The invention relates to a multi-way plug with sliding contacts which can be moved into the housing of the multi-way plug and out of the housing of the multi-way plug. These plug contacts have a slider made of plastic with an activation head, and the pins of a plug of a respective particular mains plug standard are arranged on this slider.
A multi-way plug of this type is known from WO 02/063723 A2. This multi-way plug has four plug contacts of different standards each with two pins. The plug contact to British standard also has a further opener for opening the socket closure. This opener is made of one piece with the carrier part formed as a slider made of plastic. This carrier part is formed C-shaped. The activation head and opener are arranged at one end of the C, the phase pin of the UK plug contact is arranged at the other end. Between the two ends of the C-shaped carrier part is the neutral pin of the UK plug contact. An AU plug contact is arranged inside this C. On one side of the C-shaped UK carrier part, next to the opener, is a US plug contact, on the other side next to the UK pins an EU plug contact is arranged.
The disadvantage of this multi-way plug is that it is not three-pin.
It is therefore an advantage of the invention to create a multi-way plug of the type described in WO 02/063723 which has three pins. A further advantage is to provide a multi-way plug which contains the plug standards of the most important industrial countries and is constructed to be as compact as possible.
This multi-way sliding plug therefore has in the known manner a housing and at least two plug contacts of different standards. These plug contacts can be moved into the housing into a passive position and out of the housing into an active position. Each plug contact has a slider with an activation head and electrically conductive pins on the slider.
According to the invention the individual plug contacts have three electrically conductive pins arranged on a common slider. The sliders substantially have a generally C-, G-, U- or V-shape from a top view, which shapes are formed by two or more legs of the sliders. In each case, between the legs is defined a space. The sliders are arranged such that these mutually engage each with one leg in the space of the other slider. This means that in the passive position the sliders are mutually arranged with one end of the C-, G-, V- or U-shape between the ends of the C-, G-, V- or U-shape of the other slider. The arrangement of the sliders according to the invention has the advantage that the multi-way plug is very compact, and the different sliding contacts can be arranged in the smallest space. Also the number of components required to construct the plug can be kept to a minimum.
Advantageous embodiments of the invention are defined in the sub-claims. The electrically conductive pins are each formed by a phase pin, a neutral pin and a ground pin, and the sliders are each arranged such that the ground pins are directly adjacent to each other. An arrangement of this type simplifies the construction of the plug enormously.
As stated above, the sliders in top view have different forms, but as a common feature, between the pins, in particular between the phase pin and the neutral pin on one side and the ground pin on the other, there is a space in which a pin-carrying leg of an adjacent slider can engage. A slider produced in this way viewed in abstract is approximately C-shaped. Where below reference is made above all to the “C-shape” of the slider, this is in no way imitative for the present invention but includes all forms which allow the function according to the invention.
One activation head is arranged at one end of the first C-shaped slider. The other activation head is arranged between the ends of the second C-shaped slider. The second C-shaped slider is approximately Y-shaped due to the activation head. The first C-shaped slider can potentially assume the form of a question mark or an “S” due to the activation head. The term C-shaped in the context of the present invention should be merely understood to mean that the form of the slider between the first pin and the third pin forms an arc, curve or loop and that the second pin of the plug contact is arranged on this arc. By this design of the slider, a pin-carrying point of the slider of the first plug contact according to the definition above is arranged inside the loop or space in the adjacent slider when both sliders are in the passive position.
As the sliders are displaceable perpendicular to the C-shape i.e. in the axial direction of the pins, they require a sliding area with this shape. This means that the sliding areas fit in each other in the manner of U profiles each intermeshing with one leg. This arrangement of the sliding parts or sliding areas allows the three pins, arranged in a triangle, of a plug contact to cross over with the three pins of a second plug contact also arranged in a triangle. As a result the multi-way plug can be produced with low volume.
If there are three approximately C-shaped sliders, two of these engage in the loop of the central slider. The first slider and third sliders are therefore each arranged with one end between the two ends of the second C-shaped slider. Or in other words, two U-shaped sliding areas each surrounds another leg of a third sliding area and each extends with one leg between the legs of this third sliding area. The third sliding area is therefore that of the centre plug contact.
There can also be a fourth or more plug contacts.
