This disclosure generally relates to power converters used in a residence to utilize solar and/or wind power, store power in a battery, deliver power to and from the AC grid, and provide emergency back-up power when the AC grid is not operating, and methods relating to same.
Power converters may be used to store power and provide emergency back-up power. Accordingly, it has been determined that the need exists for an improved power converter and method relating to same to provide capabilities, features, and functions, not available in current devices.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. It will also be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein.
Generally speaking, pursuant to these various embodiments, a power controller and associated method for power conversion is provided. In one form, a multi-way power controller is provided, also referred to as a multi-way power converter, and may include multiple power inputs from renewable power sources, such as wind, solar, etc. In a preferred form and as shown in the box diagram of
Turning now to
As described herein, a power converter 200 is provided. The power converter 200 converts the power from power supply and/or inputs to usable power. The power supply includes three power inputs 210 which may come from renewable sources, such as wind or solar. The power converter 200 described herein may be used as a filtering or converting circuit to utilize renewable energy sources generated at a residence, such as a house. These teachings may additionally or alternatively be used to store power generated by wind or solar in a battery for later use, to deliver power generated by wind and solar sources to and from the AC grid 260, and finally, in situations where the AC grid 260 is down, provide back-up power. The three-way power controller 200 may be used to adjust the power received from the three power inputs 210 to provide the benefits and advantages herein. The three-way power controller 200 may additionally or alternatively be used to allow for a user to decide between outputting AC to or from the AC grid 260 or AC loads 275, and outputting DC to a battery 290.
With respect to
The three-way power controller may further include a Buck DCDC converter 230. The Buck DCDC converter 230 is capable of stepping down voltage output from the three-input DCDC converter 220. This allows for the three-way power controller 200 to utilize an appropriate voltage throughout the system. The Buck DCDC converter 230 is electrically coupled to the three-input DCDC converter 220. The Buck DCDC converter 230 outputs the voltage to a bus capacitor and balance circuit 240. In some embodiments, the Buck DCDC converter 230 outputs the voltage to a DC bus connection 291, which in turns goes to a DCDC converter 295 and to a battery 290 to be used at a later time.
The three-way power controller 200 additionally includes at least one bus capacitor and a balance circuit 240. The at least one bus capacitors and the balance circuit 240 may be utilized to balance the voltages of the bus capacitors by utilizing switches and a transformer to pull energy from one capacitor put into the other and vice versa. The at least one bus capacitors and the balance circuit 240 are electrically coupled to the Buck DCDC converter 230. Additionally, the at least one bus capacitors and the balance circuit 240 may help balance the voltages on the bus capacitor that may have an imbalance due to a non-linear AC load 275, or an imbalance in the two phases of the AC grid 260.
The three-way power controller 200 additionally includes a three-level inverter 250. The three-level inverter 250 may be utilized to create an alternating current (AC) voltage and currents for an AC grid 260 or an AC load 275. The three-level inverter 250 is electrically coupled to the at least one bus capacitors and the balance circuit 240.
The three-way power controller additionally includes an output filter 265 and a contactor 280. The output filter 265 and the contactor 280 may be utilized to filter the voltage from the three-level inverter 250 and disconnect the three-way power converter 200 from the AC grid 260 and/or an AC load 275. The output filter 265 and the contactor 280 are electrically coupled to one another. The output filter 265 and the contactor 280 are electrically coupled to the three-level inverter 250 and any attached AC grid 260 and/or AC load 275.
The three-way power controller additionally includes a parameter sensor and FPGA controller 270. The parameter sensor and FPGA controller 270 may be utilized to control any associated switches used within the three-way power controller 200 based on algorithms and sensed parameters. The parameter sensor and FPGA controller 270 are electrically coupled to three-input DCDC converter 220, the Buck DCDC converter 230, the bus capacitor and the balance circuit 240, the three-level inverter 250, and the contactor 280.
