The present invention relates generally to antennas, and more particularly but not exclusively to multiband antennas structured as a three dimensional solid having a plurality of radiating cavities disposed therein.
A variety of applications exist with a need to feed a single reflector antenna to operate across multiple sub-bands disposed within a bandwidth. Typically such sub-bands are relatively narrowband. For example, many NASA airborne and space science applications have to support multiple electromagnetic sensor instruments that operate through the same shared reflector apertures. The applications may involve, but are not limited to measurements of aerosols, clouds, precipitation, snow water equivalent and wind velocities. Such instruments can include radiometers, active radar devices and scatterometers, and even can be combined with a communication link. Alternatively, the same aperture sharing approach can be used for multiband communication and so on.
Feeds of shared reflectors can be made using a number of horn antennas, viz. one horn for each sub-band. However, only one horn can be in the reflector focus for optimal illumination of the reflector surface. The remaining horns will be off focus and, thus, cannot provide optimal illumination of the reflector surface. Furthermore, the remaining horns may introduce blockage of the reflector. Alternatively, antennas comprising stacked patches using multi-layer circuit boards may also be designed to perform similar functions as reflector feeds; however, the phase center normal to the patch surfaces of such antennas differ depending on which patch is radiating, which may change depending on the frequency bands of operation. The proposed antenna does not suffer from such detuning of the reflector antenna optics over frequency.
Another approach is to employ a broadband array that allows operation on multiple sub-bands with an optimal reflector excitation, because the array feed can be installed in the focus. However, using a broadband array to feed a reflector is not straightforward, because such arrays can operate truly in broadband mode only if they are (1) electrically large and (2) fully excited. A typical array used to feed reflectors can be small to avoid blockage of the reflector. At the same time, small arrays may suffer from edge truncation and severe impedance mismatching. Another factor degrading impedance matching of feed arrays is fragmented excitation, when only a part of array is selectively used to drive particular bands of interest and, thus, those arrays are not fully excited.
In one of its aspects, the present invention provides a multiband antenna in which at least two cavities are present, each dimensioned and configured differently according to the operational wavelength at which the respective cavity is to operate. A first, inner cavity may operate at a first, relatively-higher frequency, while a second cavity may operate at a relatively lower frequency. Each cavity may be excited by two probes from opposite locations which may be differentially fed by a network of feedlines. The feedline network may be provided in a metal base of the multiband feed and may include vertical and horizontal feed network distribution sections. Each cavity may include its own feed network routed inside the body of the antenna. The feedline for each cavity may start at the bottom of the feed structure where, for example, a connector can be placed. The feedline may ascend vertically and then split into two differentially-fed branches using an integrated narrow-band balun or other power divider circuit. Each differentially-fed branch may be routed through several vertical-horizontal paths until reaching a designated cavity, where it may terminate in an open cavity section to excite the cavity.
For example, in one exemplary configuration, the present invention may provide a multiband antenna for operation at two or more selected wavelengths. The multiband antenna may include a first cavity having first sidewalls disposed within the antenna. The first sidewalls may extend upward from the interior of the antenna to an upper surface of the antenna such that the first sidewalls provide a first aperture in the upper surface having an annular shape. A second cavity having second sidewalls may be disposed within the antenna, and the second sidewalls may extend upward from the interior of the antenna to the upper surface of the antenna such that the second sidewalls provide a second aperture in the upper surface having an annular shape. The second aperture may be disposed internally to the first aperture within the upper surface. A first pair of excitation probes may be disposed within the first cavity to drive the cavity. The first pair of excitation probes may each have a length associated therewith, and the difference between the lengths of the probes of the first pair may be one half of a selected operational wavelength. In addition, a second pair of excitation probes may be disposed within the second cavity. The second pair of excitation probes may each have a length associated therewith, and the difference between the lengths of the probes of the second pair may be one half of a second selected operational wavelength. The first cavity may extend from the upper surface into the antenna to a depth which is greater than that of the second cavity.
