IPR2021-01540, U.S. Pat. No. 10,091,842, Petitioner's Power of Attomey, dated Oct. 2, 2018—2 pages.
Home Depot USA, Inc., v. Lynk Labs, Inc., Case No. IPR2021-01540, U.S. Pat. No. 10,091,842, Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. Section 42.8 dated Oct. 22, 2021—6 pages.
Home Depot USA, Inc., v. Lynk Labs, Inc., Case No. IPR2021-01541, U.S. Pat. No. 10,537,001, Declaration of Dr. Jena Neikirk, Filing Date Feb. 12, 2019, dated Jan. 14, 2020.
U.S. Appl. No. 16/274,164, dated Feb. 12, 2019—543 pages—Ex. 1003.
Lynk Labs, Inc., v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 3:21-cv-00097, Complaint for Patent Infringement Case dated Jan. 29, 2021—88 pages—Ex. 1011.
Lynk Labs, Inc., v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 3:21-cv-00097-ADA, Scheduling Order dated Aug. 13, 2021—4 pages—Ex. 1013.
U.S. Appl. No. 61/217,215 dated May 28, 2009—32 pages—Ex. 1014.
U.S. Appl. No. 60/997,771 dated Oct. 6, 2007—24 pages—Ex. 1015.
Lynk Labs, Inc., v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 3:21-cv-00097-ADA, Defendants' Opening Claim Construction Brief on the Terms of U.S. Patent Nos. 10,091,842, U.S. Pat. No. 10,154,551, U.S. Pat. No. 10,349,479, U.S. Pat. No. 10,492,251, U.S. Pat. No. 10,517,149, U.S. Pat. No. 10,537,001, U.S. Pat. No. 10,562,979, U.S. Pat. No. 10,757,783, and U.S. Pat. No. 10,932,341 dated Oct. 3, 2021—38 pages—Ex. 1019.
Response to Final Office Action U.S. Appl. No. 15/369,218 dated Jun. 13, 2018, 10 pages—Ex. 1020.
Non-Final Office Action U.S. Appl. No. 156/369,218 dated Oct. 2, 2018, 11 pages—Ex. 1021.
Non-Final Office Action U.S. Appl. No. 16/440,884 dated Jul. 23, 2019, 10 pages—Ex. 1023.
Continuation U.S. Appl. No. 16/369,218—original claims—Ex. 1024.
Response to Office Action U.S. Appl. No. 16/440,884, 11 pages—Ex. 1026.
Home Depot USA, Inc., v. Lynk Labs, Inc., Case No. IPR2021-01541, dated Feb. 12, 2019, Issue Date Jan. 14, 2020, Petition for Inter Partes Review of U.S. Pat. No. 10,537,007 Under 35 U.S.C. Section 311-319 and 37 C.F.R. Section 42.1-100, ET SEQ., 82 pages
Home Depot USA, Inc., v. Lynk Labs, Inc., Case No. IPR2021-01541, U.S. Pat. No. 10,537,001, Petitioner's Power of Attomey, dated Jan. 14, 2020—2 pages.
Home Depot USA, Inc., v. Lynk Labs, Inc., Case No. IPR2021-01541, U.S. Pat. No. 10,537,001, Patent Owner's Vlandatory Notices Pursuant to 37 C.F.R. Section 42.8 dated Nov. 10, 2021—6 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat. No. 10,687,400, Declaration of R. Jacob Baker Ph.D., P.E. In Support of Petition for Inter Partes Review of U.S. Pat. No. 10,687,400 dated Nov. 5, 2021—177 pages Ex. 1002.
Baker CV—37 pages Ex. 1003.
File History of U.S. Pat. No. 10,687,400 Parts 1-4 1181 pages Ex. 1004.
Watson Mastering Electronics, Third Edition, pp. 1-151—Ex. 1030, Ex. 1012, Ex. 1018, Ex. 1031.
Sedra/Smith, “Microelectronic Circuits,” Fourth Edition, Parts 1 -4, 515 pp. Ex. 1034, Ex. 1041, Ex. 1061, Ex. 1054.
Chamber Dictionary of Science and Technology, General Editor Professor Peter MB Walker, CBE, FRSE, Chambers Harrap Published Ltd. 1999 ISBN 0 550 14110 3, 4 pages Ex. 1047, Ex. 1024.