The three-way power controller additionally includes a DC bus connection 291. The DC bus connection 291 may connect the three-way power controller 200 to a DCDC converter 295 and/or a battery 290 for storing the associated energy from the three power inputs 210. This provides a back-up energy storage for a user if the AC grid 260 is down.
The associated switches illustrated in the circuit diagram of
The parameter sensor and FPGA controller 270 may use at least one real-time digital circuit simulator capable of controlling a switch state of the bus capacitor and the balance circuit 240 based on at least one simulation from the at least one real-time digital circuit simulator. The parameter sensor and FPGA controller 270 may additionally or alternatively control MPPT for the three power inputs 210. The parameter sensor and FPGA controller 270 additionally or alternatively performs various gird control algorithms such as anti-islanding, and other grid services.
The three-input DCDC converter 220 may include a capacitor and inductor associated with each power input. The three-input DCDC converter 220 may also include at least one diode for each of the three power inputs 210. The at least one diode for each of the three power inputs may be in series. The three-input DCDC converter 220 may utilize a boundary condition mode control to minimize switching losses.
The Buck DCDC converter 230 is in series with the three-input DCDC converter 220. The Buck DCDC converter 230 include two diodes in series with an inductor. The DC bus connection 291, include the DCDC converter 295 and battery 290 are connected to the three-way power controller 200 between the Buck DCDC converter 230 and the bus capacitor and balance circuit 240.
The bus capacitor and balance circuit 240 comprises two transformer-diode elements in series with one another. The bus capacitor and balance circuit 240 includes a node between the transformer-diode elements connecting two separate capacitors, in series with one another.
The three-level inverter 250 includes two diodes in parallel with the two capacitors of the bus capacitor and balance circuit 240. Two additional diodes are electrically coupled to the node created between the transformer-diode elements of the bus capacitor and balance circuit 240. These two additional diodes are coupled to the two diodes in parallel. This structure may be repeated, as shown in
The output filter 265 comprises an inductor to filter the voltage from the three-level inverter 250. The contactor 280 includes a capacitor to connect and/or disconnect the three-way power controller 200 to the AC grid 260 and/or an AC load 275.
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above-described embodiments without departing from the scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.
This application claims benefit of U.S. Provisional Application No. 63/259,393, filed Jul. 9, 2021, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7465872 | De Rooij | Dec 2008 | B1 |
8023295 | Shekhawat | Sep 2011 | B1 |
9148016 | Kaufman | Sep 2015 | B2 |
9665672 | Dufour | May 2017 | B2 |
10074981 | Faley | Sep 2018 | B2 |
20090302686 | Fishman | Dec 2009 | A1 |
20130027979 | Phadke | Jan 2013 | A1 |
20130057200 | Potts | Mar 2013 | A1 |
20140062198 | Luo | Mar 2014 | A1 |
20140078791 | Gurudasani | Mar 2014 | A1 |
20140241016 | Ho | Aug 2014 | A1 |
20140375131 | Spanoche | Dec 2014 | A1 |
20150078049 | Yoo | Mar 2015 | A1 |
20150288188 | Keshner | Oct 2015 | A1 |
20160344188 | Carlson | Nov 2016 | A1 |
20170047742 | Narla | Feb 2017 | A1 |
20170133879 | Eckhardt | May 2017 | A1 |
20180054064 | Narla | Feb 2018 | A1 |
20190390619 | Janik | Dec 2019 | A1 |
20200279707 | Grossberg | Sep 2020 | A1 |
20210211066 | Vavilpalli | Jul 2021 | A1 |
20220006299 | Zhang | Jan 2022 | A1 |
20220302713 | Wang | Sep 2022 | A1 |
20230187930 | Reimann | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
1531542 | May 2005 | EP |
2256894 | Dec 2010 | EP |
2701264 | Feb 2014 | EP |
2013127230 | Sep 2013 | WO |
2014203561 | Dec 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20230012882 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
63259393 | Jul 2021 | US |