Hydrocarbon producing formations typically have sand commingled with the hydrocarbons to be produced. For various reasons, it is not desirable to produce the commingled sand to the earth's surface. Thus, sand control completion techniques are used to prevent the production of sand.
Gravel packing is one method for controlling sand production. Although there are variations, gravel packing usually involves placing a sand screen around the section of the production string containing the production inlets. This section of the production string is aligned with perforations. Gravel slurry, which is typically gravel particulates carried in a viscous transport fluid, is pumped through the tubing into the formation and the annulus between the sand screen and the casing or between the sand screen and the open hole. The deposited gravel holds the sand in place preventing the sand from flowing to the production tubing while allowing the production fluids to be produced therethrough.
In multi-zone wells or in a well having multiple flow sections, flow control devices have been used to control fluid flow through orifices formed between the tubing bore and an annulus between the tubing and casing. However, if sand face completion equipment including gravel packing is installed, then the annulus is typically filled, which makes it difficult to position such flow control devices in the proximity of sand control equipment. Accordingly, the formation fluid must first flow generally radially through the sand control device before flowing to the flow control device. One option is to install the flow control device inside a tubing bore in the proximity of the production zone. However, this reduces the available flow area for production flow.
Three-way sub systems with sliding sleeves inside an internal isolation string have also been used for zonal isolation. A screen wrapped sliding sleeve is also a common system. For example, U.S. Pat. No. 3,741,300 discloses a sliding sleeve within a screen assembly. However, the '300 patent describes a 3-way sub system and it is specifically intended for stand alone screen applications (no pumping).
U.S. Pat. No. 5,337,808 discloses an apparatus where the screen wrapping is placed directly over and around the flow control device. U.S. Pat. No. 6,220,357 discloses a similar apparatus.
U.S. Pat. No. 5,609,204 and U.S. Pat. No. 5,579,844 disclose an apparatus having sliding sleeves inside sand control screens in combination with components for supporting gravel packing operations such as polished bore receptacles and port closure sleeves.
U.S. Pat. No. 5,865,251 discloses an isolation valve “adjacent” or “interior” of the screen assembly which covers the apertures of the valve.
U.S. Pat. No. 6,405,800 discloses an isolation valve that is positioned in the screen base pipe underneath the screen jacket.
U.S. Pat. No. 6,343,651 and U.S. Pat. No. 6,446,729 disclose a flow control valve that is coupled to a screen assembly. It is not surrounded by and is offset from the screen wrapping. The valve is in fact not integral to the screen assembly but an added component which is hydraulically coupled to the screen and base pipe annulus to control flow into the main bore.
U.S. Pat. No. 6,464,006 discloses an apparatus having flow screens with flow closure members. The figures presented in U.S. Pat. No. 6,464,006 illustrate a three-way sub system, but both ends of the isolation pipe are shown affixed to the screen assembly.
U.S. Pat. No. 6,719,051 and U.S. Pat. No. 7,096,945 disclose a screen assembly with openings in the base pipe and a valve associated with the openings in the base pipe to control flow through the openings.
U.S. Publication No. 2007/0084605 discloses a screen assembly with at least one production screen valve.
There is still a need for improved flow control devices that provide incremental choking of the flow and that may be used in sand control completion equipment. There is also a need for a coupling tool that supports a flowpath between two screens without the use of an isolation string.
An apparatus including a pipe coupling and integrated valve and method of using the same is disclosed. The apparatus can include a first outer tubular member and a first inner tubular member. The first outer tubular member and the first inner tubular member can define a first space therebetween. The first inner tubular member can have a first internal bore. The system can also include a second outer tubular member and a second inner tubular member. The second outer tubular member and the second inner tubular member can define a second space therebetween. The second inner tubular member can have a second internal bore formed therethrough. A first coupling flowpath can be positioned between the first and second spaces. A second coupling flowpath can be positioned between the first and second internal bores. A selectively closeable flowpath can be positioned between the first coupling flowpath and the second coupling flowpath.
One or more embodiments of the method of using the multi-zone gravel pack system with pipe coupling an integrated valve can include conveying a completion string downhole. An annulus can be formed between the completion string and a wellbore. The completion string can include at least two sand completion systems, a communication port positioned adjacent to each sand completion system, and a position indicator positioned adjacent to each communication port. Each sand completion system can include one or more apparatuses. The method can further include, positioning one of the sand completion systems adjacent to a lower hydrocarbon bearing zone, and the other sand completion system adjacent to an upper hydrocarbon bearing zone. Communication between the annulus adjacent the upper hydrocarbon bearing zone and the internal bores of the adjacent sand completion system can be prevented, and communication between the annulus adjacent the lower hydrocarbon bearing zone and the internal bores of the adjacent sand completion system can be allowed. Gravel can be provided to a portion of the annulus adjacent to the lower hydrocarbon bearing zone.