So that the pins are not connected to live components outside the active position, each pin of a said plug contact is connected to a shorter mini-pin which is arranged close to the pin on the slider and protrudes from this. This mini-pin is plugged into an electrically conductive strip when the slider is pressed into the active position. It is withdrawn from the strip again when leaving the active position.
In order that the live strips can have a simple form, the mini-pins of different sliders are expediently aligned to each other.
The sliders must be guided. A simple guide consists of a rod which engages through a hole in the slider. At least one of the two sliders therefore has a guide opening to receive a guide rod. The guide rod is suitably part of the housing and made of one piece with this.
To secure the sliders and the pins in the active position, a locking body is provided. This cooperates with stops on the sliders. Expediently, each slider has at least one such stop. In the C-shaped slider, advantageously, next to each pin on the back of the slider, a stop is formed, which in the active position cooperates with the locking body.
Advantageously, the multi-way sliding plug has at least three, at least four or at least five plug contacts of the standards of the following countries: USA, Switzerland, Italy, Australia, Germany (grounded plug), France (grounded plug), Israel, India, South Africa. These plugs are electrically connected to the socket of a further country standard. Such plugs allow the traveller to use the electrical devices he has taken with him in the corresponding countries.
According to one embodiment the ground pins of three or four, plug contacts are arranged substantially in a straight line and directly adjacent to each other. This has the advantage that the plug is very compact. The plug contacts are provided on one side of the housing and on the opposite side a socket of a particular country standard with three socket openings is provided, which socket openings are electrically connected to the corresponding pins of the plug contacts.
The subject-matter of the present invention is also a three-pin travel plug.
Further advantageous features arise from the description of the Figures below.
The set shown in
To secure the sliding contact in the active position, a locking body is present. This has a release button 21 (
A second sliding contact 40 for sockets of AU standard is arranged above this. This plug contact 40 has a slider 47 which is substantially U-shaped. This slider 47 at its distal end of a first leg 46 carries the ground pin 45 of AU standard. The oblique pins for the phase (pin 41) and neutral (pin 43) are arranged on a second leg 48 of this slider 47. Next to the phase pin 41, the activation head 15 is moulded by means of the bar 23 on the second leg 48.
A first leg 54 of slider 57 of the UK plug contact 50 protrudes into the space 52 formed by the two legs 46, 48 of the U-shaped slider 47. This leg 54 carries the two pins for phase 51 and neutral 53. The opener and ground pin 55 of UK standard is arranged on a second leg 56. The bar 23 with the activation head 15 is formed on the slider 57 in an area between the two legs 54, 56.
The slider 67 of the plug contact 60 for sockets of US standard is also approximately C- or G-shaped. The bar 23 with the activation head 15 is moulded at a first end of one leg 62. The phase pin 61 on slider 67 is arranged next to this bar 23. The slider 67 now surrounds the leg 56 of the adjacent UK slider 57, on which the ground pin 55 is arranged, with the second leg 64. The US phase pin 61 is arranged on the leg 64. In the assembled state of the multi-way sliding plug, the US phase pin 61 and the US neutral pin 63 are arranged on opposite sides of the UK ground pin 55 (
This arrangement is shown more clearly again in
For the other pins, in the immediate vicinity of the pin, a metal mini-pin 27 is provided on the sliders. These mini-pins are in conductive contact with the associated main pin. In the active position of a plug contact, the mini-pins are electrically connected to a contact strip (not shown in the Figures), which in turn is electrically connected to the contact sockets or grounding devices of the socket 12 of the multi-way plug 11.
Between the sliders 37, 47, 57, 67 are a plurality of spaces. The function of these spaces is described below (
Between the UK ground pin 55 and the US live pin 61, a first passage point 81 is formed for a first arm 71 (
On the phase side of the glider 25 is a second passage point 82 for the arm 72 of the locking part 70. This second arm 72 locks the UK slider 57 at the point 92 close to its phase pin 51.
On the neutral side of the glider 25 is a third passage point 83 for the third arm 73 of the locking part 70. This third arm 73 locks the slider 47 of the AU plug contact 40 in the active position and in the passive position at the point 93 (
Furthermore, on the neutral conductor side between the UK plug contact 50 and the AU plug contact 40 is a fourth passage point 84. The fourth arm 74 extends through this passage point and locks the slider 57 at the point 94. This locking takes place only in the active position of the slider 57. In its passive position the fourth arm 74 as an exception has no function.
