Blood returning to the heart from the peripheral circulation and the lungs generally flows into the atrial chambers of the heart and then to the ventricular chambers, which pump the blood back out of the heart. During ventricular contraction, the atrio-ventricular valves between the atria and ventricles, i.e. the tricuspid and mitral valves, close to prevent backflow or regurgitation of blood from the ventricles back to the atria. The closure of these valves, along with the aortic and pulmonary valves, maintains the uni-directional flow of blood through the cardiovascular system. Disease of the valvular apparatus can result in valve dysfunction, where some fraction of the ventricular blood regurgitates back into the atrial chambers.
Traditional treatment of heart valve stenosis or regurgitation, such as mitral or tricuspid regurgitation, involves an open-heart surgical procedure to replace or repair the valve. Current accepted treatments of the mitral and tricuspid valves include: valvuloplasty, in which the affected leaflets are remodeled to perform normally; repair of the chordae tendineae and/or papillary muscle attachments; and surgical insertion of an “annuloplasty” ring, which requires suturing a flexible support ring over the annulus to constrict the radial dimension. Other surgical techniques to treat heart valve dysfunction involve fastening (or stapling) the valve leaflets to each other or to other regions of the valve annulus to improve valve function (see, e.g., U.S. Pat. No. 6,575,971).
Described herein are devices and methods that involve attachment sites, including implants with multiple coupled anchors. The anchors may be secured to tissue using a multi-opening guide tunnel that is configured to releasably retain one or more portions of the implant located between two anchors, such as a tether component that attach the anchors. The releasable retention of one or more interconnecting portions of the implant provides additional stabilization for the delivery tool until the implant is secured to the tissue. The multi-opening guide tunnel permits securement of the multiple anchors without requiring repositioning of the guide tunnel for each anchor. In some embodiments, the multi-opening guide tunnel comprises disengageable wall segments between the openings of the guide tunnel, which provide structural support and column strength in a region of the guide tunnel that would buckle or collapse due to the number of openings and their configuration.
In some embodiments, a system for use in a patient is provided, comprising an outer catheter, which comprises a passageway with a proximal end, a distal end, a longitudinal axis and two or more outer openings, and at least one releasable retaining structure located between the two or more outer openings. At least one releasable retaining structure may be adapted to open a release channel between two or more outer openings. In some instances, at least two of the two or more outer openings are two adjacent outer openings with a separation distance less than a maximum dimension of one of the two adjacent outer openings, and at least one releasable retaining structure is located between the two adjacent outer openings. In some variations, two or more outer openings are longitudinally spaced along a longitudinal length of the outer catheter, and may be configured for passage of a tissue anchor. At least one releasable retaining structure may be configured to retain a tether attached to the tissue anchor, and is optionally an outer wall structure of the outer catheter. The outer catheter may comprise at least three outer openings, and optionally at least two releasable retaining structures. The system may further comprise an inner catheter slidably located in the passageway of the outer catheter, and sometimes may further comprise an alignment interface between the outer catheter and the inner catheter. The alignment interface may comprise a rail, which may be a metallic material and/or may be secured to the outer catheter at two or more securing sites. The outer catheter may also further comprise a curved configuration having a lesser curvature and a greater curvature, and in some embodiments, two or more openings may be generally located along the greater curvature of the outer catheter. The outer catheter may also comprise an atraumatic tip. The catheter may further comprise at least one radio-opaque structure located between the two or more outer openings. The inner catheter may comprise an inner opening and wherein the inner guide and outer guide are configured to permit positioning of the inner opening at two or more outer openings. In some embodiments, at least one releasable retaining structure comprises a locking passage. The at least one locking element may be configured for removable positioning in the locking passage of at least one releasable retaining structure, and at least two releasable retaining structures with locking passages are both optionally configured for removable positioning by one of the at least one locking elements.
In other embodiments, an implant delivery system is provided, comprising a catheter body which comprises a proximal end, a distal end, a longitudinal lumen therebetween, a lumenal surface, an ablumenal surface, and at least one implant delivery opening in communication with the longitudinal lumen and located between the luminal surface and the ablumenal surface, and at least two longitudinally-spaced retention members located distal to the proximal end of the catheter body. In some instances, at least two longitudinally-spaced retention members are located within the longitudinal lumen, or within the at least one implant delivery opening. At least two longitudinally-spaced retention members may have a transverse orientation with respect to the longitudinal lumen. In some embodiments, at least two longitudinally-spaced retention members are movable retention members, which may be rotatable or flexible retention members. The movable retention members may each comprise a through lumen. The implant delivery system may further comprise a first anchor coupled to a tether, and in some instances at least two longitudinally-spaced retention members are configured to retain the tether.
In another embodiment, a method for securing anchors to a body structure is provided, comprising providing an implant comprising a first anchor, a second anchor, and a first coupling portion therebetween, passing the first anchor and the second anchor into a common lumen of a catheter, deploying the first anchor through a first opening of the catheter, deploying the second anchor through a second opening of the catheter, retaining the first coupling portion of the implant in the catheter, wherein the first coupling portion is located between two anchors secured to the body structure, and releasing the first coupling portion of the implant from the catheter after securing the first anchor and the second anchor to body tissue. The method may further comprise positioning the catheter in a subvalvular space of a ventricle. In some instances, releasing the first coupling portion of the implant from the catheter may comprise disengaging a wall section of the catheter.
The structure and method of using the invention will be better understood with the following detailed description of embodiments of the invention, along with the accompanying illustrations, in which:
Although a number of surgically implanted ventricular devices and procedures, such as the implantation of an annuloplasty ring or edge-to-edge leaflet repair, are available for treating valvular dysfunction, each procedure presents its own set of risks to the patient or technical challenges to the physician. For example, the ability to accurately and reliably position a cardiac implant during a beating heart procedure, whether by open chest or minimally invasive access, remains elusive to the average practitioner. In particular, the percutaneous or transvascular implantation of a ventricular device described herein poses a significant challenge due to the instability from the wall motion of a beating heart.
Devices, systems and methods of the instant invention are generally used to reshape atrio-ventricular valves or myocardium to improve hemodynamic performance. The implantation procedures are preferably transvascular, minimally invasive or other “less invasive” surgical procedures, but can also be performed with open or limited access surgical procedures. When used for treatment of a cardiac valve dysfunction, the methods generally involve positioning one or more anchor delivery devices at a target site using a guide tunnel, delivering a plurality of slidably coupled anchors from the delivery device(s), and drawing the anchors together to tighten the annulus. The devices include an elongate catheter with a housing at or near the distal end for releasably housing one or more anchors, as well as guide devices for facilitating advancement and/or positioning of an anchor delivery device. The devices may be positioned such that the housing abuts or is close to valve annular tissue, such as the region within the upper left ventricle bound by the left ventricular wall, a mitral valve leaflet and chordae tendineae. Self-securing anchors having any of a number of different configurations may be used in some embodiments.
In
In other embodiments of the invention, other spaces bound by or relating to one or more cardiac structures may be used as a target region of the heart. These structures include but are not limited to the base of the ventricle, the mitral valve, the tricuspid valve, the primary chordae tendineae, the secondary chordae tendineae, the tertiary chordae tendineae, the anterior mitral valve leaflet chordae tendineae, the posterior mitral valve leaflet chordae tendineae, the interleaflet chordae tendineae, the papillary muscle, the anterior-lateral papillary muscle, the posterior-medial papillary muscle, the ventricular apical region, and the ventricular apex. For example, in some embodiments, a supra-apical space from about the base of the mitral valve leaflets to the just above the ventricular apex or apical region may be the target region. In another example, the target region may be the peri-papillary muscle region, which includes the space about 1 cm above and about 1 cm below the level of the papillary muscle region, as well as the spaces between the papillary muscles. In some examples, the target region may be the endocardial surface abutting or accessible from the given space or cardiac structures. In still other embodiments, the target region may be a region between the base and apex of a ventricle and between longitudinal borders drawn through the papillary muscles, e.g. either a posterior-lateral or an anterior-medial ventricular endocardial surface. In other embodiments, the target region may exclude the space along the longitudinal axis from the base of a ventricle to the apex of the ventricle, e.g. the target region may be tubular or toroidal in configuration, with an internal border relating to a chordae tendineae. Other examples of target regions are depicted in
The guide element may be made from any suitable or desirable biocompatible material. The guide element may be braided or not braided, woven or not woven, reinforced or impregnated with additional materials, or may be made of a single material or a combination of materials. For example, the guide element may be made from (1) a suture material (e.g., absorbable suture materials such as polyglycolic acid and polydioxanone, natural fibers such as silk, and artificial fibers such as polypropylene, polyester, polyester impregnated with polytetrafluoroethylene, nylon, polyetheretherketone, etc.), (2) a metal (absorbable or non-absorbable), (3) a metal alloy (e.g., stainless steel), (4) a shape memory material, such as a shape memory alloy (e.g., a nickel titanium alloy), (5) other biocompatible material, or (6) any combination thereof. In some variations, when pulled proximally while restraining the position of the proximal anchor, the guide element may be used to cinch or reduce the circumference of the atrio-ventricular valve annulus or the annular tissue. In certain variations, the guide element may be in the form of a wire. The guide element may include multiple layers, and/or may include one or more coatings. For example, the guide element may be in the form of a polymer-coated wire. In certain variations, the guide element may consist of a combination of one or more sutures and one or more wires. As an example, the guide element may be formed of a suture that is braided with a wire. In some variations, the guide element may be formed of one or more electrode materials. In certain variations, the guide element may be formed of one or more materials that provide for the telemetry of information (e.g., regarding the condition of the target site).