McGraw-Hill Dictionary of Scientific and Technical Terms, Sixth Edition, Library of Congress Cataloging in Publication Data , ISBN 0-07-042313-X, pp. 4 Ex. 1048, Ex. 1018.
U.S. Patent Provision Application 61-333,963 dated May 12, 2010 Ex. 1063.
U.S. Patent Provision Application 61-284,927 dated Dec. 28, 2009 Ex. 1064.
U.S. Patent Provision Application 61-335,069 dated Dec. 31, 2009 Ex. 1065.
U.S. Patent Provision Application 60-997,771 dated Oct. 6, 2007 Ex. 1066.
U.S. Patent Provision Application 60-547,653 dated Mar. 2, 2004 Ex. 1067.
U.S. Patent Provision Application 60-559,867 dated Apr. 8, 2004 Ex. 1068.
U.S. Patent Provision Application 61-217,215 dated May 28, 2009 Ex. 1069.
U.S. Patent Provision Application 61-215,144 dated May 1, 2009 Ex. 1070.
Docket from Samsung Electronics Co., Ltd. et al v. Lynk Labs, Inc. No. 1:21-cv-02665 printed Nov. 5, 2021—14 pages Ex. 1076.
Estimated Patent Case Schedule in Northern District of Illinois—2 pages Ex. 1079, Ex. 1062.
“Defendant Lynk Labs, Inc.'s Preliminary Infringement Contentions” from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665 datled Jul. 21, 2021—9 pages Ex. 1080.
U.S. Pat. No. 10,687,400 (“The ′400 Patent”) Exemplary Infringement Chart ACOM Round (US) as Appendix K-1—9 pages Exs. 1081, 1084.
“Defendant Lynk Labs, Inc.'s Answer to Plaintiffs Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc.'s First Amended Complaint and Counterclaims” from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665 dated Aug. 3, 2021—67 pages. Ex. 1082, Ex. 1071.
“Defendant Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions” from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665 dated Aug. 31, 2021—9 pages Ex. 1083, Ex. 1066.
“Notification of Docket Entry” from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665 dated Jul. 27, 2021—1 page Ex. 1085, Ex. 1068.
“Order” from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665, dated Aug. 19, 2021—2 pages Ex. 1086.
“Supplemental Report of Parties' Planning Meeting” from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665, dated Oct. 14, 2021—11 pages Ex. 1087, Ex. 1075, Ex. 1080.
“Defendant Lynk Labs, Inc.'s Supplement to Second Amended Preliminary Infringement Contentions ('551 Patent and 979 Patent)” from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665, dated Sep. 22, 2021—20 pages Ex. 1072.
“Order” from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665, dated Oct. 18, 2021—1 page Ex. 1088.
Tim Williams, The Circuit Designer's Companion, First Published 1991, ISBN 0 7506 1142 1, 314 pages—Ex. 1089, Ex. 1094.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat. No. 10,687,400, Petition for Inter Partes Review of U.S. Pat. No. 10,687,400 dated Nov. 12, 2021—96 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat. No. 10,687,400, Power of Attorney for Petitioner Samsung Electronics Co., Ltd. dated Oct. 8, 2021—3 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat. No. 10,687,400, Petitioner's Notice Regarding Multiple Petitions dated Nov. 12, 2021—9 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat. No. 10,687,400, Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. § 42.8 dated Nov. 19, 2021—5 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat No. 10,750,583, Petition for Inter Partes Review of U.S. Pat. No. 10,750,583 dated Oct. 28, 2021—79 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc. U.S. Pat. No. 10,750,583, Power of Attorney for Petitioner Samsung Electronics Co., Ltd.,—3 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc. U.S. Pat. No. 10,750,583, Petitioners Notice Regarding Multiple Petitions—8 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc. Case: IPR2022-00100, U.S. Pat. No. 10,750,583, Patent Owner's Mandatory Notices Pursuant to 37 C.F.R Section 42.8—5 pages.
Samsung Electronics Co., Ltd., v. Lynk Labs, Inc. U.S. Pat. No. 10,750,583, Declaration of R. Jacob Baker, Ph.D., P.E. In Support of Petition for Inter Partes Review of U.S. Pat. No. 10,750,583 Ex. 1002.
U.S. Appl. No. 16/449,273 dated Jun. 21, 2019 Ex. 1004.
Sedra/Smith, “Microelectronic Circuits,” Fourth Edition, Parts 1-4, pp.—Exs. 1041, 1061, 1054, 1034.
