1. Field of the Invention
The present invention generally relates to a completion system for a wellbore, and, more particularly, to a sand-face completion for the wellbore.
2. Description of the Prior Art
In order to perforate and gravel pack a wellbore, several downhole trips or runs, typically are required. For example, a lower zone is plugged, then perforated, and the perforating guns are recovered. Then a cleanup string is then tripped in the hole, and recovers the plug. Thereafter, a string that contains a bottom-hole assembly is run into the well, and the bottom-hole assembly typically includes the sand screen to support a filter gravel substrate that is deposited around the sand screen in a subsequent gravel packing operation. The portion of the string above the bottom-hole assembly, which is generally referred to as the “running string,” is then retrieved from the well upon the completion of the gravel packing operation.
Fluid loss in the well increases with the number of downhole trips, because fluid loss invades the formation and may have detrimental effects on the well. Thus, a continuing need exists for better ways to reduce the number of trips into a well for purposes of performing completion operations such as perforating and gravel packing operations.
In U.S. application Ser. No. 11/380,755 filed Apr. 28, 2006, which is incorporated herein by reference, method and apparatus are described for performing perforating and gravel packing operations in a single trip or run downhole. The present application discloses substantial improvements on the method and apparatus described in application Ser. No. 11/380,755.
In accordance with the present invention, an assembly usable with the well is described. The assembly comprises a base pipe having a plurality of apertures where each aperture contains a screen insert. An assembly according to the present invention also comprises a plurality of perforating charges which are mounted to the outer surface of the base pipe in proximity to the screen inserts.
An assembly according to the present invention further comprises a detonating cord to communicate a detonating wave to the perforating charges. In one embodiment of the assembly of the present invention, the perforating charges are pressure isolated conical shaped charges or capsule charges, while in another embodiment of the invention the perforating charges are pressure isolated linear shaped charges. Each assembly comprising a perforating gun.
In accordance with the present invention, an assembly is also provided for treating multiple zones of a wellbore in a single run or trip downhole. Such an assembly comprises a base pipe having a plurality of tubular members with multiple separate groups of the tubular members having screen inserts and the groups with screen inserts having tubular members without inserts interposed between them. A plurality of perforating guns are provided, and one perforating gun is provided for each group of tubular members having screen inserts. Each perforating gun comprises a plurality of perforating charges in proximity to the screen inserts which may be detonated via a detonating cord which communicates a detonating wave to the perforating charges. In one embodiment of the assembly of the present invention, the perforating charges are capsule charges, while in another embodiment the perforating charges are linear shaped charges.
A method according to the present invention to perforate and gravel pack a plurality of zones of a well comprises the steps of placing a completion assembly across multiple zones. The completion assembly includes a service tool. For each zone to be gravel packed, the completion assembly includes a screen assembly and perforating charges. Each of the zones to be gravel packed is bounded by a packer above and below the zone. The perforating charges associated with the first zone to be gravel packed are detonated after the packer for that zone has been set. Thereafter, slurry is then communicated through the assembly to perform a gravel packing operation in the zone to be gravel packed. For each subsequent zone to be gravel packed, the service tool is repositioned to that zone and the steps of detonating the perforating charges and communicating a slurry through the assembly are repeated for that zone.
In the accompanying drawings:
a-c are elevation views in partial cross-section of a well in which multiple zones of the wellbore are gravel packed with a single trip or run downhole.
It will be appreciated that the present invention may take many forms and embodiments. In the following description, some embodiments of the invention are described and numerous details are set forth to provide an understanding of the present invention. Those skilled in the art will appreciate, however, that the present invention may be practiced without those details and that numerous variations and modifications from the described embodiments may be possible. The following description is thus intended to illustrate and not to limit the present invention.
With reference first to
BHA 45, as further described below, may be utilized for isolating a particular zone, or interval of the wellbore 10; perforating that interval; communicating flows for purposes of gravel packing that interval, and communicating flows of produced reservoir fluids into the central lumen. Thus, the components of BHA 45 may form a single trip sand face completion system, and the advantages of consolidating downhole trips include the reduced rig time, reduced fluid loss and avoidance of detrimental effects that are attributable to fluid loss.
Referring to
In one embodiment of the present invention, the tubular members 21 may be the FacsRITE brand™ sand screen which is available from Absolute Energy Solutions (AES) of Calgary, Canada.
In one embodiment, tubular member 21 may comprise a plurality of circumferential rows of screen inserts 30 as illustrated in
Referring to
In one embodiment, the perforating charges may, for example, be conical shaped charges. In yet another embodiment, the perforating charges may be linear shaped charges 44 as illustrated in
The linear shaped charges mounted on the screens allow screen/perforating charge assembly 14 to be run into the well in total isolation from the formation. Once the BHA 45 is at depth, the packer 33 is set and then the linear charges 31 are detonated to create slot openings in the casing 12. The gravel pack operation can then proceed by pumping slurry into the slots via service tool 40 and overcoming fracture initiation pressure through the cement sheet and the formation itself. This procedure avoids killing the well and prevents formation damage by kill-pills or kill-fluids. This concept allows the execution of single trip perforating and gravel packing procedure without the need of a rat-hole, or sump, in the well below the perforated interval to allow for gun dropping. This reduces drilling time and costs and allows for total flexibility for the distance between stacked intervals.
With reference to
With reference now to
Still referring to
As illustrated in
For each subsequent zone to be gravel packed, the service tool 73 is repositioned to the new zone and the steps of detonating the perforating charges and communicating a slurry to perform a gravel packing operation are performed for that zone after the packers bounding that zone are set.
In one embodiment of the present invention, the perforating charges may be conical shaped charges, while in another embodiment of the invention, the perforating charges may be linear shaped charges. As illustrated in
This application is a continuation of application Ser No. 11/380,755, filed Apr. 28, 2006.
Number | Date | Country | |
---|---|---|---|
Parent | 11380755 | Apr 2006 | US |
Child | 11749778 | May 2007 | US |