In some embodiments, the guide element may include one or more therapeutic agents (e.g., drugs, such as time-release drugs). As an example, the guide element may be partially or entirely coated with one or more therapeutic agents. In certain variations, the guide element may be used to deliver one or more growth factors and/or genetic regenerative factors. In some variations, the guide element may be coated with a material (e.g., a polymer) that encapsulates or controls the release rate one or more therapeutic agents, or in which one or more therapeutic agents are embedded. The therapeutic agents may be used, for example, to treat the target site to which the guide element is fixedly attached or otherwise secured. In certain variations, the guide element may include one or more lumens through which a therapeutic agent can be delivered.
After the first anchor has been deployed in the region of the heart valve annular tissue, the first delivery catheter is withdrawn proximally from the tunnel catheter. While maintaining the existing position of the outer catheter of the tunnel catheter about the subannular groove region, the inner catheter of the tunnel catheter is repositioned at a second opening of the outer catheter 134. A second delivery catheter is then advanced over the guide element through the lumen of the tunnel catheter 136. In some embodiments, subsequent delivery of anchors can be achieved by removing and reloading the first delivery catheter. In other embodiments, the delivery catheter is loaded with a plurality of anchors and does not need to be withdrawn from the tunnel catheter to deliver subsequent anchors.
During advancement of the second delivery catheter over the guide element, the guide element may enter the second delivery catheter through an opening at its distal end, and exit the second delivery catheter through an opening in its side wall that is proximal to its distal end. Alternatively, the guide element may enter the second delivery catheter through an opening at its distal end, and exit the second delivery catheter through an opening at its proximal end, or at any other location proximal to the distal end. After the second delivery catheter has been advanced over the guide element through the lumen of the tunnel catheter, a second anchor is deployed into a second region of the heart valve annular tissue using a second opening of the tunnel catheter 138.
The procedure described above represents one embodiment of the invention that may be used to treat the annular tissue of the mitral valve. In other embodiments of the invention, other tissues or structures of the heart and vasculature can also be treated, including but not limited to the subvalvular apparatus, septal structures and the myocardium. In still other embodiments, one or more cinchable implants may be deployed in non-cardiac tissues or structures, for example, to treat gastrointestinal disorders such as obesity, genitourinary conditions such as incontinence, or to perform cosmetic and reconstructive procedures.
After guidewire 144 has been positioned in the subannular groove region 104, a guide tunnel or tunnel catheter 148 is advanced through guide catheter 140, over guidewire 144, as shown in
After tunnel catheter 148 has been positioned in the subannular groove region 104, guidewire 144 is withdrawn proximally as shown in
In some embodiments of the invention, opening 154 is the distalmost anchor delivery opening of tunnel catheter 148, but in some embodiments, one or more openings may have a separate lumen in tunnel catheter 148, so that any anchors deployed from such openings would not interfere or restrict the deployment of subsequent tissue anchors distal to those openings. Furthermore, although
Anchor 158, shown in
In this particular embodiment, as demonstrated in
“Anchors,” for the purposes of this application, are defined to mean any fasteners. Thus, the anchors may comprise C-shaped or semicircular hooks, curved hooks of other shapes, straight hooks, barbed hooks, clips of any kind, T-tags, or any other suitable fastener(s). In one embodiment, anchors may comprise two tips that curve in opposite directions upon deployment, forming two intersecting semi-circles, circles, ovals, helices or the like. In some embodiments, the tips may be sharpened or beveled. In some embodiments, the anchors are self-deforming. By “self-deforming” it is meant that the anchors are biased to change from a first undeployed shape to a second deployed shape upon release of the anchors 210 from a restraint. Such self-deforming anchors may change shape as they are released from a housing or deployed from a lumen or opening to enter annular tissue, and secure themselves to the tissue. Self-deforming anchors may be made of any suitable material such as spring stainless steel, or super-elastic or shape-memory material like nickel-titanium alloy (e.g., Nitinol).
In other embodiments, the anchors may be made of a elastic material and may be loaded into a delivery catheter in such a way that they change shape upon release. For example, anchors that are not self-deforming may be secured to tissue via crimping, firing or other application of mechanical force to facilitate tissue penetration and/or securement. Even self-securing anchors may be crimped in some embodiments of the invention, to provide enhanced attachment to tissue. In some embodiments, anchors may comprise one or more bioactive agents, including biodegradable metals and, polymers. In another embodiment, the anchors may comprise electrode components. Such electrodes, for example, may sense various parameters including but not limited to impedance, temperature and electrical signals. In other embodiments, such electrodes may be used to supply energy to tissue at ablation or sub-ablation amounts.
In the embodiments depicted in
With reference to
The catheters described herein, including tunnel catheter 148, may be formed of any of a number of different materials. Examples of suitable materials include polymers, such as polyether-block co-polyamide polymers, copolyester elastomers, thermoset polymers, polyolefins (e.g., polypropylene or polyethylene, including high-density polyethylene and low-density polyethylene), polytetrafluoroethylene, ethylene vinyl acetate, polyamides, polyimides, polyurethanes, polyvinyl chloride (PVC, fluoropolymers (e.g., fluorinated ethylene propylene, perfluoroalkoxy (PFA) polymer, polyvinylidenefluoride, etc.), polyetheretherketones (PEEKs), and silicones. Examples of polyamides include Nylon 6 (e.g., Zytel® HTN high performance polyamides from DuPont™), Nylon 11 (e.g., Rilsan® B polyamides from Arkema Inc.), and Nylon 12 (e.g., Grilamid® polyamides from EMS-Grivory, Rilsan® A polyamides from Arkema Inc., and Vestamid® polyamides from Degussa Corp.). In some variations, tunnel catheter 148 may be formed of multiple polymers. For example, a catheter may be formed of a blend of different polymers, such as a blend of high-density polyethylene and low-density polyethylene. While the wall of a catheter may be formed of a single layer, some variations of catheters may include walls having multiple layers (e.g., two layers, three layers). Furthermore, some variations of catheters may include at least two sections that are formed of different materials and/or that include different numbers of layers. Additionally, certain variations of catheters may include multiple (e.g., two, three) lumens. The lumens or walls may, for example, be lined and/or reinforced (e.g., with braiding or winding). The reinforcing structures, if any, may be metallic or comprise a non-metal or polymer having a higher durometer.
As illustrated in
Distal portion 102 of guide catheter 100 may be advanced into position generally under the valve annulus VA by any suitable technique, some of which are described below. Distal portion 102 of guide catheter 100 may be used to deliver anchors to the valve annular tissue, to stabilize and/or expose the annulus, or both. In one embodiment of the invention, using guide catheter 100 having a flexible elongate body as shown in
In some embodiments, it may be advantageous to provide guide catheter 100 with a curvable portion with a radius in an expanded/curved state that is greater than a radius of the valve annulus, the subannular groove region or ventricular chamber. The relative size of this portion of guide catheter 100, when positioned within the smaller sized ventricle, may exert a radially outward force that can improve the surface contact between guide catheter 100 and the left ventricle LV. For example, in one embodiment, guide catheter 100 in the expanded state has a radius about 25% to about 50% larger that the valve annulus.
In addition to delivering anchors to the annular tissue, the guide catheter 100 (and specifically distal portion 102) may be used to stabilize and/or expose the valve annulus or annular tissue. Such stabilization and exposure are described fully in U.S. patent application Ser. No. 10/656,797, which is incorporated by reference in its entirety. For example, once the distal portion 102 is positioned generally under the annular tissue, force may be applied to the distal portion 102 to stabilize the valve annulus VA or annular tissue, as shown in
In some embodiments, additional force may be exerted by the delivery device after the first anchor is engaged to body tissue. The first anchor may provide additional leverage and stability for manipulating the delivery device(s). Referring to
As is shown, in some embodiments, anchors 110 may have a relatively straight configuration when housed in delivery device 108, with two penetrating tips and a loop in between the tips. Upon deployment from delivery device 108, the tips of anchor 110 may curve in opposite directions to form two semi-circles, circles, ovals, overlapping helices or the like. This is but one example of a type of self-securing anchor which may be delivered to an annular tissue. Additional anchor embodiments are described below, and may also be found in U.S. patent application Ser. No. 11/202,474, which was previously incorporated by reference. Multiple coupled anchors 110 may be delivered, and the anchors 110 are drawn together to tighten the valve annulus.
Although delivery device 108 is shown having a circular cross-sectional shape in
In several embodiments of the invention, one or more self-forming anchors 900 are stored in the delivery device in a straightened configuration, coupled with a tether 902, as shown in
Portions of tether 902 coupled to junction section 903 are also brought closer to the surface of tissue T. Bringing tether 902 closer to tissue T may be beneficial because a greater proportion of the cross-sectional blood flow path, as bordered by tether 902, is preserved, which may reduce the risk that any subsequent catheters or implanted components inserted into the heart chamber or valve will snag or damage tether 902. Also, it may reduce the degree of hemolysis compared to a tether that crosses the mitral flow pathway farther from the tissue surface. Various anchor designs and deployment methods are disclosed, for example, in U.S. patent application Ser. Nos. 10/741,130, 10/792,681, 10/900,980, 11/255,400, and 10/901,555, which are herein incorporated by reference in their entirety, as well as U.S. patent application Ser. No. 11/202,474, previously incorporated by reference.