In a second exemplary configuration, the present invention may provide a multiband antenna for operation at two or more selected wavelengths having a first pair of cavities. The first pair of cavities may include first sidewalls disposed within the antenna, with the first sidewalls extending upward from the interior of the antenna to an upper surface of the antenna such that the first sidewalls provide a first pair of apertures having a rectangular shape in the upper surface. The antenna may also include a second pair of cavities each having second sidewalls disposed within the antenna, with the second sidewalls extending upward from the interior of the antenna to the upper surface of the antenna such that the second sidewalls provide a second pair of apertures having a rectangular shape in the upper surface. The first and second pairs of apertures may each disposed symmetrically on opposing sides of a central line disposed parallel to the longitudinal axes of the apertures, and the antenna may include a first pair of excitation probes disposed within the first pair of cavities.
The foregoing summary and the following detailed description of exemplary embodiments of the present invention may be further understood when read in conjunction with the appended drawings, in which:
In one of its aspects, multiband antennas of the present invention may be operable at two or more wavelengths simultaneously by providing a separate radiating cavity for each band at which the antenna is to function. The cavities may be formed in an electrically conductive, e.g., metal base, which may be created by an additive build process, such as that described in U.S. Pat. Nos. 7,012,489, 7,649,432, 7,948,335, 7,148,772, 7,405,638, 7,656,256, 7,755,174, 7,898,356, 8,031,037, 2008/0199656, 2011/0123783, 2010/0296252, 2011/0273241, 2011/0181376, 2011/0210807, the contents of which are incorporated herein by reference.
Each cavity may be dimensioned and configured with regard to the particular operational wavelength the cavity is designed to support. Thus, in a multiband antenna at least two cavities are present, each dimensioned and configured differently according to the operational wavelength at which the respective cavity is to operate. For example, a first cavity of first dimensions may operate at a first frequency, while a second cavity having relatively larger dimensions may operate at a relatively lower frequency (longer wavelength). Each cavity may be excited by two probes from opposite locations which may be differentially fed. It should be appreciated, that while antennas of the present invention may be described as operating in a transmitting/radiating mode, the multiband antennas of the present invention may also operate in a reception mode to receive electromagnetic radiation. Moreover, some cavities may be operating in a radiating mode while others are operating in a reception mode.
Referring now to the figures, wherein like elements are numbered alike throughout.
The cavity 140 may be driven by first and second excitation probes 112, 114 which may be disposed at opposing locations within the cavity 140. (The probes 112, 114 may alternatively operate as receivers rather than transmitters.) The excitation probes 112, 114 may be fed by a common feedline 110 in a “T” configuration. The excitation probes 112, 114 and feedline 110 may extend through the volume of the antenna 100 and island 146 in the form of coaxial transmission lines. Other types of transmission lines, such as a stripline in a printed circuit board may be used. In addition, the excitation probes 112, 114 may desirably differ in length by one half of the operational wavelength; that is, there may be an electrical length difference of pi (180°) between the probes 112, 114. In particular, the dimensions “LL” and “LR” may differ by half of the operational wavelength to differentially drive the cavity 140. Alternatively, this phase difference may be created using 180-degree hybrids (e.g., a rat-race hybrid), by using a balun (e.g., a Marchand balun) or by feeding one of the two excitation probes from the exterior side wall, 123, to interior side wall, 122, rather than what is shown. The cavity depth “CD” may desirably be approximately one quarter of the operational wavelength and may be meandered as shown in
Turning then to multiband antennas in accordance with the present invention,
The apertures 250, 252, 254 may have a generally square or rectangular shape and may have a gap width labeled “g”. Alternatively, the apertures 250, 252, 254 may have any shape suitable for radiating or receiving electromagnetic radiation at a desired operational wavelength, such as circular or meandered. Dimensions may be set as exemplified with the single-band antenna 100 of
The cavities 240, 242, 244 may be driven by respective pairs of excitation probes 211/212, 214/215, 217/218, a given pair of which may be disposed on opposing locations within the respective cavity 240, 242, 244. (The probes 211/212, 214/215, 217/218 may alternatively operate as receivers rather than transmitters.) Each probe pair 211/212, 214/215, 217/218 may be fed by a respective feedline 210, 213, 216 in a “T” configuration,
These and other advantages of the present invention will be apparent to those skilled in the art from the foregoing specification. Accordingly, it will be recognized by those skilled in the art that changes or modifications may be made to the above-described embodiments without departing from the broad inventive concepts of the invention. It should therefore be understood that this invention is not limited to the particular embodiments described herein, but is intended to include all changes and modifications that are within the scope and spirit of the invention as set forth in the claims.