Watson Mastering Electronics, Third Edition, pp. 1-151—Exs. 1012, 1018, 1031.
Tim Williams, The Circuit Designer's Companion, First Published 1991, ISBN 0 7506 1142 1, 314 pages—Ex. 1042, 1094.
Chamber Dictionary of Science and Technology, General Editor Professor Peter MB Walker, CBE, FRSE, Chambers Harrap Published Ltd. 1999 ISBN 0 550 14110 3, 4 pages—Ex. 1047, 1024.
McGraw-Hill Dictionary of Scientific and Technical Terms, Sixth Edition, Library of Congress Cataloging in Publication Data, ISBN 0-07-042313-X, pp. 4—Ex. 1048, 1018.
U.S. Patent Provisional Application 61-333,963 dated May 12, 2010 Ex. 1063.
U.S. Patent Provisional Application 61-284,927 dated Dec. 28, 2009 Ex. 1064.
U.S. Patent Provisional Application 61-335,069 dated Dec. 31, 2009 Ex. 1065.
U.S. Patent Provisional Application 60-997,771 dated Oct. 6, 2007 Ex. 1066.
U.S. Patent Provisional Application 60-547,653 dated Mar. 2, 2004 Ex. 1067.
U.S. Patent Provisional Application 60-559,867 dated Apr. 8, 2004 Ex. 1068.
U.S. Patent Provisional Application 61-217,215 dated May 28, 2009 Ex. 1069.
U.S. Patent Provisional Application 61-215,144 dated May 1, 2009 Ex. 1070.
“Supplemental Report of Parties' Planning Meeting”, from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665, dated Oct. 14, 2021—11 pages Ex. 1075, Ex. 1080.
Docket from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665 dated Oct. 25, 2021—14 pages Ex. 1076, Ex. 1061.
U.S. Patent No. 10,750,583 Exemplary Infringement Chart Samsung SmartThings Hub (as Appendix J-2)—11 pages Ex. 1084.
“Order” as scheduling order from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665, dated Aug. 19, 2021—2 pages Ex. 1086.
“Notification of Docket Entry” from Samsung Electronics Co. Ltd. et al v. Lynk Labs, Inc., Case No. 1:21-cv-02665, dated Oct. 18, 2021—1 page Ex. 1087, Ex. 1070.
Lynk Labs, Inc. v. Home Depot USA, Inc. The Home Depot, Inc., and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Defendants' Corrected Reply Claim Construction Brief on the Terms of U.S. Patent Nos. 10,091,842, 10,154,551, 10,349,479, 10,492,251,10,517,149, 10,537,001, 10,652,979, 10,757,783, and 10,932,341 dated Nov. 10, 2021—60 pages.
Lynk Labs, Inc. v. Home Depot USA, Inc. The Home Depot, Inc., and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Plaintiff Lynk Labs, Inc.'s Responsive Claim Construction Brief dated Oct. 27, 2021, Part 1.
Lynk Labs, Inc. v. Home Depot USA, Inc. The Home Depot, Inc., and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Plaintiff Lynk Labs, Inc.'s Responsive Claim Construction Brief dated Oct. 27, 2021, Part 2.
Home Depot U.S.A., Inc. v Lynk Labs, Inc. Case IPR 2022-00023 U.S. Pat. No. 10,517,149, Issue Date Dec. 24, 2019, Declaration of Dr. Lebby dated Oct. 20, 2021, 157 pages—Ex. 1002.
Lynk Labs, Inc., v. Home Depot USA, Inc., The Home Dept Inc., and Home Depot Product Authority, LLC Case No. 5:21-cv-00097-ADA Scheduling Order dated Aug. 13, 2021, 4 pages—Ex. 1003.
Lynk Labs, Inc., v. Home Depot USA, Inc., The Home Dept Inc., and Home Depot Product Authority, LLC Case No. 5:21-cv-00097 Complaint for Patent Infringement dated Jan. 29, 2021, 88 pages—Ex. 1004.
Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Dept Inc., and Home Depot Product Authority, LLC Case No. 5:21-cv-00097-ADA Plaintiff Lynk Labs, Inc,'s Amended Preliminary Infringement Contentions '149 Patent dated Jun. 23, 2021, 154 pages—Ex. 1005.