Referring now to
In some embodiments, the openings 704 are arranged in a linear configuration along a longitudinal length of guide tunnel 700. Although openings 704 are depicted in
Guide tunnel 700 may be used in beating heart procedures where it is difficult to control the position of the distal end of a delivery catheter with respect to the target tissue. By providing multiple openings 704, once guide tunnel 700 has been positioned at its desired location, it need not be moved to deploy a plurality of anchors. Instead, the delivery catheter can be manipulated within the non-moving guide tunnel 700 to deploy the anchors through the provided openings 704. Thus, guide tunnel 700 may reduce the risk that during a lengthy procedure with multiple anchoring sites, repositioning of the delivery catheter to a new target location may dislodge the delivery catheter from hard-to-reach target sites that are easily lost. In addition to transluminal procedures, guide tunnel 700 may also be used with open or limited access surgeries. In further embodiments of the invention, guide tunnel 700 may be configured with a shorter longitudinal length and/or a more rigid body for some surgical applications.
During the deployment of a cinchable implant, when the anchors have been secured to their target sites, the coupling members or one or more segments of the tether may still be looped within the delivery catheter or guide tunnel 700. This may be beneficial when implanting anchors in unstable body regions such as a beating heart because with each deployment of an anchor, the retention of a tether segment in guide tunnel 700 further secures guide tunnel 700 to the sites where the anchors have been secured. Once all of the anchors have been deployed, however, the retained tether segments will need to be separated from guide tunnel 700 so that guide tunnel 700 may be withdrawn.
In one embodiment of the invention, the retaining structures between anchor openings 704 may be configured to releasably retain the tether or coupling elements between the anchors. In a further embodiment, depicted in greater detail in
Referring to
In some embodiments, locking element 722 may have an elongate configuration and comprise a wire thread, or ribbon formed from metal, polymer, or combination thereof. Referring back to the embodiment depicted in
In some embodiments, latch 712 may not maintain the alignment of lumen 718 with its complementary lumens 720 once locking element 722 is removed. In these embodiments, reinsertion or rethreading of locking element 722 back into lumen 718 may not work in situ. In other embodiments, however, guide tunnel 700 may be constructed such that latch 712 is biased to an alignment position and locking element 722 may be reengaged to one or more lumens 718, 720. To facilitate initial insertion or reinsertion of locking element 722 into lumens 718, 720, lumens 718, 720 may be provided with one or more tapered lumen openings 760 as depicted in
In some embodiments, a single locking element 722 is provided and is insertable through all lumens 718 of latch 712 and complementary lumens 720 of tubular body 702, and the aggregate lumen path from lumens 718 and complementary lumens 720 is substantially linear or curvilinear. With these particular embodiments, release of latches 712 start with the distalmost latch and finish with the most proximal latch. In other embodiments, the lumens and the locking element, such as the locking element 725 shown in
Although
In other embodiments of the invention, locking element 722 may comprise an electrically conductive material that melts upon the application of sufficient electrical current to permit the release of latch 712. In still other embodiments, the releasable retaining mechanism may comprise magnetic controlled locks or electropolymers embedded in latch 712 that may be controlled with application of current to wires embedded in tubular body 702 between latches 712 and the proximal end of guide tunnel 700.
Referring back to
The hemostatic seal may comprise any of a variety of configurations known in the art. In some examples, the hemostatic seal may comprise one or more slits on a septum or sealing member which forms one or more seal flaps. Upon insertion of an instrument or device through the sealing member, the seal flaps deform or deflect to permit passage of the device while exerting force around a perimeter of the device to substantially resist passage of fluid or gas through the sealing member. Referring to
Referring back to
The body 962 comprises a lumen 966 in communication with the sealing opening 952. The lumen 966 may have a uniform or non-uniform diameter, cross-sectional area and/or cross-sectional shape. Lumens with non-uniform diameters may taper toward or away from the seal opening 952, and the taper may be linear or non-linear. In some examples, the lumen 966 may have an average diameter 968 in the range of about 0.05″ to about 0.5″ or more, in some configurations about 0.1″ to about 0.3″, and in other configurations about 0.15″ to about 0.2″. The lumen 966 may have a length 970 anywhere in the range of about 0.1″ to about 1″ or more, in some configuration about 0.2″ to about 0.5″, and in other configurations about 0.25″ to about 0.4″. The body 962 may have any of a variety of shapes, including cylindrical, frustoconical, box-like or other shapes, and may be coupled to the guide tunnel by a frame or housing.
In some embodiments, guide tunnel 700 may be used in conjunction with a delivery catheter comprising multiple anchors with preset spacing, similar to that depicted in
In another embodiment, guide tunnel 700 further comprises an inner guide tunnel 750 that is reversibly insertable into passageway 703 of guide tunnel 700. In these and other embodiments comprising inner guide tunnel 750, port 728 that is configured to receive the delivery catheter will be located on the inner guide tunnel 750 while guide tunnel 700 will have a port 752 configured to receive the inner guide tunnel 750. Inner guide tunnel 750 further comprises an inner tubular body 754 with one or more openings 756 located at the distal end 758 of the inner tubular body 754. Opening 756 may be configured with flanking or other configuration of radio-opaque markers that can be used to align opening 756 of inner guide tunnel 750 with the corresponding radio-opaque markers of latches 712. Opening 756 may comprise the same material as inner tubular body 754. In other embodiments, opening 756 is reinforced with a frame 806. In some embodiments, frame 806 may comprise a polymer of higher durometer than material comprising inner tubular body 754. In other embodiments, frame 806 may comprise a metal such as stainless steel, cobalt chromium, platinum-iridium, or Nitinol. In further embodiments, frame 806 may be plated with an additional metal, including but not limited to gold. In some embodiments, frame 806 is plated with additional material to alter its radio-opacity. Inner guide tunnel 750 may also be configured with one or other proximal ports 734 previously mentioned.
In some embodiments of the invention, guide tunnel 700, inner guide tunnel 750 or the delivery catheter may include a position sensor system to detect the relative position of inner guide tunnel 750 and/or the delivery catheter. In one embodiment, the position sensor system comprises a series of electrical contact points along passageway 703 of guide tunnel 700 that can form an electrical circuit with one or more electrical contact points located on inner tubular body 754. Similarly, electrical contact points in the lumen of inner guide tunnel 750 can be used to detect the position of delivery catheters inserted therein. The position sensor system may be used as a substitute or in conjunction with radio-opaque markers to facilitate alignment of various components. Other types of position sensor system are also contemplated, including but not limited to optical and magnetic detection mechanisms.
In some embodiments of the invention, guide tunnel 700 with inner guide tunnel 750 may be used with delivery catheters comprising a single anchor, or delivery catheters with multiple anchors. In these embodiments, inner guide tunnel 750 may be used to simplify positioning of delivery catheters with respect to openings 704 on guide catheter 700. Inner guide tunnel 750 may also be provided with one or more visual markings, detents, servo motor controlled positioning or other mechanisms to facilitate anchor delivery through openings 704. In some embodiments, inner guide tunnel 750 may be configured, for example, to reorient end-firing anchor delivery catheters to deploy anchors through the side openings 705 of guide tunnel 700.
In some embodiments, guide tunnel 700 and inner guide tunnel 750 may be configured to restrict or limit any rotational movement between the two components. Such a feature may be useful when positioning in more difficult target locations in the body that require considerable length, angulation and torque to reach that may result in rotation and/or length misalignment. In one embodiment of the invention, depicted in
In the embodiments of the cinchable implants described above, several embodiments of guide tunnel 700 or tunnel catheter 148 depict a single, longitudinal arrangement of alternating identical sized openings 154 and identical retaining elements or latches 712, but alternate configurations are also contemplated. These alternate configurations may include, for example, two or more distinct groups, 768, 770, 772 of openings and retaining elements as illustrated in
Referring again to
With reference now to
Housing 206 may be flexible or rigid in some variations. In some embodiments, for example, flexible housing 206 may comprise multiple segments configured such that housing 206 is deformable by tensioning a tensioning member coupled to the segments. In some embodiments, housing 206 is formed from an elastic material having a geometry selected to engage and optionally shape or constrict the annular tissue. For example, the rings may be formed from spring stainless steel, super-elastic shape memory alloys such as nickel-titanium alloys (e.g., Nitinol), or the like. In other embodiments, the housing 206 could be formed from an inflatable or other structure that can be selectively rigidified in situ, such as a gooseneck or lockable element shaft, any of the rigidifying structures described above, or any other rigidifying structure.
In some embodiments of the invention, anchors 210 are generally C-shaped or semicircular in their undeployed form, with the ends of the “C” being sufficiently sharpened to penetrate tissue. Between the ends of the C-shaped anchor 210, an eyelet may be formed for allowing slidable passage of the tether 212. To maintain the anchors 210 in their C-shaped, undeployed state, anchors 210 may be retained within housing 206 by two mandrels 214, one mandrel 214 retaining each of the two arms of the C-shape of each anchor 210. Mandrels 214 may be retractable within elongate catheter body 204 to release anchors 210 and allow them to change from their undeployed C-shape to a deployed shape. The deployed shape, for example, may approximate a partial or complete circle, or a circle with overlapping ends, the latter appearing similar to a key ring. Such anchors are described further below, but generally may be advantageous in their ability to secure themselves to annular tissue by changing from their undeployed to their deployed shape. In some variations, anchors 210 are also configured to lie flush with a tissue surface after being deployed. By “flush” it is meant that no significant amount of an anchor protrudes from the surface, although some small portion may protrude.
The retaining mandrels 214 may have any suitable cross-sectional shape, cross-sectional area, length and be made of any suitable material, such as stainless steel, titanium, nickel-titanium alloys (e.g., Nitinol), or the like. Some embodiments may not include a mandrel, or may have one mandrel, two mandrels, or more than two mandrels.
