In a wellbore, it may be desirable to enhance structural integrity at desirable zone(s). Conventionally, structural integrity of wellbore walls is enhanced with a gravel pack. Current treatment systems establish a gravel pack across all zones, both desirable and undesirable. Following the gravel pack, an undesirable zone may be isolated from a desirable zone by deploying packing elements. Current systems for gravel packing multiple zones typically require multiple treatments performed sequentially with associated multiple trips into the wellbore.
A multi-zone single treatment gravel pack system includes a tool string having an inner string member, an outer string member, and a passage arranged between the outer string member and the inner string member. At least one selectively deployable packing element is provided on the outer string member. A first valve is coupled to one of the outer string member and the inner string member outwardly of the at least one selectively deployable packing element in a downhole direction. The first valve selectively fluidically connects the passage and the open hole wellbore. The first valve is configured and disposed to shift from a closed position to an open position. A second valve is coupled to one of the outer string member and the inner string member outwardly of the at least one selectively deployable packing element in an uphole direction. The second valve selectively fluidically connects the passage and the open hole wellbore. The second valve is configured and disposed to shift from an open position to a closed position.
A completion system includes an uphole portion having at least one pump and a fluid storage system fluidically connected to the at least one pump, and a downhole portion including a completion string extending into an open hole wellbore. The completion string includes a multi-zone single treatment gravel pack system having a tool string including an inner string member, an outer string member, and a passage arranged between the outer string member and the inner string member, and at least one selectively deployable packing element provided on the outer string member. A first valve is coupled to one of the outer string member and the inner string member axially outwardly of the at least one selectively deployable packing element in a downhole direction. The first valve selectively fluidically connects the passage and the open hole wellbore. The first valve is configured and disposed to shift from a closed position to an open position. A second valve is coupled to one of the outer string member and the inner string member axially outwardly of the at least one selectively deployable packing element in an uphole direction. The second valve selectively fluidically connects the passage and the open hole wellbore. The second valve is configured and disposed to shift from an open position to a closed position.
A method of multi-zone single treatment gravel packing an open hole wellbore includes guiding a completion string, including a gravel pack system, into the open hole wellbore, deploying at least one packing element provided on an outer string member to isolate a portion of the open hole wellbore, opening a first valve arranged outwardly of the at least one packing element in a downhole direction, introducing a downhole fluid into the open hole wellbore, guiding the downhole fluid through openings formed in the outer string member outwardly of the at least one packing element in an uphole direction, passing the downhole fluid radially inwardly along the at least one packing element through a passage arranged between the outer string member and an inner string member, guiding the downhole fluid through the first valve back into the open hole wellbore, and closing a second valve arranged at the openings in the outer string member.
Referring now to the drawings wherein like elements are numbered alike in the several Figures:
A resource capture system, in accordance with an exemplary embodiment, is illustrated generally at 2, in
In accordance with an aspect of an exemplary embodiment illustrated in
In further accordance with an exemplary embodiment, multi-zone single treatment gravel pack system 23 includes a first valve 54 arranged outwardly of packing element 37 in a downhole direction. First valve 54 may be in a normally closed position, such as shown in
In still further accordance with an exemplary embodiment, gravel pack system 23 includes a second valve 63 arranged at openings 44. Second valve 63 may be part of an isolation sleeve 68 provided in passage 34 or could be provided on outer string member 30 and/or inner string member 32. Second valve 63 may be a normally open valve that fluidically exposes open hole wellbore 14 to passage 34 via openings 44 and is arranged outwardly of packing element 37 in an uphole direction. Second valve 63 allows completion fluids 12, such as gravel pack fluids, to enter into passage 34 through openings 44 and bypass first packing element 37 to gravel pack resource bearing zone 16.
More specifically, after multi-zone single treatment gravel pack system 23 is guided into a desired position in open hole wellbore 14 and packing element 37 is set isolating resource bearing zone 15 from resource bearing zone 16, as shown in
At this point, it should be understood that exemplary embodiments describe a system for performing a multi-zone single treatment gravel pack operation after a zonal isolation operation. In this manner, packing element(s) may be set against non-gravel pack surfaces to provide better sealing. It should be further understood, that gravel packing of multiple zones may be completed in a single operation without the need for shunts, shunted screens, or multiple tool insertion and withdrawal operations. Also, it should be understood, that while described in terms of performing a gravel pack operation, across a single packing element, the multi-zone single treatment gravel pack system may be employed to conduct completion fluids across resource bearing zones 15 and 16 and non-resource bearing zones 17 such as shown in
The multi-zone gravel pack system makes uses of an isolation packing element that allows performing a multi-zone gravel pack treatment in one continuous pumping operation. The packing element is set prior to pumping operation. During gravel pack the sand slurry is able to flow through the set packing element and upon completion of the treatment the valve above the packing element is closed thus isolating adjacent zones from each other without leaks.
While one or more embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.
Number | Name | Date | Kind |
---|---|---|---|
5577559 | Voll et al. | Nov 1996 | A |
6446729 | Bixenman | Sep 2002 | B1 |
6640897 | Misselbrook et al. | Nov 2003 | B1 |
8151883 | Simancas | Apr 2012 | B2 |
8267173 | Clarkson | Sep 2012 | B2 |
9194217 | Watson | Nov 2015 | B2 |
20040069489 | Corbett | Apr 2004 | A1 |
20060060352 | Vidrine | Mar 2006 | A1 |
20070051507 | Ross | Mar 2007 | A1 |
20080110620 | Penno | May 2008 | A1 |
20100294495 | Clarkson | Nov 2010 | A1 |
20100300687 | Watson | Dec 2010 | A1 |
20120097386 | Ward | Apr 2012 | A1 |
20130180709 | Ritter | Jul 2013 | A1 |
20130213647 | Roddy | Aug 2013 | A1 |
20130277051 | Vlasko | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
0430389 | Jun 1991 | EP |
Entry |
---|
Baker Oil Tools, “Baker Model SB-RM Hydro Set Retainer Production Packer with Integral Annulus Flow Sleeve (AFS): Product Family No. H40950”, Packer Systems Technical Unit, Oct. 1, 2003, pp. 1-15. |
International Search Report and Written Opinion of the International Search Authority issued in related PCT Patent Application No. PCT/US2015/036865 on Sep. 7, 2015, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20160003013 A1 | Jan 2016 | US |