U.S. Appl. No. 16/215,502 dated Dec. 10, 2018, 359 pages—Ex. 1006.
IEEE 100 The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition, Published by Standards Informaiton Network IEEE Press, pp. 1-4—Ex 1007.
Lynk Labs, Inc. v. Home Depot USA, Inc., The Home Dept Inc., and Home Depot Product Authority, LLC Case No. 5:21-cv-00097-ADA Defendants' Opening Claim Construction Brief on the Terms of U.S. Patent Nos. 10,091,842,. U.S. Pat. No. 10,154,551, U.S. Pat. No. 10,349,479, U.S. Pat. No. 10,492,251, U.S. Pat. No. 10,517,149, U.S. Pat. No. 10,537,001, U.S. Pat. No. 10,652,979, U.S. Pat. No. 10,757,783 and U.S. Pat. No. 10,932,341 dated Oct. 5, 2021, 38 pages—Ex. 1015.
U.S. Appl. No. 16/274,164 dated Feb. 12, 2019, 543 pages—Ex 1016.
Heat Sink, Merriam-Webster; Examples of heat sink in a sentence, http://wwwmerriam-webster.com/dictionary/heat% 20sink, 7 pages—Ex. 1017.
Insulator, Britannica Online Encylopedia Full Article, http://www.britannica.com/print/article/289459, 2 pages—Ex. 1018.
Home Depot USA, Inc., v. Lynk Labs, Inc. Case IPR2022-00023 U.S. Pat. No. 10,517,149 dated Dec. 24, 2019, Petition for Inter Partes Review dated Oct. 20, 2021, 74 pages.
Home Depot USA, Inc., v. Lynk Labs, Inc. Case IPR2022-00023 U.S. Pat. No. 10,517,149 dated Dec. 24, 2019, Petitioner's Power of Attorney dated Oct. 20, 2021, 2 pages.
Home Depot USA, Inc., v. Lynk Labs, Inc. Case IPR2022-00023 U.S. Pat. No. 10,517,149 dated Dec. 24, 2019, Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. Section 42.8 dated Nov. 10, 2021, 5 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat. No. 10,492,251 Petition for Inter Partes Review of U.S. Pat. No. 10,492,251, 95 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat. No. 10,492,251 Power of Attorney for Petitioner Samsung Electronics Co., Ltd. 3 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat. No. 10,492,251 Petitioner's Notice Regarding Multiple Petitions, 9 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. Case: IPR2022-00051, U.S. Pat. No. 10,492,251 Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. Section 42.8, 5 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., U.S. Pat. No. 10,492,251 Declaration of R. Jacob Baker, Ph.D., P.E. In Support of Petition for Inter Partes Review of U.S. Pat. No. 10,492,251, 173 pages—Ex. 1002.
R. Jacob (Jake) Baker, Ph.D., P.E. CV, 37 pages—Ex. 1003.
U.S. Appl. No. 16/148,945 dated Feb. 15, 2019, 309 pages—Ex. 1004.
U.S. Appl. No. 61/331,225 dated May 4, 2010, 63 pages—Ex. 1010.
Watson Mastering Electronics, Third Edition, pp. 1-151—Ex. 1012 and Ex. 1018.
Stan Gibilisco, Handbook of Radio & Wireless Technology, pp. 1-188—Ex. 1013.
Defendant Lynk Labs, Inc.'s Response to Plaintiffs' Initial Non-Infringement, Unenforceability, and Invalidity contentions, 51 pages—Ex. 1038.
File History for U.S. Pat. No. 9,198,237 dated May 18, 2011—Part 2, 321 pages—Ex. 1039.
Sedra/Smith, “Microelectronic Circuits,” Fourth Edition, Part 1 of 4, pp. 1-161—Ex. 1041, Ex. 1061, ex, 1054.
Sedra/Smith, “Microelectronic Circuits,” Fourth Edition, Part 2 of 4, pp. 162-1048—Ex. 1041, Ex. 1061, Ex. 1054.
Sedra/Smith, “Microelectronic Circuits,” Fourth Edition, Part 3 of 4, pp. 1049-1230—Ex. 1041, Ex. 1061, Ex. 1054.
Sedra/Smith, “Microelectronic Circuits,” Fourth Edition, Part 4 of 4, pp. 1231-1237—Ex. 1041, Ex. 1061, Ex. 1054.