In some embodiments, the anchors 210 may be released from mandrels 214 to contact and secure themselves to annular tissue without any further force applied by the delivery device 200. Some embodiments, however, may also include one or more expandable members 208, which may be expanded to help drive anchors 210 into tissue. Expandable member(s) 208 may have any suitable size and configuration and may be made of any suitable material(s). Any of a variety of mechanical and hydraulic expandable members known in the art may be included in housing 206.
In another embodiment of the invention, shown in
Retracting contacting member 530 to push anchors 526 out of apertures 528 may help cause anchors 526 to secure themselves to the tissue adjacent the apertures 528. Using anchors 526 that are relatively straighter/flatter configuration when undeployed may allow anchors 526 with relatively large deployed sizes to be disposed in (and delivered from) a relatively small housing 522. In one embodiment, for example, anchors 526 that deploy into a shape approximating two intersecting semi-circles, circles, ovals, helices, or the like, and that have a radius of one of the semi-circles of about 3 mm may be disposed within a housing 522 having a diameter of about 6 French (2.00 mm) and more preferably about 5 French (1.67 mm) or even smaller. Such anchors 526 may measure about 6 mm or more in their widest dimension. In some embodiments, housing 522 may have a diametrical dimension (“d”) and anchor 526 may have a diametrical dimension (“D”) in the deployed state, and the ratio of D to d may be at least about 3.5. In other embodiments, the ratio of D to d may be at least about 4.4, and more preferably at least about 7, and even more preferably at least about 8.8. These are only examples, however, and other larger or smaller anchors 526 may be disposed within a larger or smaller housing 522. The dimensions of an anchor may vary depending on the particular usage. For example, anchors used for ventriculoplasty may permit the use of larger anchors than those used for annuloplasty due to fewer space constraints in the main compartment of the ventricles than in the subvalvular spaces. Furthermore, any convenient number of anchors 526 may be disposed within housing 522. In one variation, for example, housing 522 may hold about 1 to about 20 anchors 526, and more preferably about 3 to about 10 anchors 526. Other variations may hold more anchors 526.
Anchor contacting member 530 and pull cord 532 may have any suitable configuration and may be manufactured from any material or combination of materials. In alternative embodiments of the invention, contacting member 530 may be pushed by a pusher member to contact and deploy anchors 526. Alternatively, any of the anchor deployment devices and methods previously described may be used.
Tether 534, as shown in
As shown in
Delivery catheter 1200 may optionally comprise a retrieval member, such as a retrieval line or filament 1222 that is looped around eyelet 1226 of anchor 1216 and threaded proximally back through delivery catheter 1200. Retrieval filament 1222 is pulled of delivery catheter 1200 by eyelet 1226 when anchor 1216 is deployed. Retrieval filament 1222 may be used to pull back anchor 1216 into delivery catheter 1200 should anchor 1216 misfire and fail to engage body tissue. If anchor 1216 is successfully deployed, one end of retrieval filament 1222 may be pulled out from eyelet 1226 to release anchor 1216 from retrieval filament 1222.
With reference to
Generally, delivery device 520 may be advanced into any suitable location for treating any valve or body tissue by any suitable advancing or device placement method. For example, in one embodiment a guide member is first advanced in a retrograde fashion through an aorta, typically via access from a femoral artery. The guide member is passed into the left ventricle of the heart and thus into the space formed by the mitral valve leaflets, the left ventricular wall and chordae tendineae of the left ventricle. Once in this space, the guide member is advanced along a portion (or all) of the circumference of the mitral valve. A sheath 540 is advanced over the guide member within the space below the valve leaflets, and the guide element is removed through sheath 540. In some embodiments, the guide member may comprise a steerable guide catheter. Anchor delivery device 520 may then be advanced through the sheath to a desired position within the space, and sheath 540 may be removed. In other embodiments, a tunnel catheter 148 (shown in ghost) is passed through the sheath to provide additional stability and to facilitate positioning of the delivery device 520.
As shown in
Referring now to
For example, in one embodiment, tensioning tether 534, attaching tether 534 to most-proximal anchor 526, and cutting tether 534 are achieved using a termination device (not shown). The termination device may comprise, for example, a catheter advanceable over tether 534 that includes a cutting member and a nickel-titanium alloy (e.g., Nitinol) knot or other attachment member for attaching tether 534 to most-proximal anchor. The termination catheter may be advanced over tether 534 to a location at or near the proximal end of the tethered anchors 526. It may then be used to apply opposing force to the most-proximal anchor 526 while tether 534 is tensioned. Attachment and cutting members may then be used to attach tether 534 to most-proximal anchor 526 and cut tether 534 just proximal to most-proximal anchor 526. Such a termination device is only one possible way of accomplishing the cinching, attachment and cutting steps, and any other suitable device(s) or technique(s) may be used. Additional devices and methods for terminating (e.g., cinching and fastening) may be found, for example, in U.S. patent application Ser. No. 11/232,190, previously incorporated by reference, and U.S. patent application Ser. Nos. 11/270,034, and 11/875,774, both of which are herein incorporated by reference in their entirety. In some embodiments, the termination device is located in the same heart chamber as the remaining portions of the implant, which permits the implant to be wholly implanted in a single heart chamber. In other embodiments, however, a portion of the implant passes transmurally through a septal wall or an outer wall of a heart chamber. In these embodiments, the termination member and optionally one or more anchors may be located in a different heart chamber.
In some embodiments, it may be advantageous to deploy a first number of anchors 526 along a first portion of annular tissue, cinch the first anchors to tighten that portion of the annular tissue, move the delivery device 520 to another portion of the annular tissue, and deploy and cinch a second number of anchors 526 along a second portion of the annular tissue. Such a method may be more convenient, in some cases, than extending delivery device 520 around all or most of the circumference of the annular tissue, and may allow a shorter, more maneuverable housing 522 to be used.
With reference to
Although the preferred access route to the subannular groove region 104 or subvalvular space 106 is a retrograde route through the aorta A to the heart H, other access routes may also be used. Access to the heart H may also be transthoracic, with a delivery device being introduced into the heart via an incision or port in the heart wall. Even open heart surgical procedures may benefit from the methods and devices described herein. In some embodiments of the invention, hybrid access involving a combination of access methods described herein may be used. In one specific example, dual access to a valve may be achieved with a combination of venous and arterial access sites. User manipulation of both ends of a guidewire placed across a valve may improve positioning and control of the catheter and the implants. In other examples of hybrid access, both minimally invasive and surgical access is used to implant one or more cardiac devices.
Other embodiments of the invention also include treatment of the tricuspid valve annulus, tissue adjacent the tricuspid valve leaflets TVL, or any other cardiac or vascular valve. Thus, although the description herein discloses specific examples of devices and methods of the invention for mitral valve repair, the devices and methods of the invention may be used in any suitable procedure, both cardiac and non-cardiac. For example, in other embodiments of the invention, the mitral valve reshaping devices and procedures may be used with the tricuspid valves also, and certain embodiments may also be adapted for use with the pulmonary and aortic valves. Likewise, the other examples provided below are directed to the left ventricle, but the devices and methods may also be adapted by one of ordinary skill in the art for use in the right ventricle or either atrium. The devices and methods may also be used with the great vessels of the cardiovascular system, for example, to treat aortic root dilatation.
Access to the other chambers of the heart may be performed through percutaneous or venous cut-down access, including but not limited to transjugular, subclavicular and femoral vein access routes. When venous access is established, access to the right atrium RA, the right ventricle RV, the tricuspid valve TV and other right-sided cardiac structures can occur. Furthermore, access to left-sided heart structures, such as the left atrium LA, left ventricle LV, mitral valve and the aortic valve, may be subsequently achieved by performing a transseptal puncture procedure. Referring to
Surgical approaches that may be used have been described above but also include but are not limited to transcatheter procedures made through surgical incisions in the aorta or myocardium. In one particular embodiment, depicted in
In addition to performing valve annuloplasty with the multi-opening guide tunnel, other uses, including cardiac and non-cardiac applications, are contemplated within the scope of the invention. In one embodiment of the invention, reconfiguration of the subvalvular apparatus with a cinchable implant delivered by a multi-opening delivery tool with a releasable tether retaining mechanism is contemplated. For example, a plurality of tethered anchors may be secured to the myocardium adjacent the papillary muscle and then cinched to tension the myocardium and cause repositioning of one or more papillary muscles.
In other embodiments, the reshaping of a ventricle may be performed using a multi-opening guide tunnel with a releasable tether retaining mechanism, along any of a variety of dimensions or vectors. For example, referring to
Referring to
In
While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention. For all of the embodiments described above, the steps of the methods need not be performed sequentially.