This application claims the benefit of priority of U.S. Provisional Application No. 62/268,054, filed on Dec. 16, 2015, the entire contents of which application(s) are incorporated herein by reference.
This invention was made with government support under contract #NNX15CP66P awarded by National Aeronautics and Space Administration (NASA). The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3157847 | Williams | Nov 1964 | A |
3618105 | Bruene | Nov 1971 | A |
3820041 | Gewartowski | Jun 1974 | A |
4218685 | Frosch | Aug 1980 | A |
4647942 | Counselman, III | Mar 1987 | A |
4677393 | Sharma | Jun 1987 | A |
4994817 | Munson | Feb 1991 | A |
5557291 | Chu | Sep 1996 | A |
6101705 | Wolfson | Aug 2000 | A |
6317099 | Zimmerman | Nov 2001 | B1 |
6323809 | Maloney | Nov 2001 | B1 |
6356241 | Jaeger | Mar 2002 | B1 |
6512487 | Taylor | Jan 2003 | B1 |
6842158 | Jo | Jan 2005 | B2 |
7079079 | Jo | Jul 2006 | B2 |
7109936 | Mizoguchi | Sep 2006 | B2 |
7463210 | Rawnick | Dec 2008 | B2 |
7764236 | Hill | Jul 2010 | B2 |
7889147 | Tam | Feb 2011 | B2 |
7948335 | Sherrer | May 2011 | B2 |
8325093 | Holland | Dec 2012 | B2 |
9130262 | Park | Sep 2015 | B2 |
10008779 | Boryssenko | Jun 2018 | B2 |
20030231134 | Yarasi | Dec 2003 | A1 |
20040263410 | Teillet | Dec 2004 | A1 |
20050013977 | Wong | Jan 2005 | A1 |
20050040994 | Mazoki | Feb 2005 | A1 |
20050116862 | du Toit | Jun 2005 | A1 |
20060232489 | Bisiules | Oct 2006 | A1 |
20070126651 | Snyder | Jun 2007 | A1 |
20080074339 | Lee | Mar 2008 | A1 |
20080079644 | Cheng | Apr 2008 | A1 |
20090051619 | Hook | Feb 2009 | A1 |
20090284419 | Kim | Nov 2009 | A1 |
20100007572 | Jones | Jan 2010 | A1 |
20110025574 | Tiezzi | Feb 2011 | A1 |
20110057852 | Holland | Mar 2011 | A1 |
20120146869 | Holland | Jun 2012 | A1 |
20130002501 | Li | Jan 2013 | A1 |
20130169505 | Shmuel | Jul 2013 | A1 |
20140103423 | Ohlsson | Apr 2014 | A1 |
20140354500 | Tayama | Dec 2014 | A1 |
20150162665 | Boryssenko | Jun 2015 | A1 |
20160268695 | Zavrel, Jr. | Sep 2016 | A1 |
20160370568 | Toussaint | Dec 2016 | A1 |
20170025767 | Elsallal | Jan 2017 | A1 |
20170256859 | Boryssenko | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
2007076105 | Jul 2007 | WO |
2014011675 | Jan 2014 | WO |
Entry |
---|
The ARRL Antenna Book, by Gerald Hall (Year: 1988). |
Ghannoum, H. et al. “Probe Fed Stacked Patch Antenna for UWB Sectoral Applications,” IEEE International Conference on Ultra-Wideband 2005. pp. 97-102. |
A. Boryssenko, J. Arroyo, R. Reid, M.S. Heimbeck, “Substrate free G-band Vivaldi antenna array design, fabrication and testing” 2014 IEEE International Conference on Infrared, Millimeter, and Terahertz Waves, Tucson, Sep. 2014. |
B. Cannon, K. Vanhille, “Microfabricated Dual-Polarized, W-band Antenna Architecture for Scalable Line Array Feed,” 2015 IEEE Antenna and Propagation Symposium, Vancouver, Canada, Jul. 2015. |
D. Filipovic, G. Potvin, D. Fontaine, C. Nichols, Z. Popovic, S. Rondineau, M. Lukic, K. Vanhille, Y. Saito, D. Sheffer, W. Wilkins, E. Daniels, E. Adler, and J. Evans, “Integrated micro-coaxial Ka-band antenna and array,” GomacTech 2007 Conference, Mar. 2007. |
E. Cullens, L. Ranzani, E. Grossman, Z. Popovic, “G-Band Frequency Steering Antenna Array Design and Measurements,” Proceedings of the XXXth URSI General Assembly, Istanbul, Turkey, Aug. 2011. |