So that the recited features can be understood in detail, a more particular description, briefly summarized above, may be had by reference to one or more embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
A detailed description of the one or more embodiments, briefly summarized above, is provided below. As used herein, the terms “up” and “down”; “upper” and “lower”; “upwardly” and “downwardly”; “upstream” and “downstream”; and other like terms are merely used for convenience to describe spatial orientations or spatial relationships relative to one another in a vertical wellbore. However, when applied to equipment and methods for use in deviated or horizontal wellbores, it is understood to those of ordinary skill in the art that such terms are intended to refer to a left to right, right to left, or other spatial relationship as appropriate.
The outer tubular members 106, 108 can include a screen or particulate restricting member. The screen or particulate restricting member can be wire wrapped screens or any other known screen. For example, one or more portions of the outer tubular member can be constituted by wire wrap screen.
Each inner tubular member 102, 104 can be base pipe, production tubing, or any other common downhole tubular member. In one or more embodiments, the body 102 (“first inner tubular member 102”) can have an inner flowpath or internal bore 126 formed therethrough, and the second body 104 (“second inner tubular member 104”) can have an inner flowpath or internal bore 128 formed therethrough.
A space or gap 114, 116 is formed between an outer diameter of each inner tubular member 102, 104 and the surrounding screen 106, 108. Each space or gap 114, 116 defines an outer flowpath about its respective inner tubular member 102, 104. For example, a first flowpath or first space 114 is formed between the first inner tubular member 102 and the first screen 106. The second flowpath or second space 116 is formed between the second inner tubular member 104 and the second screen 108.
The coupling tool 119 can include a first coupling flowpath 118, a second coupling flowpath 120, and a third coupling flowpath 122 formed therethrough. The first coupling flowpath 118 can be in fluid communication, and thus “couple” the first flowpath or space 114 to the second flowpath or space 116. The second coupling flowpath 120 can be in fluid communication, and thus “couple” the first inner flowpath 126 to the second inner flowpath 128. The third coupling flowpath 122 can be in fluid communication, and thus “couple” the first coupling flowpath 118 and the second coupling flowpath 120.
The coupling tool 119 can further include a flow control device 124. The flow control device 124 allows the outer flowpaths 114, 116 to be selectively communicated with the inner flowpaths 126, 128. In one or more embodiment, the flow control device 124 can be integrated into the coupling tool 119. In one or more embodiments, the flow control device 124 can be a stand alone component that can be attached to the coupling tool 119.
In one or more embodiments, the flow control device 124 can be a sliding sleeve. An illustrative sliding sleeve can simply be a tubular member disposed within the annulus of the coupling tool 119. In one or more embodiments, the flow control device 124 can be a sliding sleeve having one or more apertures or holes formed therethrough. In one or more embodiments, the flow control device 124 can be a remotely operated valve, or any other downhole flow control device. An illustrative flow control device 124 is described in U.S. Pat. No. 6,446,729.
The use of the flow control device 124 with the coupling tool 119 can allow for flexibility in the design of the flow control device 124 without affecting the manufacturing and design of the sand screen assemblies 110, 112. Furthermore, by allowing the complexity of the flow control device 124 to be varied independent of the design of the sand screen assemblies 110, 112, various levels of modularity for the sand completion system 100 can be obtained.
When the flow control device 124 is in a closed position, the first coupling flowpath 118 is not in communication with the second coupling flowpath 120; however, the first flowpath or space 114 is in communication with the second flowpath or space 116, and the first inner flowpath 126 is in communication with the second inner flowpath 128. Furthermore, the flowpaths 114, 116, 118 can be in communication with the exterior of the screen assemblies 110, 112. However, the flowpaths 126, 128, 120 are prevented from communicating with the exterior of the sand screen assemblies 110, 112.