The present application is a continuation application of U.S. application Ser. No. 14/309,837, filed Jun. 19, 2014, now issued U.S. Pat. No. 9,706,996, which is a continuation application of U.S. application Ser. No. 12/366,553, filed Feb. 5, 2009, now issued U.S. Pat. No. 8,790,367, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 61/026,697, filed Feb. 6, 2008, the contents of each of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2108206 | Meeker | Feb 1938 | A |
3656185 | Carpentier | Apr 1972 | A |
3727614 | Kniazuk | Apr 1973 | A |
3773034 | Burns et al. | Nov 1973 | A |
3598576 | Komiya | May 1976 | A |
3961419 | Schwartz | Jun 1976 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4014492 | Rothfuss | Mar 1977 | A |
4034473 | May | Jul 1977 | A |
4042979 | Angell | Aug 1977 | A |
4043504 | Hueil et al. | Aug 1977 | A |
4053979 | Tuthill et al. | Oct 1977 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4069825 | Akiyama | Jan 1978 | A |
4290151 | Massana | Sep 1981 | A |
4384406 | Tischlinger | May 1983 | A |
4445892 | Hussein et al. | May 1984 | A |
4489446 | Reed | Dec 1984 | A |
4494542 | Lee | Jan 1985 | A |
4619247 | Inoue et al. | Oct 1986 | A |
4700250 | Kuriyama | Oct 1987 | A |
4726371 | Gibbens | Feb 1988 | A |
4758221 | Jureidini | Jul 1988 | A |
4784133 | Mackin | Nov 1988 | A |
4798594 | Hillstead | Jan 1989 | A |
4845851 | Warthen | Jul 1989 | A |
4848341 | Ahmad | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4961738 | Mackin | Oct 1990 | A |
4969893 | Swor | Nov 1990 | A |
4976710 | Mackin | Dec 1990 | A |
5053047 | Yoon | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5078731 | Hayhurst | Jan 1992 | A |
5084058 | Li | Jan 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5133723 | Li et al. | Jul 1992 | A |
5221255 | Mahurkar et al. | Jun 1993 | A |
5221269 | Miller et al. | Jun 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5257975 | Foshee | Nov 1993 | A |
5306296 | Wright et al. | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5324298 | Phillips et al. | Jun 1994 | A |
5346500 | Suchart | Sep 1994 | A |
5358479 | Wilson | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5364407 | Poll | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5383905 | Golds et al. | Jan 1995 | A |
5395316 | Martin | Mar 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5409499 | Yi | Apr 1995 | A |
5417700 | Egan | May 1995 | A |
5423837 | Mericle et al. | Jun 1995 | A |
5437680 | Yoon | Aug 1995 | A |
5439470 | Li | Aug 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5452513 | Zinnbauer et al. | Sep 1995 | A |
5474572 | Hayhurst | Dec 1995 | A |
5507760 | Wynne et al. | Apr 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5524630 | Crowley | Jun 1996 | A |
5527323 | Jervis et al. | Jun 1996 | A |
5531686 | Lundquist et al. | Jul 1996 | A |
5545134 | Hilaire et al. | Aug 1996 | A |
5545168 | Burke | Aug 1996 | A |
5565122 | Zinnbauer et al. | Oct 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5591194 | Berthiaume | Jan 1997 | A |
5626590 | Wilk | May 1997 | A |
5626614 | Hart | May 1997 | A |
5630824 | Hart | May 1997 | A |
5643289 | Sauer et al. | Jul 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5690655 | Hart et al. | Nov 1997 | A |
5709695 | Northrup, III | Jan 1998 | A |
5713950 | Cox | Feb 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5718725 | Sterman et al. | Feb 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5741260 | Songer et al. | Apr 1998 | A |
5741301 | Pagedas | Apr 1998 | A |
5752518 | McGee et al. | May 1998 | A |
5752964 | Mericle | May 1998 | A |
5752966 | Chang | May 1998 | A |
5755730 | Swain et al. | May 1998 | A |
5766240 | Johnson | Jun 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5782861 | Cragg et al. | Jul 1998 | A |
5810848 | Hayhurst | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5817107 | Schaller | Oct 1998 | A |
5827171 | Dobak, III et al. | Oct 1998 | A |
5843169 | Taheri | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5860992 | Daniel et al. | Jan 1999 | A |
5860993 | Thompson et al. | Jan 1999 | A |
5868733 | Ockuly et al. | Feb 1999 | A |
5879371 | Gardiner et al. | Mar 1999 | A |
5885238 | Stevens et al. | Mar 1999 | A |
5888240 | Carpentier et al. | Mar 1999 | A |
5902321 | Caspari et al. | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5906579 | Vander Salm et al. | May 1999 | A |
5911717 | Jacobsen et al. | Jun 1999 | A |
5919207 | Taheri | Jul 1999 | A |
5919208 | Valenti | Jul 1999 | A |
5935149 | Ek | Aug 1999 | A |
5947983 | Solar et al. | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5972004 | Williamson, IV et al. | Oct 1999 | A |
5984933 | Yoon | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
5991650 | Swanson et al. | Nov 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6015428 | Pagedas | Jan 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6050936 | Schweich, Jr. et al. | Apr 2000 | A |
6056743 | Ellis et al. | May 2000 | A |
6059715 | Schweich, Jr. et al. | May 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6077989 | Kandel et al. | Jun 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6125852 | Stevens et al. | Oct 2000 | A |
6149658 | Gardiner et al. | Nov 2000 | A |
6162168 | Schweich, Jr. et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6171329 | Shaw et al. | Jan 2001 | B1 |
6183469 | Thapliyal et al. | Feb 2001 | B1 |
6197017 | Brock et al. | Mar 2001 | B1 |
6203531 | Ockuly et al. | Mar 2001 | B1 |
6221084 | Fleenor | Apr 2001 | B1 |
6228055 | Foerster et al. | May 2001 | B1 |
6228096 | Marchand | May 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6254620 | Koh et al. | Jul 2001 | B1 |
6258118 | Baum et al. | Jul 2001 | B1 |
6260552 | Mortier et al. | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6283993 | Cosgrove et al. | Sep 2001 | B1 |
6306149 | Meade | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6378289 | Trudeau et al. | Apr 2002 | B1 |
6391048 | Ginn et al. | May 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6409743 | Fenton, Jr. | Jun 2002 | B1 |
6423088 | Fenton, Jr. | Jul 2002 | B1 |
6432123 | Schwartz et al. | Aug 2002 | B2 |
6461327 | Addis et al. | Oct 2002 | B1 |
6491689 | Ellis et al. | Dec 2002 | B1 |
6514265 | Ho et al. | Feb 2003 | B2 |
6524328 | Levinson | Feb 2003 | B2 |
6524338 | Gundry | Feb 2003 | B1 |
6533753 | Haarstad et al. | Mar 2003 | B1 |
6551332 | Nguyen et al. | Apr 2003 | B1 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6575987 | Gellman et al. | Jun 2003 | B2 |
6589160 | Schweich, Jr. et al. | Jul 2003 | B2 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6607541 | Gardiner et al. | Aug 2003 | B1 |
6613059 | Schaller et al. | Sep 2003 | B2 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6641593 | Schaller et al. | Nov 2003 | B1 |
6648903 | Pierson, III | Nov 2003 | B1 |
6651671 | Donlon et al. | Nov 2003 | B1 |
6655386 | Makower et al. | Dec 2003 | B1 |
6669687 | Saadat | Dec 2003 | B1 |
6676702 | Mathis | Jan 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6699263 | Cope | Mar 2004 | B2 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6716243 | Colvin et al. | Apr 2004 | B1 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6723038 | Schoeder et al. | Apr 2004 | B1 |
6723107 | Skiba et al. | Apr 2004 | B1 |
6733509 | Nobles et al. | May 2004 | B2 |
6746457 | Dana et al. | Jun 2004 | B2 |
6749622 | McGuckin et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6793618 | Schweich, Jr. et al. | Sep 2004 | B2 |
6802851 | Jones et al. | Oct 2004 | B2 |
6811560 | Jones et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6875224 | Grimes | Apr 2005 | B2 |
6908424 | Mortier et al. | Jun 2005 | B2 |
6923818 | Muramatsu et al. | Aug 2005 | B2 |
6932792 | St. Goar et al. | Aug 2005 | B1 |
6951557 | Ellis et al. | Oct 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
6991643 | Saadat | Jan 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7004958 | Adams et al. | Feb 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7044957 | Foerster et al. | May 2006 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7186264 | Liddicoat et al. | Mar 2007 | B2 |
7189199 | McCarthy et al. | Mar 2007 | B2 |
7235086 | Sauer et al. | Jun 2007 | B2 |
7241310 | Taylor et al. | Jul 2007 | B2 |
7326231 | Phillips et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7344544 | Bender et al. | Mar 2008 | B2 |
7452325 | Schaller | Nov 2008 | B2 |
7534204 | Starksen et al. | May 2009 | B2 |
7588582 | Starksen et al. | Sep 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7655040 | Douk et al. | Feb 2010 | B2 |
7666193 | Starksen et al. | Feb 2010 | B2 |
7727247 | Kimura et al. | Jun 2010 | B2 |
7753858 | Starksen et al. | Jul 2010 | B2 |
7753922 | Starksen | Jul 2010 | B2 |
7753924 | Starksen et al. | Jul 2010 | B2 |
7758637 | Starksen et al. | Jul 2010 | B2 |
7766812 | Schroeder et al. | Aug 2010 | B2 |
7832406 | Ellis et al. | Nov 2010 | B2 |
7850600 | Piskun | Dec 2010 | B1 |
7883538 | To et al. | Feb 2011 | B2 |
7918787 | Saadat | Apr 2011 | B2 |
7922762 | Starksen | Apr 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