Gao, S. et al. “A Broad-Band Dual-Polarized Microstrip Patch AntennaWith Aperture Coupling,” IEEE Transactions on Antennas and Propagation, vol. 51, No. 4, Apr. 2003. pp. 898-900. |
Gao, S.C., et al., “Dual-polarised Wideband Microstrip Antenna”, Electronic Letters, Aug. 30, 2001, vol. 37, No. 18, pp. 1106-1107. |
Guo, Y.X. et al. “L-probe proximity-fed short-circuited patch antennas,” Electronics Letters, vol. 35 No. 24, Nov. 25, 1999. pp. 2069-2070. |
H. Zhou, N. A. Sutton, D. S. Filipovic, “Surface micromachined millimeter-wave log-periodic dipole array antennas,” IEEE Trans. Antennas Propag., Oct. 2012, vol. 60, No. 10, pp. 4573-4581. |
H. Zhou, N. A. Sutton, D. S. Filipovic, “Wideband W-band patch antenna,” 5th European Conference on Antennas and Propagation , Rome, Italy, Apr. 2011, pp. 1518-1521. |
Holzheimer, et al., Performance Enhancements with Applications of the Coaxial Cavity Antenna, pp. 171-193. |
Hsu, Wen-Hsiu et al. “Broadband Aperture-Coupled Shorted-Patch Antenna,” Microwave and Optical Technology Letters, vol. 28, No. 5, Mar. 5, 2001. pp. 306-307. |
J. M. Oliver, J.-M. Rollin, K. Vanhille, S. Raman, “A W-band micromachined 3-D cavity-backed patch antenna array with integrated diode detector,” IEEE Trans. Microwave Theory Tech., Feb. 2012, vol. 60, No. 2, pp. 284-292. |
J. M. Oliver, P. E. Ralston, E. Cullens, L. M. Ranzani, S. Raman, K. Vanhille, “A W-band Micro-coaxial Passive Monopulse Comparator Network with Integrated Cavity—Backed Patch Antenna Array,” 2011 IEEE MTT-S Int. Microwave, Symp., Baltimore, MD, Jun. 2011. |
J. Mruk, Z. Z Hongyu, M. Uhm, Y. Saito, D. Filipovic, “Wideband mm-Wave Log-Periodic Antennas,” 3rd European Conference on Antennas and Propagation, pp. 2284-2287, Mar. 2009. |
J. R. Mruk, N. Sutton, D. S. Filipovic, “Micro-coaxial fed 18 to 110 GHz planar log-periodic antennas with RF transitions,” IEEE Trans. Antennas Propag., vol. 62, No. 2, Feb. 2014, pp. 968-972. |
J.R. Mruk, Y. Saito, K. Kim, M. Radway, D. Filipovic, “A directly fed Ku- to W-band 2-arm Archimedean spiral antenna,” Proc. 41st European Microwave Conf., Oct. 2011, pp. 539-542. |
K. M. Lambert, F. A. Miranda, R. R. Romanofsky, T. E. Durham, K. J. Vanhille, “Antenna characterization for the Wideband Instrument for Snow Measurements (WISM),” 2015 IEEE Antenna and Propagation Symposium, Vancouver, Canada, Jul. 2015. |
K. Vanhille, M. Lukic, S. Rondineau, D. Filipovic, and Z. Popovic, “Integrated micro-coaxial passive components for millimeter-wave antenna front ends,” 2007 Antennas, Radar, and Wave Propagation Conference, May 2007. |
L. Ranzani, N. Ehsan, Z. Popovi?????, “G-band frequency-scanned antenna arrays,” 2010 IEEE APS-URSI International Symposium, Toronto, Canada, Jul. 2010. |
M. Lukic, D. Fontaine, C. Nichols, D. Filipovic, “Surface micromachined Ka-band phased array antenna,” Presented at Antenna Applic. Symposium, Monticello, IL, Sep. 2006. |
M. Lukic, K. Kim, Y. Lee, Y. Saito, and D. S. Filipovic, “Multi-physics design and performance of a surface micromachined Ka-band cavity backed patch antenna,” 2007 SBMO/IEEE Int. Microwave and Optoelectronics Conf., Oct. 2007, pp. 321-324. |
M. V. Lukic, and D. S. Filipovic, “Integrated cavity-backed ka-band phased array antenna,” Proc. IEEE-APS/URSI Symposium, Jun. 2007, pp. 133-135. |