In the open position, the first coupling flowpath 118 is in communication with the second coupling flowpath 120, and the third coupling flowpath 122, as depicted in
The length of the coupling tool 119 can be determined by the size of the flow control device 124. The shroud 360 can be placed at least partially about the housing 310, and pipe joints 370, 372. The first coupling flowpath 118 can be formed between the shroud 360 and the housing 310 and pipe joints 370, 372. In one or more embodiments, the shroud 360 can be a solid tubular shroud. The end rings 350, 352 can be positioned adjacent to the shroud 360. Since the length of the coupling tool 119 can be determined by the length of the flow control device 124, a solid shroud would create a section of a sand completion system 100, without screens that may be longer than encountered in typical applications. This could have an adverse effect on the placement of the sand control treatment. Such effects can be poor packing around the coupling area and premature bridging at the top of the coupling area. In this situation, the shroud can include slotted openings (not shown). For example, a slotted liner can be used. The slotted liner can allow for leak off during gravel placement. Therefore, in one or more embodiments, the entire shroud or a portion of the shroud can include the slotted openings.
The flow control device 124 can be disposed within the housing 310. The housing 310 can be positioned between the pipe joints 370, 372. The housing can have a plurality of apertures 311 or holes formed therethrough. The apertures 311 can allow communication between the second coupling flowpath 120 and the third coupling flowpath 122. The apertures or holes can be selectively opened and closed by the flow control device 124. For example, if the flow control device 124 is a sliding sleeve the sliding sleeve can be configured to selectively prevent flow through the apertures 311, thus preventing communication between the third coupling flowpath 122 and the second coupling flowpath 120.
The pipe joints can be tubular members configured to attach or otherwise engage inner tubular members of a double wall tubular assembly, such as screen assemblies 110, 112. A pipe coupling 320 can be positioned adjacent to at least one of the pipe joints 370, 372, such as “upper” pipe joint 370, as depicted in
The torque shrouds 330, 332 can be positioned about a portion of the pipe joint 370, 372, and the pipe coupling 320. The torque shrouds can be production tubing or other known downhole tubing. The torque shrouds 330, 332 can allow for the transfer of torque. The “upper” torque shroud 330 can be floating allowing the “upper” torque shroud 330 to move. The “lower” torque shroud 332 can be fixed to the pipe joint 372.
A load insert 340 can be positioned adjacent to the “upper” torque shroud 330. The load insert 340 can interface with a screen table/plate known in the industry and temporarily support the hanging weight of the completion during make up operations at surface.
The isolation packers can be used to isolate hydrocarbon bearing zones (not shown) located within a producing formation (not shown). For example, the first isolation packer can be disposed adjacent to an upper hydrocarbon bearing zone, the second isolation packer can be disposed adjacent to a lower hydrocarbon bearing zone, and a third isolation packer (not shown) can be disposed below the lower hydrocarbon bearing zone. In one or more embodiments, the third packer can be installed in a wellbore (not shown) prior to the installation of the completion 400 and the completion 400 can be configured to attach to or otherwise engage the third isolation packer, or in the alternative the isolation packer can be integrated with the completion 400. The isolation packers 406, 408 can be compression or cup packers, inflatable packers, “control line bypass” packers, polished bore retrievable packers, any other common downhole sealing mechanism, or combinations thereof. The isolation packers 406, 408 can be set in the wellbore by the use of mechanical means or by any other known method.
The internal upset 420 can be disposed adjacent to the second packer 408. The internal upset 420 can allow for a more direct reverse flow. The internal upset 420 can be an internal upset commonly known in the art.
The first port closure sleeve 430 can be disposed adjacent to the first packer 406. The second port closure sleeve 432 can be disposed adjacent to the internal upset 420. The port closure sleeves can be engaged by a service tool (not shown), and can allow the service tool to communicate with the exterior of the completion 400. The port closure sleeves 430, 432 can be any port closure sleeve commonly known in the art. An illustrative communication port closure sleeve is described in more detail in U.S. Pat. No. 7,066,264. The port closure sleeves 430, 432 can have polished bore receptacles (not shown).
The position indicators 440, 442 can be disposed adjacent to the port closure sleeves 430, 432. The position indicators 440, 442 can be used to position a service tool for engagement with the port closure sleeves 430, 432. Each position indicators 440, 442 can be a “Go/no go” collar, for example. A suitable indicator is described in U.S. Pat. No. 7,066,264. Of course, the position indicators 440, 442 can be any other type of position indicator known in the art.