8066766 | To et al. | Nov 2011 | B2 |
8287555 | Starksen et al. | Oct 2012 | B2 |
8287557 | To et al. | Oct 2012 | B2 |
8343173 | Starksen et al. | Jan 2013 | B2 |
8641727 | Starksen et al. | Feb 2014 | B2 |
8790367 | Nguyen et al. | Jul 2014 | B2 |
9072513 | To et al. | Jul 2015 | B2 |
9226825 | Starksen et al. | Jan 2016 | B2 |
9468528 | Starksen et al. | Oct 2016 | B2 |
9706996 | Nguyen | Jul 2017 | B2 |
9949829 | Starksen et al. | Apr 2018 | B2 |
10092402 | Starksen et al. | Oct 2018 | B2 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010014800 | Frazier et al. | Aug 2001 | A1 |
20010023332 | Hahnen | Sep 2001 | A1 |
20010031979 | Ricci | Oct 2001 | A1 |
20010034528 | Foerster et al. | Oct 2001 | A1 |
20010041821 | Wilk | Nov 2001 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020013621 | Stobie et al. | Jan 2002 | A1 |
20020026201 | Foerster et al. | Feb 2002 | A1 |
20020029080 | Mortier et al. | Mar 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020042621 | Liddicoat et al. | Apr 2002 | A1 |
20020065536 | Hart et al. | May 2002 | A1 |
20020072757 | Ahmed et al. | Jun 2002 | A1 |
20020077524 | Schweich, Jr. et al. | Jun 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020087049 | Brock et al. | Jul 2002 | A1 |
20020087148 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020095167 | Liddicoat et al. | Jul 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020138044 | Streeter et al. | Sep 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020161378 | Downing | Oct 2002 | A1 |
20020165486 | Bertolero et al. | Nov 2002 | A1 |
20020165561 | Ainsworth et al. | Nov 2002 | A1 |
20020173841 | Ortiz et al. | Nov 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020183835 | Taylor et al. | Dec 2002 | A1 |
20020193815 | Foerster et al. | Dec 2002 | A1 |
20030009196 | Peterson | Jan 2003 | A1 |
20030014060 | Wilson | Jan 2003 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030032979 | Mortier et al. | Feb 2003 | A1 |
20030033006 | Phillips et al. | Feb 2003 | A1 |
20030060813 | Loeb et al. | Mar 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078601 | Shikhman et al. | Apr 2003 | A1 |
20030078603 | Schaller et al. | Apr 2003 | A1 |
20030093118 | Ho et al. | May 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030125739 | Bagga et al. | Jul 2003 | A1 |
20030125767 | Collier et al. | Jul 2003 | A1 |
20030130731 | Vidlund et al. | Jul 2003 | A1 |
20030144697 | Mathis et al. | Jul 2003 | A1 |
20030158464 | Bertolero | Aug 2003 | A1 |
20030158581 | Levinson | Aug 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20030220685 | Hlvaka et al. | Nov 2003 | A1 |
20030225420 | Wardle | Dec 2003 | A1 |
20030233105 | Gayton | Dec 2003 | A1 |
20030233142 | Morales et al. | Dec 2003 | A1 |
20030236535 | Onuki et al. | Dec 2003 | A1 |
20040003819 | St. Goar et al. | Jan 2004 | A1 |
20040019378 | Hlavka et al. | Jan 2004 | A1 |
20040024414 | Downing | Feb 2004 | A1 |
20040030382 | St. Goar et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040093024 | Lousararian et al. | May 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040122450 | Oren et al. | Jun 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040162465 | Carrillo | Aug 2004 | A1 |
20040172046 | Hlavka et al. | Sep 2004 | A1 |
20040181238 | Zarbatany et al. | Sep 2004 | A1 |
20040186378 | Gesswein | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040204724 | Kissel et al. | Oct 2004 | A1 |
20040210238 | Nobles et al. | Oct 2004 | A1 |
20040236372 | Anspach, III et al. | Nov 2004 | A1 |
20040236419 | Milo | Nov 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20050021054 | Ainsworth et al. | Jan 2005 | A1 |
20050055052 | Lombardo et al. | Mar 2005 | A1 |
20050055087 | Starksen | Mar 2005 | A1 |
20050065550 | Starksen et al. | Mar 2005 | A1 |
20050065589 | Schneider et al. | Mar 2005 | A1 |
20050075723 | Schroeder et al. | Apr 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050107810 | Morales et al. | May 2005 | A1 |
20050107811 | Starksen et al. | May 2005 | A1 |
20050107812 | Starksen et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050119523 | Starksen et al. | Jun 2005 | A1 |
20050119673 | Gordon et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050184122 | Hlavka et al. | Aug 2005 | A1 |
20050192599 | Demarais | Sep 2005 | A1 |
20050192629 | Saadat et al. | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050209690 | Mathis et al. | Sep 2005 | A1 |
20050216078 | Starksen et al. | Sep 2005 | A1 |
20050228452 | Mourlas et al. | Oct 2005 | A1 |
20050251157 | Saadat et al. | Nov 2005 | A1 |
20050251159 | Ewers et al. | Nov 2005 | A1 |
20050251166 | Vaughan et al. | Nov 2005 | A1 |
20050251177 | Saadat et al. | Nov 2005 | A1 |
20050251205 | Ewers et al. | Nov 2005 | A1 |
20050251207 | Flores et al. | Nov 2005 | A1 |
20050251208 | Elmer et al. | Nov 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20050251210 | Westra et al. | Nov 2005 | A1 |
20050267495 | Ginn et al. | Dec 2005 | A1 |
20050273138 | To et al. | Dec 2005 | A1 |
20050277966 | Ewers et al. | Dec 2005 | A1 |
20050277981 | Maahs et al. | Dec 2005 | A1 |
20050277983 | Saadat et al. | Dec 2005 | A1 |
20060015144 | Burbank et al. | Jan 2006 | A1 |
20060025750 | Starksen et al. | Feb 2006 | A1 |
20060025784 | Starksen et al. | Feb 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060058817 | Starksen et al. | Mar 2006 | A1 |
20060069429 | Spence et al. | Mar 2006 | A1 |
20060122633 | To et al. | Jun 2006 | A1 |
20060129188 | Starksen | Jun 2006 | A1 |
20060161040 | McCarthy et al. | Jul 2006 | A1 |
20060178682 | Boehlke | Aug 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060190030 | To et al. | Aug 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060264975 | Pipenhagen et al. | Nov 2006 | A1 |
20060271101 | Saadat et al. | Nov 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20060287661 | Bolduc et al. | Dec 2006 | A1 |
20070005081 | Findlay, III et al. | Jan 2007 | A1 |
20070005394 | Bleyendaal et al. | Jan 2007 | A1 |
20070010857 | Sugimoto et al. | Jan 2007 | A1 |
20070032820 | Chin-Chen et al. | Feb 2007 | A1 |
20070038293 | St. Goar et al. | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070055206 | To et al. | Mar 2007 | A1 |
20070112244 | McCarthy et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112424 | Spence et al. | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20080045977 | To et al. | Feb 2008 | A1 |
20080045982 | To et al. | Feb 2008 | A1 |
20080045983 | To et al. | Feb 2008 | A1 |
20080051810 | To et al. | Feb 2008 | A1 |
20080051832 | To et al. | Feb 2008 | A1 |
20080051837 | To et al. | Feb 2008 | A1 |
20080058765 | Jais et al. | Mar 2008 | A1 |
20080058868 | To et al. | Mar 2008 | A1 |
20080172035 | Starksen et al. | Jul 2008 | A1 |
20080177380 | Starksen et al. | Jul 2008 | A1 |
20080228032 | Starksen et al. | Sep 2008 | A1 |
20080234701 | Morales et al. | Sep 2008 | A1 |
20080234702 | Morales et al. | Sep 2008 | A1 |
20080234704 | Starksen et al. | Sep 2008 | A1 |
20080234728 | Starksen et al. | Sep 2008 | A1 |
20080234815 | Starksen | Sep 2008 | A1 |
20080243150 | Starksen et al. | Oct 2008 | A1 |
20080294177 | To et al. | Nov 2008 | A1 |
20080312712 | Penner | Dec 2008 | A1 |
20090054824 | Melsheimer et al. | Feb 2009 | A1 |
20090182417 | Tremulis et al. | Jul 2009 | A1 |
20090222083 | Nguyen et al. | Sep 2009 | A1 |
20090234318 | Loulmet et al. | Sep 2009 | A1 |
20090276038 | Tremulis et al. | Nov 2009 | A1 |
20100049213 | Serina et al. | Feb 2010 | A1 |
20100076548 | Konno | Mar 2010 | A1 |
20100082098 | Starksen et al. | Apr 2010 | A1 |
20100094248 | Nguyen et al. | Apr 2010 | A1 |
20100094314 | Hernlund et al. | Apr 2010 | A1 |
20100121349 | Meier et al. | May 2010 | A1 |
20110160528 | Starksen | Jun 2011 | A1 |
20120101442 | Legaspi et al. | Apr 2012 | A1 |
20120271331 | To et al. | Oct 2012 | A1 |
20130304093 | Serina et al. | Nov 2013 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140148849 | Eugene et al. | May 2014 | A1 |
20140155783 | Starksen et al. | Jun 2014 | A1 |
20140188140 | Meier et al. | Jul 2014 | A1 |
20140303649 | Nguyen et al. | Oct 2014 | A1 |
20150164639 | Starksen et al. | Jun 2015 | A1 |
20150182216 | Morales et al. | Jul 2015 | A1 |
20170224489 | Starksen et al. | Aug 2017 | A1 |
20180153553 | Nguyen et al. | Jun 2018 | A1 |
20180154111 | Nguyen et al. | Jun 2018 | A1 |
20180228609 | Starksen et al. | Aug 2018 | A1 |
20190091023 | Starksen et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
0 363 661 | Apr 1990 | EP |
0 669 101 | Aug 1995 | EP |
1370546 | Oct 1974 | GB |
6-510460 | Nov 1994 | JP |
11-506628 | Jun 1999 | JP |
2004-601 | Jan 2004 | JP |
2007-514455 | Jun 2007 | JP |
48-23295 | Nov 2011 | JP |
WO-9308740 | May 1993 | WO |
WO-9403227 | Feb 1994 | WO |
WO-9515715 | Jun 1995 | WO |
WO-9608208 | Mar 1996 | WO |
WO-9639081 | Jun 1996 | WO |
WO-9639942 | Dec 1996 | WO |
WO-9727799 | Aug 1997 | WO |
WO-9727807 | Aug 1997 | WO |
WO-9730639 | Aug 1997 | WO |
WO-9807375 | Feb 1998 | WO |
WO-0060995 | Oct 2000 | WO |
WO-0060995 | Oct 2000 | WO |
WO-0067640 | Nov 2000 | WO |