M. V. Lukic, and D. S. Filipovic, “Surface-micromachined dual Ka-and cavity backed patch antenna,” IEEE Trans. Antennas Propag., vol. 55, No. 7, pp. 2107-2110, Jul. 2007. |
Mruk, J.R., Saito, Y., Kim, K, Radway, M., Filipovic, D.S., “Directly fed millimetre-wave two-arm spiral antenna,” Electronics Letters, Nov. 25, 2010, vol. 46 , issue 24, pp. 1585-1587. |
N. Chamberlain, M. Sanchez Barbetty, G. Sadowy, E. Long, K. Vanhille, “A dual-polarized metal patch antenna element for phased array applications,” 2014 IEEE Antenna and Propagation Symposium, Memphis, Jul. 2014. pp. 1640-1641. |
N. Jastram, D. S. Filipovic, “Parameter study and design of W-band micromachined tapered slot antenna,” Proc. IEEE-APS/URSI Symposium, Orlando, FL, Jul. 2013, pp. 434-435. |
N. Sutton, D.S. Filipovic, “Design of a K- thru Ka-band modified Butler matrix feed for a 4-arm spiral antenna,” 2010 Loughborough Antennas and Propagation Conference, Loughborough, UK, Nov. 2010, pp. 521-524. |
N.A. Sutton, D. S. Filipovic, “V-band monolithically integrated four-arm spiral antenna and beamforming network,” Proc. IEEE-APS/URSI Symposium, Chicago, IL, Jul. 2012, pp. 1-2. |
Nakano, M., et al., “Feed Circuits of Double-Layered Self-Diplexing Antenna for Mobile Satelite Communications”, Transactions on Antennas and Propagation, vol. 40, No. 1, Oct. 1992, pp. 1269-1271. |
Oliver, J.M. et al., “A 3-D micromachined W-band cavity backed patch antenna array with integrated rectacoax transition to wave guide,” 2009 Proc. IEEE International Microwave Symposium, Boston, MA 2009. |
Sevskiy, S. and Wiesbeck, W., “Air-Filled Stacked-Patch Antenna,” ITG-Fachberichte. No. 178, (2003). pp. 53-56. |
T. E. Durham, C. Trent, K. Vanhille, K. M. Lambert, F. A. Miranda, “Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM),” 2015 IEEE Antenna and Propagation Symposium, Vancouver, Canada, Jul. 2015. |
Tim Holzheimer, Ph.D., P .E., The Low Dispersion Coaxial Cavity as an Ultra Wideband Antenna, 2002 IEEE Conference on Ultra Wideband Systems and Technologies, pp. 333-336. |
Vallecchi, A. et al. “Dual-Polarized Linear Series-Fed Microstrip ArraysWith Very Low Losses and Cross Polarization,” IEEE Antennas and Wireless Propagation Letter, vol. 3, 2004. pp. 123-126. |
Y. Saito, J.R. Mruk, J.-M. Rollin, D.S. Filipovic, “X- through Q- band log-periodic antenna with monolithically integrated u-coaxial impedance transformer/feeder,” Electronic Letts. Jul. 2009, pp. 775-776. |
Y. Saito, M.V. Lukic, D. Fontaine, J.-M. Rollin, D.S. Filipovic, “Monolithically Integrated Corporate-Fed Cavity-Backed Antennas,” IEEE Trans. Antennas Propag., vol. 57, No. 9, Sep. 2009, pp. 2583-2590. |
Z. Popovic, “Micro-coaxial micro-fabricated feeds for phased array antennas,” in IEEE Int. Symp. on Phased Array Systems and Technology, Waltham, MA, Oct. 2010, pp. 1-10. (Invited). |
Zurcher, J. “Broadband Patch Antennas,” Chapter 3, 1995. pp. 45-61. |
J. D. Dyson, “The equiangular spiral antenna,” Wright Air Development Center, 1957. |
Justin A. Kasemodel, et al.; A Novel Non-Symmetric Tightly Coupled Element for Wideband Phased Array Apertures; Dissertation The Ohio State University; 2010; pp. 1-13. |
Markus H. Novak, et al.; Ultra-Wideband Phased Array Antennas for Satellite Communications up to Ku- and Ka-Band; May 2015; pp. 1-6. |
Wajih Elsallal, et al.; Charateristics of Decade-bandwidth, Balanced Antipodal Vivaldi Antenna (BAVA) Phased Arrays with Time-Delay Beamformer Systems; IEEE International Symposium on Phased Array Systems and Technology. |