Additional coupling tools 119 can be positioned at each end of each sand completion system 100. In one or more embodiments, one or more of the coupling tools 119 of one or more of the sand completion systems 100 can be modified by removing the third coupling flowpath 122, and the flow control device 124. Such modified coupling tool (not shown) could provide the first coupling flowpath 118 and the second coupling flowpath 120. However, the first coupling flowpath 118 would not be in communication with the second coupling flowpath 120. In one or more embodiments, such modified coupling tool could be used as a contingency perforating target. For example, a perforating gun can be run into the wellbore, located adjacent the modified coupling tool and perforate holes into the modified coupling tool to allow for communication between the completion bore and the annulus.
The tubular member 510 can be production tubing or other tubing commonly used downhole. The tubular member 510 can have a length sufficient to run from the surface down to the top of the completion 400.
The gravel pack setting module 520 can be engaged or otherwise supported by the tubular member 510. The gravel pack setting module 520 can be any gravel pack setting module known in the art. The gravel pack setting module 520 can be configured to engage or otherwise attach to the first packer 406. The gravel pack setting module 520 can be used to set the top isolation packer, such as first packer 406.
The spacer string 530 can be positioned adjacent to the packer setting module 520. The spacer string 530 can be a blank pipe or other tubing member. The spacer string 530 can have a length long enough to extend the shifting tool 580 bellow the lowermost flow control device 124 to be operated. For example, the spacer string 530 can be long enough to extend the shifting tool 580 below the flow control device 124 of the lowermost coupling tool 119 of a “lower” sand completion system 100.
The cross over port body 540 can be disposed on the spacer string 530 above the shifting tool 580. The cross over port body 540 can be any cross over port body known in the art. In one or more embodiments, the cross over port body 540 can be equipped with a shear down ball seat 542. The crossover port body 540 can sealably interface with the completion bore 405 at various locations to support multi-zone gravel pack operations. The sealable interface can be achieved using methods commonly known in the art. For example, the sealable interaction can either be by seals (not shown), such as bonded seals or cup seals, on the outer diameter of the cross over port body 540 and polished bore receptacles (not shown) integrated into the completion or the inverse using internal seals (not shown) integrated with the completion 400 and polished surfaces (not shown) on the outer diameter of the cross over port body 540.
The reversing valve 560 can be positioned below the crossover port body 540. The reversing valve 560 can restrict or prevent flow downhole past the service string 500. In one or more embodiments, it would be desirable that the reversing valve 560 operate without impairing movements of the service tool 500, due to hydraulic locking issues. One way to provide such functionality is to use a full bore set down module or equivalent technology with a modified valve that has a small hole through it to allow for minimal leak through while supporting greater reverse out pressures/rates. In one or more embodiments, the reversing valve 560 can have an anti-swab feature. The reversing valve 560 can be any valve known in the art.
The shifting tool 580 can be positioned below the reversing valve 560. The shifting tool 580 can be adapted to at least actuate the flow control devices 124 of the sand completion assemblies 100. In one or more embodiments, the shifting tool 580 can actuate the flow control devices 124 and the port closure sleeves 430, 432. The shifting tool 580 can be a collet, a magnetic actuator, another common down hole shifting tool, or combinations thereof.
The sliding sleeve shifting tool 590 can be disposed below the shifting tool 580. The sliding sleeve shifting tool 590 can be configured to actuate at least the port closure sleeves 430, 432. In one or more embodiments, the sliding sleeve shifting tool 590 can be configured to open the flow control device 124 and the port closure sleeves 430, 432. In one or more embodiments, the sliding sleeve shifting tool 590 can be a collet, a magnetic actuator, another common down hole shifting tool, or combinations thereof. The interaction of the service string 500 and the completion string 400 is described in more detail in
To run-in the completion string 400 the gravel pack setting module 520 can be secured or otherwise engaged with the first isolation packer 406, and the “upper” sand completion system 100 can be placed adjacent to hydrocarbon bearing zone 605, and the “lower” sand completion system 100 can be placed adjacent to the hydrocarbon bearing zone 610. The spacing of the sand completion systems 100 can be determined by logging information or other downhole measurements. An annulus 620 can be formed between the completion string 400 and the wall 602 of the borehole 600. Upon positioning of the sand completion systems 100, the first packer 406 can be set and the packer module 520 can be released from the first packer 406, as depicted in
Turning now to
As depicted in
In one or more embodiments, when the upper completion is landed and the surface installations are ready for production, the flow control devices 124 can be selectively opened using slickline, wireline, coil tubing, or another conventional method to provide access to the hydrocarbon bearing zones 605, 610. In one or more embodiments, mechanical or magnetic interaction can be used to open the flow control devices 124.