Tim Williams, The Circuit Designer's Companion, First Published 1991, ISBN 0 7506 1142 1, 314 pages—Ex. 1042, Ex. 1094.
McGraw-Hill Dictionary of Scientific and Technical Terms, Sixth Edition, Library of Congress Cataloging in Publication Data, ISBN 0-07-042313-X, p. 4—Ex. 1048, Ex. 1018.
PCT File History US/2011136359, dated May 12, 2011—Ex. 1050.
PCT File History US/2010/62235, dated Dec. 28, 2010—Ex. 1052, Ex. 1039.
U.S. Provisional Application dated May 12, 2010—Ex. 1063.
U.S. Provisional Application dated Dec. 28, 2009—Ex. 1064.
U.S. Provisional Application dated Dec. 31, 2009—Ex. 1065.
U.S. Provisional Application 60/997,771 dated Oct. 6, 2007—Ex. 1066.
U.S. Provisional Application 60/547,653 dated Feb. 25, 2004—Ex. 1067.
U.S. Provisional Application 60/559867 dated Feb. 25, 2004—Ex. 1068.
U.S. Provisional Application 61/217,215 dated May 28, 2009—Ex. 1069.
U.S. Provisional Application 61/215,144 dated May 1, 2009—Ex. 1070.
Civil Docket for Case# 6:21-cv-02665, Northern District of Illinois, Samsung Electronics. Co., Ltd., dated May 17, 2021, 14 pages—Ex. 1076, Ex. 1061.
Civil Docket for Case# 6:21-cv-00097-ADA, Western District of Texas (Waco)—Lynk Labs, Inc. dated Jan. 29, 2001, 9 pages—Ex. 1077, Ex. 1074.
US District Court for the Northern District of Illinois, Estimated Patent Case Schedule, 2 pages—Ex. 1079, Ex. 1062.
Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc., v. Lynk Labs, Inc., Case No. 1:21-cv-02665—Supplemental Report of Parties' Planning Meeting, dated Oct. 14, 2021, 11 pages—Ex. 1080, Ex. 1075.
Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc., v. Lynk Labs, Inc., Case No. 1:21-cv-02665 Defendant Lynk Labs, Inc's Answer to Plaintiffs Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc.'s First Amended Complaint and Counterclaims, dated Aug. 3, 2021, 67 pages—Ex. 1082, Ex. 1071.
Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc., v. Lynk Labs, Inc., Case No. 1:21-cv-02665—Defendant Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions, 9 pages—Ex. 1083, Ex. 1066.
U.S. Pat. No. 10,492,251 (“the '251 Patent”) Exemplary Infringement Contention Claim Charts, Appendix A-1 through J-1—Ex. 1084.
Samsung Electronics Co., Ltd. et al. v. Lynk Labs, Inc. Case No. 1:21-cv-02665, Notification of Docket Entry Jul. 27, 2021, 1 page—Ex. 1085, Ex. 1068.
Samsung Electronics Co., Ltd., and Samsung Electronics America, Inc. v. Lynk Labs, Inc., No. 21 C 2665, Order dated Aug. 19, 2021—Ex. 1086.
Samsung Electronics Co., Ltd. et al. v. Lynk Labs, Inc. Case No. 1:21-cv-02665, Notification of Docket Entry Oct. 18 2021, 1 page—Ex. 1087, Ex. 1070.
Lynk Labs, Inc., v. Home Dept USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case. No. 6:21-cv-00097, Complaint For Patent Infringement dated Jan. 29, 2021, 88 page—Ex. 1088, Ex. 1072.
Lynk Labs, Inc., v. Home Dept USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case. No. 5:21-cv-00097-ADA, First Amended Complaint for Patent Infringement dated Mar. 17, 2021, 94 pages—Ex. 1089, Ex. 1073.
Samsung Electronics Co., Ltd. et al. v. Lynk Labs, Inc. Case IPR2022-00051, Patent No. 10,492,251 Notice of Filing Date Accorded to Petition, dated Dec. 9, 2021, 5 pages.
Home Depot U.S.A., Inc., v. Lynk Labs, Inc., U.S. Patent No. 10,932,341, Filing Date: Jan. 10, 2020, Issue Date: Feb. 23, 2021—PGR2022-00009; Declaration of Dr. Dean Neikirk U.S. Patent No. 10,932,341, 140 pages—Ex. 1002.
