An antenna can include one or more structural electrical elements each providing a bi-directional transition between a guided electrical wave and a free-space propagating wave. A resonant frequency of an antenna can be related to the electrical length of the antenna. Often, an antenna is tuned for a specific resonant frequency and may be effective for a range of frequencies usually centered around the resonant frequency. Other properties of antennas, such as radiation pattern and impedance, change with frequency.
Typically, an antenna is designed for efficient operation over a certain band of frequencies. The antenna size is related to the wavelength of radiation that the antenna is supposed to receive or transmit. An efficient dipole antenna can be constructed with a size of λ/2, where λ represents a wavelength corresponding to the resonant frequency of the antenna. A monopole type of antenna at λ/4 length is efficient if mounted on an adequately large ground plane or if supplied with radials, which can be wires or other conductors disposed perpendicular to the monopole (e.g., on or in the ground). The λ/4 antennas are the most prevalent type used in handheld devices such as mobile communication devices, e.g., cell phones. Full λ antennas are usually not practical since they are too long at the frequencies of interest. For example, the length of a 30 MHz one λ antenna is 10 meters, which is too large for most mobile platforms.
Communication antennas, including those for vehicles, are generally adapted to receive and/or transmit signals in a particular frequency range. The antennas are sized and configured in order to optimize efficiency at particular frequency ranges. Further, the challenge to miniaturize electronic components also applies to antenna design where the antenna's physical dimensions are strongly linked to the component's performance. As the physical size of communication devices shrink, manufacturers are compelled to shrink the size of the antenna systems as well.
[This section depends on the claims and will be completed when the claims are finalized.]
Certain aspects, advantages and novel features of the inventions are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the inventions disclosed herein. Thus, the inventions disclosed herein may be embodied or carried out in a manner that achieves or selects one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Throughout the drawings, reference numbers can be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate embodiments of the inventions described herein and not to limit the scope thereof.
Military, law enforcement and even commercial vehicles may be equipped with communications devices to permit operators to exchange information with a variety of different information services, command and control or dispatch centers, GPS, and other information. Therefore, it is not uncommon for such vehicles to include multiple, separate antennas, each designed to communicate efficiently at a particular frequency range or a few frequency ranges.
It is desirable in some situations for an antenna to be capable of transmitting in multiple frequency ranges using a shared radiating element. Such an antenna may also desirably assume a small footprint that may be implemented and fitted onto a vehicle. Such an antenna may operate on multiple frequency bands, such as two or more frequency bands. As one example, embodiments of the antennas described herein may operate on both UHF (225-450 MHz) and the L-band (960-1220 MHz or 1350-1850 MHz). However, it should be understood that the frequency bands described herein are merely illustrative examples. The antennas described herein can be scaled in size for use on any other frequency band or bands, including, for example, the following bands (IEEE): HF, VHF, S, C, X, Ku, K, Ka, Q, V, and W, among other bands, including bands not having any particular letter designation.
Some existing multiband antennas, such as those shown in
Another configuration of a multiband antenna, shown in
Yet another antenna configuration 400 is shown in
A folded dipole is a type of antenna configuration that may be used to control impedance level and other parameters. Unlike a single conductor dipole, a folded dipole may include a second conductor connected in parallel to the first conductor. The configuration of a folded dipole can appear like a wide flat loop with the feed in the center of the first conductor. The length of a folded dipole can be approximately a half wavelength at the resonant frequency. The impedance of the folded dipole can be adjusted by varying the spacing of the parallel conductor and the widths or diameters of the conductors. The folded dipole may be used when it is desired to raise the impedance of the antenna. In some instances, it is desirable to use a partially-folded dipole, where the parallel conductor section is shorter than the primary conductor section and where the parallel section connects to the primary section somewhere short of the very top of the primary section. This configuration may provide more flexibility in impedance matching. Folded dipoles and folded monopoles can sometimes be used to provide a DC short to ground for various purposes, such as static drain and lightning protection.