WO-0067640 | Nov 2000 | WO |
WO-0126586 | Apr 2001 | WO |
WO-0154618 | Aug 2001 | WO |
WO-0203892 | Jan 2002 | WO |
WO-02034167 | May 2002 | WO |
WO-02034167 | May 2002 | WO |
WO-02051329 | Jul 2002 | WO |
WO-02053011 | Jul 2002 | WO |
WO-02053011 | Jul 2002 | WO |
WO-02085251 | Oct 2002 | WO |
WO-02085252 | Oct 2002 | WO |
WO-2006037073 | Apr 2003 | WO |
WO-03053289 | Jul 2003 | WO |
WO-03088875 | Oct 2003 | WO |
WO-03105667 | Dec 2003 | WO |
WO-03105667 | Dec 2003 | WO |
WO-03105670 | Dec 2003 | WO |
WO-03105670 | Dec 2003 | WO |
WO-2004037317 | May 2004 | WO |
WO-2004037317 | May 2004 | WO |
WO-2004082523 | Sep 2004 | WO |
WO-2004082523 | Sep 2004 | WO |
WO-2004082538 | Sep 2004 | WO |
WO-2004082538 | Sep 2004 | WO |
WO-2005025644 | Mar 2005 | WO |
WO-2005025644 | Mar 2005 | WO |
WO-2005062931 | Jul 2005 | WO |
WO-2005062931 | Jul 2005 | WO |
WO-2005102181 | Nov 2005 | WO |
WO-2006037073 | Apr 2006 | WO |
WO-2006097931 | Sep 2006 | WO |
WO-2006097931 | Sep 2006 | WO |
WO-2006116558 | Nov 2006 | WO |
WO-2006116558 | Nov 2006 | WO |
WO-2007001936 | Jan 2007 | WO |
WO-2007001936 | Jan 2007 | WO |
WO-2007005495 | Jan 2007 | WO |
WO-2007021564 | Feb 2007 | WO |
WO-2007021834 | Feb 2007 | WO |
WO-2007035449 | Mar 2007 | WO |
WO-2007035449 | Mar 2007 | WO |
WO-2007056502 | May 2007 | WO |
WO-2007100409 | Sep 2007 | WO |
WO-2007100409 | Sep 2007 | WO |
WO-2008028135 | Mar 2008 | WO |
WO-2008028135 | Mar 2008 | WO |
WO-2009100242 | Aug 2009 | WO |
WO-2009100242 | Aug 2009 | WO |
WO-2012031204 | Mar 2012 | WO |
WO-2012031204 | Mar 2012 | WO |
Entry |
---|
De Simone, R. et al. (Apr. 15, 1993). “Adjustable Tricuspid Valve Annuloplasty Assisted by Intraoperative Transesophageal Color Doppler Echocardiography,” Am. J. Cardiol. 71(11):926-931. |
De Simone, R. et al. (Apr. 1, 1994). “Adjustable Annuloplasty for Tricuspid Insufficiency with External Control,” Reader's Comments and Reply, Am. J. Cardiol. 73(9):721-722. |
Downing, S.W. et al. (2002). “Feasibility of Off-Pump ASD Closure Using Real-Time 3-D Echocardiography,” The Heart Surgery Forum 5(2):96-99, Abstract 7025. |
European Examination Communication dated Dec. 8, 2009, for EP Application No. 06 837 222.6 filed on Nov. 8, 2006, 3 pages. |
Extended European Search Report dated Sep. 9, 2011, for EP Patent Application No. 11158896.8, filed on Sep. 1, 2004, 7 pages. |
Extended European Search Report dated Sep. 16, 2011, for EP Patent Application No. 11158898.4, filed on Sep. 1, 2004, 8 pages. |
Final Office Action dated Feb. 6, 2007, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 8 pages. |
Final Office Action dated Jul. 12, 2007, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 10 pages. |
Final Office Action dated Jul. 24, 2007, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 10 pages. |
Final Office Action dated Aug. 6, 2007, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 12 pages. |
Final Office Action dated Aug. 6, 2007, for U.S. Appl. No. 11/137,833, filed May 24, 2005, 8 pages. |
Final Office Action dated Aug. 13, 2007, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 9 pages. |
Final Office Action dated Aug. 14, 2007, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 8 pages. |
Final Office Action dated Aug. 30, 2007, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 9 pages. |
Final Office Action dated Oct. 30, 2007, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 6 pages. |
Final Office Action dated Apr. 2, 2008, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 15 pages. |
Final Office Action dated Apr. 14, 2008, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 11 pages. |
Final Office Action dated May 28, 2008, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 10 pages. |
Final Office Action dated Jun. 4, 2008, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 10 pages. |
Final Office Action dated Aug. 1, 2008, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages. |
Final Office Action dated Sep. 30, 2008, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 7 pages. |
Final Office Action dated Oct. 14, 2008, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages. |
Final Office Action dated Jan. 22, 2009, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 9 pages. |
Final Office Action dated Mar. 11, 2009, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 10 pages. |
Final Office Action dated Apr. 10, 2009, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 8 pages. |
Final Office Action dated Apr. 10, 2009, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 8 pages. |
Final Office Action dated Apr. 29, 2009, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 9 pages. |
Final Office Action dated Jul. 21, 2009, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages. |
Final Office Action dated Sep. 2, 2009, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages. |
Final Office Action dated Sep. 28, 2009, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 10 pages. |
Final Office Action dated Oct. 13, 2009, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 11 pages. |
Final Office Action dated Nov. 10, 2009, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages. |
Final Office Action dated Mar. 3, 2010, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 7 pages. |
Final Office Action dated Mar. 25, 2010, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 8 pages. |
Final Office Action dated Jun. 8, 2010, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 17 pages. |
Final Office Action dated Jul. 26, 2010, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages. |
Final Office Action dated Sep. 15, 2010, for U.S. Appl. No. 11/894,401, filed Aug. 20, 2007, 6 pages. |
Final Office Action dated Oct. 6, 2010, for U.S. Appl. No. 12/132,375, filed Jun. 3, 2008, 9 pages. |
Final Office Action dated Nov. 26, 2010, for U.S. Appl. No. 11/894,340, filed Aug. 20, 2007, 12 pages. |
Final Office Action dated Nov. 29, 2010, for U.S. Appl. No. 11/894,463, filed Aug. 20, 2007, 12 pages. |
Final Office Action dated Feb. 24, 2011, for U.S. Appl. No. 11/894,397, filed Aug. 20, 2007, 12 pages. |
Final Office Action dated Feb. 24, 2011, for U.S. Appl. No. 11/894,468, filed Aug. 20, 2007, 12 pages. |
Final Office Action dated Mar. 17, 2011, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 13 pages. |
Final Office Action dated Mar. 17, 2011, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 9 pages. |
Final Office Action dated Apr. 20, 2011, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 8 pages. |
Final Office Action dated Nov. 10, 2011, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 20 pages. |
Final Office Action dated Aug. 4, 2011, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 9 pages. |
Final Office Action dated Dec. 6, 2011, for U.S. Appl. No. 12/366,553, filed Feb. 5, 2009, 7 pages. |
Final Office Action dated Mar. 19, 2012, for U.S. Appl. No. 12/574,563, filed Oct. 6, 2009, 6 pages. |
Final Office Action dated Apr. 15, 2016, for U.S. Appl. No. 14/309,837, filed Jun. 19, 2014, 5 pages. |
Final Office Action dated Jun. 11, 2012, for U.S. Appl. No. 12/132,161, filed Jun. 3, 2008, 13 pages. |
Final Office Action dated Feb. 2, 2015, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 10 pages. |
Final Office Action dated Jun. 11, 2012, for U.S. Appl. No. 12/187,331, filed Jun. 6, 2008, 7 pages. |
Final Office Action dated Feb. 4, 2016, for U.S. Appl. No. 14/626,826, filed Feb. 19, 2015, 9 pages. |
Final Office Action dated Sep. 14, 2017, for U.S. Appl. No. 14/626,826, filed Feb. 19, 2015, 8 pages. |
Final Office Action dated Nov. 3, 2017, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 10 pages. |
International Search Report dated Dec. 19, 2006, for PCT Application No. PCT/US2006/031190, filed Aug. 10, 2006, 4 pages. |
International Search Report dated Apr. 2, 2007, for PCT Application No. PCT/US2006/043597, filed Nov. 8, 2006. 7 pages. |
International Search Report dated Sep. 15, 2009, for PCT Patent Application No. PCT/US2009/033252, filed on Feb. 5, 2009, 1 page. |
International Search Report dated Mar. 7, 2007, for PCT Patent Application No. PCT/US2004/028431, filed on Sep. 1, 2004, 1 page. |
Nagy, Z.L. et al. (Dec. 2000). “Mitral Annuloplasty with a Suture Technique,” European Journal of Cardio-thoracic Surgery 18(6):739-740. |
Non-Final Office Action dated Aug. 9, 2006, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 17 pages. |
Non-Final Office Action dated Aug. 22, 2006, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 6 pages. |
Non-Final Office Action dated Nov. 15, 2006, for U.S. Appl. No. 11/137,833, filed May 24, 2005, 12 pages. |
Non-Final Office Action dated Nov. 28, 2006, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 20 pages. |
Non-Final Office Action dated Dec. 27, 2006, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages. |
Non-Final Office Action dated Dec. 27, 2006, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages. |
Non-Final Office Action dated Jan. 4, 2007, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 7 pages. |
Non-Final Office Action dated Feb. 27, 2007, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 8 pages. |