Between the CH/IT slider 37 and the AU slider 47, there are two symmetrical passage points 85 and 86. The fifth and sixth arms 75 and 76 of the locking part 70 extend through these two passage points. These fifth and sixth arms 75, 76 lock both the CH/IT slider 37 at the points 95 and the AU slider 47 at the points 96. These points are both close to the pins for phase and neutral.
Between the sliders 47 and 67, on the neutral side of the ground pins 45 and 65 facing away from the activation head 15, is a passage point 87. The seventh arm 77 of the locking part 70 extends through this. This seventh arm 77 locks the US slider 67 at the point 97 close to the ground pin 65.
Finally, between the slider 67 of the US plug contact 60 and the housing 13 are two passage points 88 and 89. The eighth arm 78 and the ninth arm 79 of the locking part 70 extend through these. These lock the slider 67 at the points 98 and 99 close to the phase pin 61 and the neutral pin 63 respectively.
With the exception of the ground pin of the CH/IT plug contact 30, each pin is supported at a point in its immediate vicinity when the plug contact is in the active position. This gives a very stable support of the pins even when the plug contacts protruding from the housing are inserted into a socket.
The CH/IT plug contact 30 is equally well guided by the guide of the insert body 39 on the housing and adequately supported by the two arms. Therefore there is no distortion of the plug contact on insertion, nor can this accidentally be pushed back into the housing on insertion.
The individual sliders 47, 57, 67 are guided on guide rods. For this they each have a cylindrical hole to hold these guide rods.
In the position of the ground pin 35 shown in
With the activation heads 15, each plug contact 30, 40, 50, 60 can be pushed individually to the right into the active position. The bars 23 then move in the slots 17 of the housing 13. Behind the slot 17 of an advanced plug contact, the guide rod appears and prevents reaching into the inside of the multi-way plug. The slots 17 of the plug contacts remaining in the passive position are covered by the plates 19 (
The plug contacts are locked both in the active position and in the passive position. As is evident from
A common feature of the exemplary embodiments shown in the diagrams is that a C-, G-, V- or U-shaped slider of a plug contact partly surrounds a leg of an adjacent slider of another C-, G-, V- or U-shaped plug contact. Two adjacent C-, G-, V- or U-shaped plug contacts are thus arranged relative to each other such that a leg of a first plug contact with its end engages in the space defined by the legs of the second plug contact, and conversely a leg of the second plug contact with its end engages in the space defined by the legs of the first plug contact. Each combination shown has a slider, the shape of which is approximately Y-shaped taking into account the continuation and the activation head.
To summarise, the invention can be described in that a multi-way sliding plug has at least two sliding plug contacts in a housing which can be moved out into an active position and back into a passive position in the housing. The sliding plug contacts have a slider on which the three electrically conductive contact pins are arranged. The slider of one plug contact is formed as a C-, G-, V- or U-shape, wherein an activation head is formed on one leg for advancing and retracting the plug contact. The three contact pins are arranged on the legs. A second sliding plug contact is also formed as a C-, G-, U- or V-shape, wherein for example at one end of one leg, a bar with an activation head is formed, and on the curved C-, G-, U- or V-shaped slider the three contact pins are arranged. The C-, G-, U- or V-shaped curved slider surrounds an arm of the adjacent C-, G-, U- or V-shaped slider so that a contact pin, in particular the ground contact pin, is arranged between the legs of the other C-, G-, U- or V-shaped slider.
The invention relates to a multi-way sliding plug 11 with a housing 13 and at least two plug contacts 40, 50 of different standards which can be moved into the housing 13 into a passive position and out of the housing into an active position. These plug contacts 40, 50 each have a slider 47, 57 with an activation head 15 and electrically conductive pins 41, 43, 45; 51, 53, 55. The individual plug contacts 40, 50 have three electrically conductive pins 41, 43, 45; 51, 53, 55 arranged on a common slider. At least two of the sliders 47, 57 are formed C-shaped and mutually arranged with one end of the C-shape between the ends of the C-shape of the other slider 47, 57.
Number | Date | Country | Kind |
---|---|---|---|
925/08 | Jun 2008 | CH | national |
This application claims priority to PCT Patent Application No. PCT/CH2009/000205 filed on Jun. 16, 2009 and Swiss Patent Application No. 925/08 filed on Jun. 17, 2008, the entirety of each of which is incorporated by this reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH09/00205 | 6/16/2009 | WO | 00 | 12/21/2010 |