Michel Arts, et al.; Broadband Differentially Fed Tapered Slot Antenna Array for Radio Astronomy Applications; 2009; 3rd European Conference on Antennas and Propagation; pp. 1-5. |
Yongwei Zhang, et al.; Octagonal Ring Antenna for a Compact Dual-Polarized Aperture Array; IEEE Transactions on Antennas and Propagation, vol. 59, No. 10, Oct. 2011; pp. 3927-3932. |
Hisao Iwasaki, et al.; A Circularly Polarized Microstrip ANfENNA Using Singly-FED Proximity CCUPLED Feed; Proceedings of ISAP '92, Sapporo, Japan; pp. 797-800. |
Hansen, Robert C. Phased array antennas. vol. 213. John Wiley & Sons, 2009. |
Herd, J., and S. Duffy. “Overlapped digital subarray architecture for multiple beam phased array radar.” Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP). IEEE, 2011. |
L. Ranzani, D. Kuester, K. J. Vanhille, A. Boryssenko, E. Grossman and Z. Popovic, “G-band Micro-fabricated Frequency-steered Arrays with 2deg/GHz Beam Steering,” IEEE Transactions on Terahertz Science and Technology, vol. 3, No. 5, Sep. 2013. |
Kindt, Rick W., and W. Raymond Pickles. All-Metal Flared-Notch Array Radiator for Ultrawideband Applications. No. NRL/MR/5310-10-9279. Naval Research Lab Washington DC Radar Analysis Branch, 2010. |
Doane, Jonathan P., Kubilay Sertel, and John L Volakis. “A wideband, wide scanning tightly coupled dipole array with integrated balun (TCDA-IB).” IEEE Transactions on Antennas and Propagation 61.9 (2013): 4538-4548. |
Moulder, William F., Kubilay Sertel, and John L. Volakis. “Superstrate-enhanced ultrawideband tightly coupled array with resistive FSS.” IEEE Transactions on Antennas and Propagation 60.9 (2012): 4166-4172. |
Papantonis, Dimitrios K, and John L. Volakis. “Dual-polarization TCDA-IB with substrate loading.” 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, 2014. |
Herd, J., et al. “Multifunction Phased Array Radar (MPAR) for aircraft and weather surveillance.” 2010 IEEE Radar Conference. IEEE, 2010. |
Ben Munk et al.; “A Low-Profile Broadband Phased Array Antenna”; The Ohio State University ElectroScience Laboratory, Dept. of Electrical Engineering; 2003 pp. 448-451. |
Woorim Shin, et al. “A 108-114 GHz 4 4 Wafer-Scale Phased Array Transmitter With High-Efficiency On-Chip Antennas”; IEEE Journal of Solid-State Circuits, vol. 48, No. 9, Sep. 2011. |
Harold A. Wheeler; “Simple Relations Derived from a Phased-Array Antenna Made of an Infinite Current Sheet”; IEEE Transactions on Antennas Propagation; Jul. 1965; pp. 506-514. |
E. G. Magill, et al.; Wide-Angle Impedance Matching of a Planar Array Antenna by a Dielectric Sheet; IEEE Transactions on Antennas Propagation; Jan. 1966; vol. AP-14 No. 1; pp. 49-53. |
P. W. Hannan, et al.; Impedance Matching a Phased-Array Antenna Over Wide Scan Angles by Connecting Circuits; Impedance Matching a Phased-Array Antenna; Jan. 1965 pp. 28-34. |
James E. Dudgeon, et al.;Microstrip Technology and Its Application to Phased Array Compensation; Jan. 21, 1972; pp. 1-81. |
Kerry Speed, et al; Progress on the 8-40 GHz Wideband Instrument for Snow Measurements(WISM); Harris.com Earth Science Tech nology Forum Oct. 28-30, 2014 2014 Leesburg, VA; pp. 1-36. |
Mark Jones, et al.; A New Approach to Broadband Array Design Using Tightly Coupled Elements; IEEE; 2007; pp. 1-7. |