Non-Final Office Action dated Mar. 12, 2007, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 11 pages. |
Non-Final Office Action dated Jul. 24, 2007, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 6 pages. |
Non-Final Office Action dated Aug. 1, 2007, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 16 pages. |
Non-Final Office Action dated Aug. 30, 2007, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 10 pages |
Non-Final Office Action dated Oct. 19, 2007, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 7 pages. |
Non-Final Office Action dated Oct. 29, 2007, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 10 pages. |
Non-Final Office Action dated Nov. 14, 2007, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 8 pages. |
Non-Final Office Action dated Nov. 14, 2007, for U.S. Appl. No. 11/137,833, filed May 24, 2005, 8 pages. |
Non-Final Office Action dated Jan. 9, 2008, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages. |
Non-Final Office Action dated Jan. 31, 2008, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 7 pages. |
Non-Final Office Action (Supplementary) dated May 9, 2008, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 7 pages. |
Non-Final Office Action dated Mar. 27, 2008, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 7 pages. |
Non-Final Office Action dated Jun. 6, 2008, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 5 pages. |
Non-Final Office Action dated Aug. 29, 2008, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 15 pages. |
Non-Final Office Action dated Sep. 26, 2008, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 11 pages. |
Non-Final Office Action dated Oct. 24, 2008, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 11 pages. |
Non-Final Office Action dated Jan. 13, 2009, for U.S. Appl. No. 10/901,555, filed Jul. 27, 2004, 11 pages. |
Non-Final Office Action dated Jan. 23, 2009, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages. |
Non-Final Office Action dated Jan. 23, 2009, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages. |
Non-Final Office Action dated Jan. 29, 2009, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 6 pages. |
Non-Final Office Action dated Mar. 5, 2009, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 10 pages. |
Non-Final Office Action dated Mar. 18, 2009, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 12 pages. |
Non-Final Office Action dated Mar. 27, 2009, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages. |
Non-Final Office Action dated Mar. 31, 2009, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 15 pages. |
Non-Final Office Action dated Aug. 25, 2009, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 7 pages. |
Non-Final Office Action dated Aug. 26, 2009, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 6 pages. |
Non-Final Office Action dated Sep. 17, 2009, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 13 pages. |
Non-Final Office Action dated Oct. 19, 2009, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 21 pages. |
Non-Final Office Action dated Jan. 19, 2010, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 10 pages. |
Non-Final Office Action dated Feb. 18, 2010, for U.S. Appl. No. 11/894,401, filed Aug. 20, 2007, 6 pages. |
Non-Final Office Action dated Mar. 16, 2010, for U.S. Appl. No. 11/894,340, filed Aug. 20, 2007, 14 pages. |
Non-Final Office Action dated Mar. 29, 2010, for U.S. Appl. No. 11/894,463, filed Aug. 20, 2007, 14 pages. |
Non-Final Office Action dated Apr. 2, 2010, for U.S. Appl. No. 12/132,375, filed Jun. 3, 2008, 9 pages. |
Non-Final Office Action dated Jun. 9, 2010, for U.S. Appl. No. 11/894,468, filed Aug. 20, 2007, 14 pages. |
Non-Final Office Action dated Jun. 21, 2010, for U.S. Appl. No. 11/894,397, filed Aug. 20, 2007, 13 pages. |
Non-Final Office Action dated Aug. 17, 2010, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 7 pages. |
Non-Final Office Action dated Aug. 20, 2010, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 13 pages. |
Non-Final Office Action dated Oct. 25, 2010, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 8 pages. |
Non-Final Office Action dated Oct. 29, 2010, for U.S. Appl. No. 11/894,530, filed Aug. 20, 2007, 11 pages. |
Non-Final Office Action dated Nov. 24, 2010, for U.S. Appl. No. 0/900,980, filed Jul. 27, 2004, 8 pages. |
Non-Final Office Action dated Feb. 2, 2011, for U.S. Appl. No. 12/581,040, filed Oct. 16, 2009, 5 pages. |
Non-Final Office Action dated Apr. 27, 2011, for U.S. Appl. No. 12/366,533, filed Feb. 5, 2009, 9 pages. |
Non-Final Office Action dated Jul. 29, 2011, for U.S. Appl. No. 12/574,563, filed Oct. 6, 2009, 5 pages. |
Non-Final Office Action dated Oct. 13, 2011, for U.S. Appl. No. 12/187,331, filed Aug. 6, 2008, 5 pages. |
Non-Final Office Action dated Dec. 22, 2011, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 9 pages. |
Non-Final Office Action dated Feb. 10, 2014, for U.S. Appl. No. 12/366,553, filed Feb. 5, 2009, 7 pages. |
Non-Final Office Action dated Apr. 8, 2013, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 9 pages. |
Non-Final Office Action dated Oct. 19, 2015, for U.S. Appl. No. 14/309,837, filed Jun. 19, 2014, 6 pages. |
Non-Final Office Action dated Nov. 24, 2015, for U.S. Appl. No. 14/156,347, filed Jan. 15, 2014, 5 pages. |
Non-Final Office Action dated Apr. 21, 2016, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 13 pages. |
Non-Final Office Action dated Feb. 17, 2017, for U.S. Appl. No. 14/626,826, filed Feb. 19, 2015, 11 pages. |
Non-Final Office Action dated Jan. 26, 2017, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 10 pages. |
Notice of Allowance dated Aug. 4, 2009, for U.S. Appl. No. 10/901,555, filed Jul. 27, 2004, 7 pages. |
Notice of Allowance dated Feb. 24, 2010, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 8 pages. |
Notice of Allowance dated Apr. 28, 2010, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 7 pages. |
Notice of Allowance dated Nov. 17, 2010, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 11 pages. |
Notice of Allowance dated Dec. 6, 2010, for U.S. Appl. No. 12/132,375, filed Jun. 3, 2008, 9 pages. |
Notice of Allowance dated Jul. 26, 2011, for U.S. Appl. No. 11/894,530, filed Aug. 20, 2007, 10 pages. |
Notice of Allowance dated Sep. 25, 2013, for U.S. Appl. No. 12/132,161, filed Jun. 3, 2008, 12 pages. |
Notice of Allowance dated Jun. 11, 2012, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages. |
Notice of Allowance dated Mar. 17, 2014, for U.S. Appl. No. 12/366,553, filed Feb. 5, 2009, 8 pages. |
Notice of Allowance dated Oct. 29, 2015, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 8 pages. |
Notice of Allowance dated Jun. 15, 2016, for U.S. Appl. No. 14/156,347, filed Jan. 15, 2014, 7 pages. |
Notice of Allowance dated Nov. 8, 2017, for U.S. Appl. No. 13/820,447, filed Oct. 18, 2013, 8 pages. |
Notice of Allowance dated Dec. 19, 2017, for U.S. Appl. No. 14/626,826, filed Feb. 19, 2015, 8 pages. |
Notice of Allowance dated Mar. 2, 2015, for U.S. Appl. No. 12/187,331, filed Aug. 6, 2008, 5 pages. |
Notice of Allowance dated Jun. 22, 2018, for U.S. Appl. No. 15/265,781, filed Sep. 14, 2016, 8 pages. |
Shumay, S.J. et al. (Dec. 1988). “A ‘Designer’ Annuloplasty Ring for Patients with Massive Mitral Annular Dilatation,” Ann. Thorac. Surg. 46(6):695-696. |
Written Opinion of the International Searching Authority dated Dec. 19, 2006, for PCT Application No. PCT/US2006/031190, filed Aug. 10, 2006, 6 pages. |
Written Opinion of the International Searching Authority dated Apr. 2, 2007, for PCT Application No. PCT/US2006/043597, filed Nov. 8, 2006, 7 pages. |
Supplementary European Search Report dated Nov. 10, 2008, for EP Application No. 04 78 2847, filed on Sep. 1, 2004, 2 pages. |
Written Opinion of the International Searching Authority dated Sep. 19, 2009, for PCT Patent Application No. PCT/US2009/033252, filed on Feb. 5, 2009, 7 pages. |
Written Opinion of the International Searching Authority dated Mar. 7, 2007, for PCT Patent Application No. PCT/US2004/028431, filed on Sep. 1, 2004, 4 pages. |
U.S. Appl. No. 11/875,774, filed Oct. 19, 2007, by Serina et al. (Copy not attached). |
Extended European Search Report dated Jan. 21, 2019, for EP Patent Application No. 16793570.9, filed on May 12, 2016, 9 Pages. |
Extended European Search Report dated Dec. 12, 2018, for EP Patent Application No. 18170269.7, filed on Sep. 1, 2004, 7 Pages. |
International Search Report and Written Opinion dated Aug. 18, 2016, for PCT Patent Application No. PCT/US2016/032220, filed on May 12, 2016, 6 pages. |
Non-Final Office Action dated Feb. 17, 2017, for U.S. Appl. No. 14/626,826, filed on Feb. 19, 2015, 10 pages. |
Notice of Allowance dated Aug. 16, 2018, for U.S. Appl. No. 15/265,781, filed Sep. 14, 2016, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20180153553 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
61026697 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14309837 | Jun 2014 | US |
Child | 15652068 | US | |
Parent | 12366553 | Feb 2009 | US |
Child | 14309837 | US |