In one or more embodiments, the flow control device 124 can be operated remotely. For example, pressure or a control conduit disposed adjacent to the completion 400 can be used to operate the flow control devices 124. The flow control devices 124 can also be operated remotely during the gravel pack operation as described in U.S. Pat. No. 6,446,729.
The present completion string and methods may be practiced in combination with one or more sets of components and/or service tools, including bridge plugs, flow valves, and other commonly used oil field tools. The term “attached” refers to both direct attachment and indirect attachment, such as when one or more tubulars or other downhole components are disposed between the “attached” components.
Certain embodiments and features have been described using a set of numerical upper limits and a set of numerical lower limits. It should be appreciated that ranges from any lower limit to any upper limit are contemplated unless otherwise indicated. Certain lower limits, upper limits and ranges appear in one or more claims below. All numerical values are “about” or “approximately” the indicated value, and take into account experimental error and variations that would be expected by a person having ordinary skill in the art.
Various terms have been defined above. To the extent a term used in a claim is not defined above, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Furthermore, all patents, test procedures, and other documents cited in this application are fully incorporated by reference to the extent such disclosure is not inconsistent with this application and for all jurisdictions in which such incorporation is permitted.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims priority to U.S. Provisional Patent Application having Ser. No. 60/978,983, filed on Oct. 10, 2007, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3741300 | Wolff et al. | Jun 1973 | A |
4401158 | Spencer et al. | Aug 1983 | A |
4424864 | Logan | Jan 1984 | A |
4510996 | Hardin | Apr 1985 | A |
4541484 | Salerni et al. | Sep 1985 | A |
4754807 | Lange | Jul 1988 | A |
4793411 | Zunkel | Dec 1988 | A |
4856591 | Donovan | Aug 1989 | A |
5069280 | McKee et al. | Dec 1991 | A |
5318119 | Lowry et al. | Jun 1994 | A |
5337808 | Graham | Aug 1994 | A |
5507345 | Wehunt et al. | Apr 1996 | A |
5551512 | Smith | Sep 1996 | A |
5577559 | Voll et al. | Nov 1996 | A |
5579844 | Rebardi | Dec 1996 | A |
5597040 | Stout et al. | Jan 1997 | A |
5609204 | Rebardi et al. | Mar 1997 | A |
5611399 | Richard et al. | Mar 1997 | A |
5690175 | Jones | Nov 1997 | A |
5787980 | Sparlin et al. | Aug 1998 | A |
5865251 | Rebardi et al. | Feb 1999 | A |
5868200 | Bryant et al. | Feb 1999 | A |
5921318 | Ross | Jul 1999 | A |
5988285 | Tucker et al. | Nov 1999 | A |
6216785 | Achee | Apr 2001 | B1 |
6220353 | Foster | Apr 2001 | B1 |
6220357 | Carmichael et al. | Apr 2001 | B1 |
6230803 | Morton et al. | May 2001 | B1 |
6302216 | Patel | Oct 2001 | B1 |
6343651 | Bixenman | Feb 2002 | B1 |
6397949 | Walker et al. | Jun 2002 | B1 |
6405800 | Walker | Jun 2002 | B1 |
6446729 | Bixenman | Sep 2002 | B1 |
6464006 | Womble | Oct 2002 | B2 |
6464261 | Dybevik | Oct 2002 | B1 |
6488082 | Echols et al. | Dec 2002 | B2 |
6494256 | Achee et al. | Dec 2002 | B1 |
6513599 | Bixenman | Feb 2003 | B1 |
6516881 | Hailey, Jr. | Feb 2003 | B2 |
6571875 | Bissonnette | Jun 2003 | B2 |
6575243 | Pabst | Jun 2003 | B2 |
6675893 | Lund | Jan 2004 | B2 |
6719051 | Hailey, Jr. et al. | Apr 2004 | B2 |
6722440 | Turner et al. | Apr 2004 | B2 |
6725929 | Bissonnette | Apr 2004 | B2 |
6745834 | Davis | Jun 2004 | B2 |
6766857 | Bixenman | Jul 2004 | B2 |
6857475 | Johnson | Feb 2005 | B2 |
6932156 | Bayne et al. | Aug 2005 | B2 |