W. M. Qureshi et al., Fabrication of a Multi-Octave Phased Array Aperture; 6th EMRS DTC Technical Conference—Edinburgh; 2009; pp. 1-5. |
John Forrest McCann, B.S.; On the Design of Large Bandwidth Arrays of Slot Elements With Wide Scan Angle Capabilities; Thesis The Ohio State University; 2006; pp. 1-102. |
Tengfei Xia et al.; Design of a Tapered Balun for Broadband Arrays With Closely Spaced Elements; IEEE Antennas and Wireless Propagation Letters, vol. 8, 2009; pp. 1291-1294. |
Justin A. Kasemodel, et al.; A Miniaturization Technique for Wideband Tightly Coupled Phased Arrays; IEEE; 2009; pp. 1-4. |
Elias A. Alwan Et al.; A Simple Equivalent CircuitModel for Ultrawideband Coupled Arrays; IEEE Antennas and Wireless Propagation Letters, vol. 11, 2012; pp. 117-120. |
Nathanael J. Smith; Development of a 180° Hybrid Balun to Feed a Tightly Coupled Dipole X-Band Array; The Ohio State University 2010; pp. 1-52. |
Justin A. Kasemodel; Realization of a Planar Low-Profile Broadband Phased Array Antenna; Dissertation, The Ohio State University 2010; pp. 1-120. |
Justin A. Kasemodel, et al.; Low-Cost, Planar and Wideband Phased Array with Integrated Balun and Matching Network for Wide-Angle Scanning; IEEE 2010; pp. 2-4. |
Erdinc Irci; Low-Profile Wideband Antennas Based on Tightly Coupled Dipole and Patch Elements; Dissertation, The Ohio State University 2011; pp. 1-126. |
William F. Moulder; Novel Implementations of Ultrawideband Tightly Coupled Antenna Arrays: Dissertation, The Ohio State University 2012; pp. 1-133. |
Ioannis Tzanidis; Ultrawideband Low-Profile Arrays of Tightly Coupled Antenna Elements: Excitation, Termination and Feeding Methods; Dissertation, The Ohio State University 2011; pp. 1-189. |
Jonathan Doane; Wideband Low-Prole Antenna Arrays: Fundamental Limits and Practical Implementations; Disseration, The Ohio State University 2013; pp. 1-265. |
Justin A. Kasemodel et al.; Wideband Planar Array With Integrated Feed and Matching Network for Wide-Angle Scanning; IEEE Transactions on Antennas and Propagation, vol. 61, No. 9, Sep. 2013; pp. 4528-4537. |
Jonathan P. Doane, et al.; Wideband, Wide Scanning Conformal Arrays with Practical Integrated Feeds; Proceedings of the “2013 International Symposium on Electromagnetic Theory”; pp. 859-862. |
Steven S. Holland, et al.; Design and Fabrication of Low-Cost PUMA Arrays; IEEE; 2011; pp. 1976-1979. |
Steven S. Holland; Low-Profile, Modular, Ultra-Wideband Phased Arrays; Dissertation, University of Massachusetts; Sep. 2011; pp. 1-327. |
John T. Logan, et al.; A Review of Planar Ultrawideband Modular Antenna (PUMA) Arrays; Proceedings of the “2013 International Symposium on Electromagnetic Theory”; 2013; pp. 868-871. |
D. Cavallo, et al.; Common-Mode Resonances in Ultra Wide Band Connected Arrays of Dipoles: Measurements from the Demonstrator and Exit Strategy; IEEE; 2009; pp. 435-438. |
J. J. Lee, et al.; Performance of a Wideband (3-14 GHz) Dual-pol Array; IEEE; 2004; pp. 551-554. |
Jian Bai, et al.; Ultra-wideband Slot-loaded Antipodal Vivaldi Antenna Array; IEEE; 2011; pp. 79-81. |
E. Garca I, et al.; Elimination of Scan Impedance Anomalies in Ultra-Wide Band Phased Arrays of Differentially Fed Tapered Slot Antenna Elements; IEEE; 2008; pp. 1-4. |
Eloy de Lera Acedo, et al.; Study and Design of a Differentially-Fed Tapered Slot Antenna Array; IEEE Transactions on Antennas and Propagation, vol. 58, No. 1, Jan. 2010; pp. 68-78. |