Home Depot U.S.A., Inc., v. Lynk Labs, Inc., U.S. Patent No. 10,932,341, Filing Date: Jan. 10, 2020, Issue Date: Feb. 23, 2021—PGR2022-00009; Petition for Post Grant Review of U.S. Patent No. 10,932,341, 94 pages.
US Patent Application No. 16740295 dated Jan. 10, 2020 (Part 1) 768 pages—Ex. 1003.
US Patent Application No. 16740295 dated Jan. 10, 2020 (Part 2) 466 pages—Ex. 1003.
Lynk Labs, Inc., v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No., 3:21-cv-00097, Complaint for Patent Infringement dated Jan. 29, 2021—Ex. 1011.
Lynk Labs, Inc., v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Plaintiff Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions, dated Jun. 23, 2021, 241 pages—Ex. 1012.
U.S. Patent Application 61/217,215 dated May 28, 2009, 32 pages—Ex. 1014.
Lynk Labs, Inc., v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 3-21-cv-00097-ADA, Defendants' Opening Claim Construction Brief on the Terms of U.S. Pat. Nos. 10,091,842, U.S. Pat. No. 10,154,551, U.S. Pat. No. 10,349,479, U.S. Pat. No. 10,492,251, U.S. Pat. No. 10,517,149, U.S. Pat. No. 10,537,001, U.S. Pat. No. 10,652,979, U.S. Pat. No. 10,757,783, and U.S. Pat. No. 10,932,341 dated Oct. 3, 2021, 38 pages—Ex. 1021.
Lynk Labs, Inc., v. Home Depot USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case No. 5:21-cv-00097-ADA, Plaintiff Lynk Labs, Inc.'s Responsive Claim Construction Brief dated Oct. 27, 2021, 47 pages—Ex. 1022.
Application Multi-Voltage and Multi-Brightness LED Lighting Devices and Methods of Using Same, Remarks dated Jun. 13, 2019 12 pages—Ex. 1023.
U.S. Appl. No. 15/369,218 Non-Final Office Action dated Oct. 2, 2018—Ex. 1024.
Response to Office Action U.S Appl. No. 16/440,884 dated Aug. 22, 2019, 11 pages—Ex. 1026.
IEEE 100 the Authoritative Dictionary of IEEE Standards Terms Seventh Edition, Published by Standards Information Network IEEE Press, 3 pages—Ex. 1028.
Response to Office Action U.S. Appl. No. 16/440,884 dated Jun. 16, 2020, 8 pages—Ex. 1029.
Home Depot USA, Inc., v. Lynk Labs, Inc., Case PGR2022-00009, U.S. Pat. No. 10,932,341, Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. Section 42.8 dated Nov. 19, 2021, 5 pages.
Home Depot USA, Inc., v. Lynk Labs, Inc., Case PGR2022-00009, U.S. Pat. No. 10,932,341, Issue Date Feb. 23, 2021, Petitioner's Power of Attorney dated Nov. 5, 2021, 2 pages.
Home Depot U.S.A., Inc., . v. Lynk Labs, Inc. U.S. Pat. No. 10,932,341, Dated: Jan. 10, 2020, Issue Date: Feb. 23, 2021, IPR 2022-00143, Petition for Inter Partes Review of U.S. Pat. No. 10,932,341 dated Nov. 24, 2021, 81 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., U.S. Pat. No. 10,517,149 Petition for Inter Partes Review of U.S. Pat. No. 10,517,149, 98 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. U.S. Pat. No. 10,517,149 Power of Attorney for Petitioner Samsung Electronics Co., Ltd. 3 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. Case: IPR2022-00098, U.S. Pat. No. 10,517,149 Notice of Filing Date Accorded to Petition, dated Nov. 23, 2021, 6 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc. Case: IPR2022-00098, U.S. Pat. No. 10,517,149 Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. Section 42.8, 5 pages.
Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., U.S. Pat. No. 10,517,149 Declaration of R. Jacob Baker, Ph.D., P.E. In Support of Petition for Inter Partes Review of U.S. Pat. No. 10,517,149, 179 pages—Ex. 1002.
File History of U.S. Patent 10,517,149, 359 pages—Ex. 1004.
Watson Mastering Electronics, Third Edition, pp. 1-151—Ex. 1018.
PCT File History US/2010/62235, dated Dec. 28, 2010—Ex. 1039.
PCT File History US/2010/001597, dated May 28, 2010—Ex. 1043.