Referring to
In some embodiments, to obtain a second resonance with the multiband antenna 502, the folded dipole element 510 is positioned inside the area of the primary element 504. The folded dipole element 510 may be approximately a half wavelength long at the desired second resonant frequency. The pattern and impedance of the folded dipole element 510 can be adjusted by varying the width of the loop defined by the portions 520, 530 of the conductor and the widths or diameters of the portions 520, 530 themselves.
In this way, a dipole mounted close to a helicopter tail, such as in a leading or trailing edge fairing, can excite the tail as a part of the radiating system, which can help maintain the symmetry of the radiation pattern. Similar patterns can be implemented in other aircraft, including airplanes, unmanned drones, spacecraft, and weather balloons. In various embodiments, a multiband antenna can be embedded in any metal structure used in a vehicle, including land-based vehicles (trucks, cars, etc.), marine vehicles (such as naval vessels), airborne vehicles, and the like. The antennas described herein may be used for military communications (including radar, jamming, or the like) and civilian applications, including amateur (HAM) radio and marine radio. Further, the multiband antennas described herein may be implemented independent of a vehicle, for example, on the ground or on a building.
More generally, an antenna can be embedded in a second antenna of lower resonance frequency, whereby each operates independently and with reduced mutual interaction and interference. For example, a folded dipole may be embedded in a monopole antenna to create a multiband antenna having these characteristics. However, antennas other than folded dipoles may also be embedded in a monopole or other antennas. Examples are described below.
Referring to
Advantageously, in certain embodiments, by embedding the folded dipole 620 into a flat blade monopole 610, rather than placing a dipole in a window electrically isolated from the monopole 610 (such as in
The actual width or size of the darkened portion 630, representing where a substantial portion of current generated by the folded dipole 620 flows, can depend on the frequency and power of the transmitted (or received) signal. At lower frequencies, the width of this portion 630 can be greater than at higher frequencies. Similarly, at higher power or current, the width of this portion 630 can be greater than at lower power or current. Further, the fold-back current paths may be symmetrical or asymmetrical in some implementations.
The example blade monopole 610 shown includes a tapered portion 612 or tang to which a feed line may be attached (e.g., at the bottom of the tapered portion 612). This tapered portion 612 may have a different shape (see, e.g.,
Because the monopole 610 is larger than the folded dipole 620 in the depicted embodiment, the monopole 610 may have a lower resonance frequency than the folded dipole 620. Thus, the monopole 610 may operate at a lower frequency band than the folded dipole 620. As described above, the frequency bands at which the monopole 610 and dipole 620 operate can depend on the size of the monopole 610 and dipole 620. As one example, the monopole 610 may operate at UHF (e.g., which may include some frequencies from about 225 to about 450 MHz). The dipole 620 may operate in a microwave band such as the L-band (e.g., which may include some or all frequencies from about 960 to about 1220 MHz and/or about 1350 to about 1850 MHz). These bands are merely examples and can vary in other embodiments. For ease of illustration, the remainder of this specification will refer to the monopole 610 as operating at a relatively lower band compared with the dipole 620, which operates at a relatively higher band due to the difference in size of the two antennas 610, 620.
It should also be understood that while the monopole 610 and the dipole 620 have resonant frequencies about which a band of operation may be utilized, the monopole 610 and/or the dipole 620 may also operate at other bands where resonance is not present. For example, while the monopole 610 or dipole 620 may operate more efficiently in a frequency band centered around a resonant frequency, the monopole 610 and dipole 620 may operate less efficiently at other bands.
Like the multiband antenna 600, the example multiband antenna 700 shown includes a monopole blade 710 and a dipole 720. The monopole blade 710 is shown connected to or above a ground plane 704. The ground plane 704 may be replaced with radials in some embodiments. The monopole blade 710 and ground plane 704 are shown schematically. In an actual implementation, a normal line to the ground plane 704 may be parallel or approximately parallel with the monopole blade 710. Although the monopole includes both a blade 710 and A ground plane 704 in some embodiments, this specification refers to the blade 710 and the monopole interchangeably for ease of description.