6983795 | Zuklic et al. | Jan 2006 | B2 |
7066264 | Bissonnette | Jun 2006 | B2 |
7096945 | Richards et al. | Aug 2006 | B2 |
7127824 | Mies | Oct 2006 | B2 |
7201232 | Turner et al. | Apr 2007 | B2 |
7222676 | Patel | May 2007 | B2 |
7225523 | Metcalfe | Jun 2007 | B2 |
7322422 | Patel | Jan 2008 | B2 |
7461695 | Boney | Dec 2008 | B2 |
20030000700 | Hailey, Jr. | Jan 2003 | A1 |
20030047311 | Echols et al. | Mar 2003 | A1 |
20030089495 | Bixenman | May 2003 | A1 |
20040094309 | Maguire | May 2004 | A1 |
20040140089 | Gunneroed | Jul 2004 | A1 |
20040262011 | Huckabee et al. | Dec 2004 | A1 |
20070039741 | Hailey, Jr. | Feb 2007 | A1 |
20070084605 | Walker et al. | Apr 2007 | A1 |
20070102153 | Bixenman | May 2007 | A1 |
20070114020 | Brekke | May 2007 | A1 |
20070227727 | Patel | Oct 2007 | A1 |
20070240881 | Whitsitt | Oct 2007 | A1 |
20070246212 | Richards | Oct 2007 | A1 |
20070251690 | Whitsitt | Nov 2007 | A1 |
20080142218 | Rytlewski et al. | Jun 2008 | A1 |
20080283252 | Guignard et al. | Nov 2008 | A1 |
20090000787 | Hill et al. | Jan 2009 | A1 |
20090095471 | Guignard | Apr 2009 | A1 |
20090173498 | Gaudette et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1225302 | Jul 2002 | EP |
9628636 | Sep 1996 | WO |
0142620 | Jun 2001 | WO |
Entry |
---|
Corrected drawings filed Feb. 13, 2006 from U.S. Appl. No. 10/347,973, published as US 2004/0140089 to Gunneroed. |
Entries for “screen” and “blank pipe” from the Schlumberger Oilfield Glossary, accessed Jan. 17, 2013 via www.glossary.oilfield.slb.com. |
Waters, F., Singh, P., Baker, C., Van Wulfften Palthe, P., and Parlar, M., “A Novel Techique for Single-Selective Sand Control Completions Allows Perforating and Gravel Packing of Two Zones with Zonal Isolation in One Trip: A Case History from Trinidad”. SPE 56668, 1999 SPE Annual Technical Conference and Exhibition, Oct. 1999; pp. 1-7. |
Cole, B., Franklin, B. M., Cody, R., and Littleton, R., “The Viability of Single-Trip Sand-Control Completions in Deep Water—A Case History”, SPE 97147, 2005 SPE Annual Technical Conference and Exhibition, Oct. 2005; pp. 1-8. |
EP Supplementary Search Report, Application No. EP08838453, Nov. 22, 2012, The Hague. |
Brannon, D. H., Harrison, D. T., and Van Sickle, E. W., “Gravel Packing Dual Zones in One Trip Reduces Offshore Completion Time”, World Oil, Sep. 1991, vol. 212(9): pp. 103-107. |
Waters, F., Singh, P., Baker, C., Van Wulfften Palthe, P., and Parlar, M., “A Novel Technique for Single-Selective Sand Control Completions Allows Perforating and Gravel Packing of Two Zones with Zonal Isolation in One Trip: A Case History from Trinidad”, SPE 56668, 1999 SPE Annual Technical Conference and Exhibition, Oct. 1999; pp. 1-7. |
Rivas, L. F., Zeiler, C. E., Graff, B., Ogbunuju E., and Parlar, M., “A Multi-Zone Single-Trip Gravel Packing and Production Technique Reduces Completion Costs by 60% Compared to Conventional Water-Packing in a Single-Selective Completion in the Gulf of Mexico”, SPE 58776, 2000 SPE International Symposium on Formation Damage Control, Feb. 2000; pp. 1-6. |
Marshall, J., Obianwu, C., Tibbles, R., and Vargas, W., “A Unique Cost Effective Technique for One Trip Selective Gravel Packing Over Multiple Zones: Dacion Field Case Study” IADC/SPE 59168, 2000 IADC/SPE Drilling Conference, Feb. 2000; pp. 1-11. |
Von Flatern, R., “Single-Trip Showdown”, Oilfield Engineer, Mar. 2004: pp. 24-28. |
Cole, B., Franklin, B. M., Cody, R., and Littleton, R., “The Viability of Single-Trip Sand-Control Completions in Deep Water—A Case History”, SPE 97147, 2005 SPE Annual Technical Conference and Exhibition, Oct. 2005: pp. 1-8. |
Number | Date | Country | |
---|---|---|---|
20090095471 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60978983 | Oct 2007 | US |