PCT File History US/2010/001269, dated Apr. 30, 2010—Ex. 1044.
U.S. Provisional Application 61,333,963 dated May 12, 2010—Ex. 1046.
U.S. Provisional Application 61/284,927 dated Dec. 28, 2009—Ex. 1047.
U.S. Provisional Application 60/335,963 dated Dec. 31, 2009—Ex. 1048.
U.S. Provisional Application 60/997,771 dated Oct. 6, 2007—Ex. 1049.
U.S. Provisional Application 60/547,653 dated Feb. 25, 2004—Ex. 1050.
U.S. Provisional Application 60/559867 dated Feb. 25, 2004—Ex. 1051.
U.S. Provisional Application 61/217,215 dated May 28, 2009—Ex. 1052.
U.S. Provisional Application 61/215,144 dated May 1, 2009—Ex. 1053.
Civil Docket for Case# 6:21-cv-02665, Northern District of Illinois, Samsung Electronics. Co., Ltd., dated May 17, 2021, 14 pages—Ex. 1061.
US District Court for the Northern District of Illinois, Estimated Patent Case Schedule, 2 pages—Ex. 1062.
Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc., v. Lynk Labs, Inc., Case No. 1:21-cv-02665—Defendant Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions, Aug. 31, 2021 9 pages—Ex. 1066.
Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc., v. Lynk Labs, Inc., Case No. 1:21-cv-02665—Defendant Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions, 9 pages—Ex. 1066.
U.S. Patent No. 10,517,149 (“the 149 Patent”) Exemplary Infringement Contention Claim Charts, Appendix A-5 through l-3—Ex. 1067.
Samsung Electronics Co., Ltd. et al. v. Lynk Labs, Inc. Case No. 1:21-cv-02665, Notification of Docket Entry Jul. 27, 2021, 1 page—Ex. 1068.
Samsung Electronics Co., Ltd. et al. v. Lynk Labs, Inc. Case No. 1:21-cv-02665, Scheduling Order dated Aug. 19, 2021, 2 pages—Ex. 1069.
Civil Docket for Case# 6:21-cv-00097-ADA, Western District of Texas (Waco)—Lynk Labs, Inc. dated Jan. 29, 2001, pages—Ex. 1074.
Samsung Electronics Co., Ltd. et al. v. Lynk Labs, Inc. Case No. 1:21-cv-02665, Notification of Docket Entry Oct. 18 2021, 1 page—Ex. 1070.
Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc., v. Lynk Labs, Inc., Case No. 1:21-cv-02665 Defendant Lynk Labs, Inc's Answer to Plaintiffs Samsung Electronics Co, Ltd. and Samsung Electronics America, Inc.'s First Amended Complaint and Counterclaims, dated Aug. 3, 2021, 67 pages—Ex. 1071.
Lynk Labs, Inc., v. Home Dept USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case. No. 6:21-cv-00097, Complaint for Patent Infringement dated Jan. 29, 2021, 88 pages—Ex. 1072.
Lynk Labs, Inc., v. Home Dept USA, Inc., The Home Depot Inc., and Home Depot Product Authority, LLC, Case. No. 3:21-cv-00097-ADA, First Amended Complaint for Patent Infringement dated Mar. 17, 2021, 94 pages—Ex. 1073.
Samsung Electronics Co., Ltd. and Samsung Electronics America, Inc., v. Lynk Labs, Inc., Case No. 1:21-cv-02665—Supplemental Report of Parties' Planning Meeting, dated Oct. 14, 2021, 11 pages—Ex. 1075.
Tim Williams, the Circuit Designer's Companion, First Published 1991, ISBN 0 7506 1142 1, 314 pages—Ex. 1094.
Related Publications (2)
Number Date Country
20210176839 A1 Jun 2021 US
20220015207 A9 Jan 2022 US
Provisional Applications (2)
Number Date Country
61217215 May 2009 US
60997771 Oct 2007 US
Continuations (5)
Number Date Country
Parent 16740295 Jan 2020 US
Child 17181802 US
Parent 16274164 Feb 2019 US
Child 16740295 US
Parent 15685429 Aug 2017 US
Child 16274164 US
Parent 14172644 Feb 2014 US
Child 15685429 US
Parent 13322796 US
Child 14172644 US
Continuation in Parts (1)
Number Date Country
Parent 12287267 Oct 2008 US
Child 13322796 US