Y. Chen, et al.; A Novel Wideband Antenna Array With Tightly Coupled Octagonal Ring Elements; Progress in Electromagnetics Research, vol. 124, 55-70; 2012. |
J. Y. Li; Design of Broadband Compact Size Antenna Comprised of Printed Planar Dipole Pairs; Progress in Electromagnetics Research Letters, vol. 12, 99-109; 2009. |
Mats Gustafsson; Broadband array antennas using a self-complementary antenna array and dielectric slabs; CODEN: LUTEDX/(TEAT-7129)/1-8; Dec. 13, 2004. |
Terry Richard Vogler; Analysis of the Radiation Mechanisms in and Design of Tightly-Coupled Antenna Arrays; Dissertation, Virginia Polytechnic Institute and State University; Sep. 10, 2010; pp. 1- 251. |
S. G. Hay, et al.; Analysis of common-mode effects in a dual-polarized planar connected-array antenna; Radio Science, vol. 43, RS6S04, doi:10.1029/2007RS003798; 2008. |
A. Chippendale et al.; Chequerboard Phased Array Feed Testing for ASKAP; May 3, 2010; pp. 1-41. |
Yan Fei, et al.; A Simple Wideband Dual-Polarized Array With Connected Elements; University of Electronic Science and Technology of China (UESTC); 2013; pp. 1-21. |
Fei Yan, et al. ; A Simple Wideband Dual-Polarized Array With Connected Elements; Institute of Applied Physics and Computational Mathematics; 978-1-4673-5317-5/13 2013 IEEE. |
Tomasz Michna, et al.; Characterization of an Impulse-Transmitting UWB Antenna Array with Dispersive Feed Network; Characterization of an Impulse-Transmitting UWB; 2008; pp. 59-62. Antenna Array with Dispersive Feed Network. |
Martin Wagner, et al.; Multi -B and Polarization-Ver satile Array Antenna for Smart Antenna Applications in Cellular Systems; 2004 EEE MH-S Digest; pp. 1769-1772. |
Jeremie Bourqui, et al.; Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging; EEE Transactions on Antennas and Propagation, vol. 58, No. 7; Jul. 2010. |
R.N. Simons, et al.; Impedance matching of tapered slot antenna using a dielectric transformer; Electronics Letters Nov. 26, 1998 vol. 34 No. 24. |
S. A. Adamu, et al.; Review on Gain and Directivity Enhancement Techniques of Vivaldi Antennas; International Journal of Scientific & Engineering Research, vol. 8, Issue 3, Mar. 2017; ISSN 2229-5518. |
S. Livingston, et al.; Evolution of Wide Band Array Designs; 2011; IEEE pp. 1957-1960. |
J. J. Lee,W et al.; Wide Band Long Slot Array Antennas; IEEE; 2003; pp. 452-455. |
Johnson J. H. Wang; A New Planar Multioctave Broadband Traveling-Wave Beam-Scan Array Antenna; Wang Electro-Opto Corporation; 2007; pp. 1-4. |
John Toon; New planar design allows fabrication of ultra-wideband, phased-array antennas; 100-to-1 Bandwidth @ Winter 2006; pp. 18-19. |
Hans Steyskal, et al.; Design of Realistic Phased Array Patch Elements Using a Genetic Algorithm; Air Force Research Laboratory; 2010; pp. 246-252. |
Benjamin Riviere, et al.; Ultrawideband Multilayer Printed Antenna Arrays With Wide Scanning Capability; 2015; IEEE; 514-515. |
Boryssenko, et al.; A Matlab Based Universal CEM CAD Optimizer; 2012; IEEE International Symposium on Antennas and Propagation; pp. 1-25. |
Frank B. Gross; Ultra-wideband antenna arrays—The basics—Part I; Apr. 7, 2011. |
Number | Date | Country | |
---|---|---|---|
20180323510 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62268054 | Dec 2015 | US |