A voltage source or feed 750 is shown connected to protruding conductors 742 of the folded dipole 720. The feed 750 supplies a voltage or current signal to be transmitted by the folded dipole 720. Although not shown, the feed 750 may be connected to antenna tuning circuitry or the like, or no antenna tuning may be used in some cases. The feed 750 may be modeled as a current source in some implementations.
Current 760 output by the feed 750 is shown exiting the feed 750 and circulating around the folded dipole 720. Due to the skin effect present in conductors at alternating current, the current 760 is substantially contained to an area surrounding a window 714 formed by the folded dipole 720. This area corresponds to the shaded area 630 of
Example radiation patterns 800, 1000 corresponding to the dipole 720 and the monopole 710 are shown in
In certain embodiments, the shape of one or both of the radiation patterns 800, 1000 is affected by the position of the dipole 720 with respect to the monopole 710. Embedding the dipole 720 near the top of the monopole 710, for instance, rather than near the root (as in the antennas of
Although not shown, in other embodiments, a multiband antenna may include a low band folded monopole. Further, a folded dipole used in any of the antennas described herein may instead have protruding conductors of unequal length, therefore providing an off-center fed dipole. Moreover, a folded dipole may be embedded within one or more blades of a blade dipole as well. This blade dipole may be a folded dipole itself. More complex nested structures may also be created, with multiple folded dipoles or other antennas nested within monopoles, dipoles, loop antennas, Yagis, horns, parabolic dishes, or other antenna structures.
Although the inventions disclosed herein have been described in the context of certain embodiments and examples, it should be understood that the inventions disclosed herein extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and certain modifications and equivalents thereof. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment may be used in all other embodiments set forth herein. Thus, it is intended that the scope of the inventions disclosed herein should not be limited by the particular disclosed embodiments described above. As will be recognized, certain embodiments of the inventions described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.
Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
Number | Name | Date | Kind |
---|---|---|---|
2437244 | Dallenbach | Mar 1948 | A |
2510698 | Johnson | Jun 1950 | A |
3449751 | Schroeder | Jun 1969 | A |
3521286 | Kuecken | Jul 1970 | A |
3587102 | Czerwinski | Jun 1971 | A |
3771157 | Stang | Nov 1973 | A |
3774220 | Martin et al. | Nov 1973 | A |
4100546 | Campbell et al. | Jul 1978 | A |
4117490 | Arnold et al. | Sep 1978 | A |
4426649 | Dubost et al. | Jan 1984 | A |
5289198 | Alshuler | Feb 1994 | A |
5621421 | Kolz et al. | Apr 1997 | A |
5745081 | Brown et al. | Apr 1998 | A |
5952976 | Giacino et al. | Sep 1999 | A |
6650301 | Zimmerman | Nov 2003 | B1 |
6947007 | Rohde et al. | Sep 2005 | B1 |
7075493 | Azadegan et al. | Jul 2006 | B2 |
7102577 | Richard et al. | Sep 2006 | B2 |
7298330 | Forster et al. | Nov 2007 | B2 |
7298343 | Forster et al. | Nov 2007 | B2 |
7307591 | Zheng | Dec 2007 | B2 |
7358906 | Sato et al. | Apr 2008 | B2 |
20050140562 | Foltz et al. | Jun 2005 | A1 |
20080024308 | Forster et al. | Jan 2008 | A1 |
20100188303 | Koh et al. | Jul 2010 | A1 |
20110109524 | Saily | May 2011 | A1 |
Number | Date | Country |
---|---|---|
1667872 | Sep 2005 | CN |
2005-203878 | Jul 2005 | JP |
WO 2009111619 | Sep 2009 | WO |