Multiband monopole antenna apparatus with ground plane aperture

Information

  • Patent Grant
  • 9570799
  • Patent Number
    9,570,799
  • Date Filed
    Friday, September 7, 2012
    12 years ago
  • Date Issued
    Tuesday, February 14, 2017
    7 years ago
Abstract
A monopole antenna coupled to a metallic ground plane includes apertures used to steer a radio frequency (RF) beam of the monopole. The apertures may have a length, width, and distance from the monopole based on the wavelength of the RF signal used to drive the monopole antenna. The aperture may be coupled to one or more selective devices, such as PIN diodes, which may short portions of a metallic ground plane near the aperture. The shorted portions of the metallic ground plane provide for steering of the monopole radiation pattern. A circuit board metallic ground plane may include multiple apertures to direct different RF signal frequencies from a single monopole antenna. Multiple monopole antennas may be implemented over a metallic ground plane within a wireless device, each monopole antenna with corresponding apertures.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention generally relates to wireless communications. More specifically, the present invention relates to monopole multi frequency antennas.


Description of the Related Art


In wireless communications systems, there is an ever-increasing demand for higher data throughput and reduced interference that can disrupt data communications. A wireless link in an Institute of Electrical and Electronic Engineers (IEEE) 802.11 network may be susceptible to interference from other access points and stations, other radio transmitting devices, and changes or disturbances in the wireless link environment between an access point and remote receiving node. The interference may degrade the wireless link thereby forcing communication at a lower data rate. The interference may, in some instances, be sufficiently strong as to disrupt the wireless link altogether.



FIG. 1 is a block diagram of a wireless device 100 in communication with one or more remote devices and as is generally known in the art. While not shown, the wireless device 100 of FIG. 1 includes antenna elements and a radio frequency (RF) transmitter and/or a receiver, which may operate using the 802.11 protocol. The wireless device 100 of FIG. 1 may be encompassed in a set-top box, a laptop computer, a television, a Personal Computer Memory Card International Association (PCMCIA) card, a remote control, a mobile telephone or smart phone, a handheld gaming device, a remote terminal, or other mobile device.


In one particular example, the wireless device 100 may be a handheld device that receives input through an input mechanism configured to be used by a user. The wireless device 100 may process the input and generate a corresponding RF signal, as may be appropriate. The generated RF signal may then be transmitted to one or more receiving nodes 110-140 via wireless links. Nodes 120-140 may receive data, transmit data, or transmit and receive data (i.e., a transceiver).


Wireless device 100 may also be an access point for communicating with one or more remote receiving nodes over a wireless link as might occur in an 802.11 wireless network. The wireless device 100 may receive data as a part of a data signal from a router connected to the Internet (not shown) or a wired network. The wireless device 100 may then convert and wirelessly transmit the data to one or more remote receiving nodes (e.g., receiving nodes 110-140). The wireless device 100 may also receive a wireless transmission of data from one or more of nodes 110-140, convert the received data, and allow for transmission of that converted data over the Internet via the aforementioned router or some other wired device. The wireless device 100 may also form a part of a wireless local area network (LAN) that allows for communications among two or more of nodes 110-140.


For example, node 110 may be a mobile device with Wi-Fi capability. Node 110 (mobile device) may communicate with node 120, which may be a laptop computer including a Wi-Fi card or wireless chipset. Communications by and between node 110 and node 120 may be routed through the wireless device 100, which creates the wireless LAN environment through the emission of RF and 802.11 compliant signals.


Efficient design of wireless device 100 is important to provide a competitive product in the market place. It is important to provide a wireless device 100 with a small footprint that can be utilized in different environments. Wireless device 100 may have dipole antenna elements built into the circuit board or manually mounted to the wireless device. When mounted manually, matching antenna elements are attached to opposing surfaces of the circuit board and typically soldered although those elements may be attached by other means.


A monopole antenna includes only a single radiating element and is coupled to a ground plane of a transmitter. The monopole radiation reflects from the ground plane to provide radiation in a dipole antenna radiation pattern. Dipole antenna elements may provide beam steering RF signals but are more costly to manufacture than monopole antennas. There is a need for an improved beam steering antenna apparatus for use in wireless devices.


SUMMARY OF THE PRESENTLY CLAIMED INVENTION

A monopole antenna is coupled to a ground plane, such as a metallic ground plane, that includes apertures used to steer a radio frequency (RF) beam of the monopole. The apertures may have a length, width, and distance from the monopole based on the wavelength of the RF signal used to drive the monopole antenna. The aperture may be in any of several shapes and patterns, including circular, square, and other patterns about the footprint of the antenna on a circuit board. One or more radio frequency switches, such as PIN diodes, may selectively provide a short circuit at a portion of the ground plane near the aperture. The portions of the ground plane near the aperture and at which a short circuit is generated provide for steering of the monopole radiation pattern. A circuit board ground plane may include multiple apertures to direct different RF signal frequencies from a single monopole antenna. Multiple monopole antennas may be implemented over a ground plane within a wireless device, each monopole antenna with corresponding apertures. Using the apertures within a ground plane with a monopole antenna saves manufacturing cost and may contribute to providing a low profile for a wireless device.


An embodiment of a wireless device for transmitting a radiation signal includes a circuit board, an antenna, an aperture and a radio frequency switch. The circuit board may include a metallic ground and at least one substrate layer. The antenna may be coupled to the circuit board and transmit radio frequency (RF) signals. The aperture may be in the metallic ground plane layer and the selectable shorting device may be selectable and positioned on the metallic ground plane over the aperture. The shorting device may be selectable to reflect a radio frequency (RF) signal broadcast by the antenna.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a block diagram of a wireless device in communication with one or more remote devices.



FIG. 2 is a block diagram of a wireless device.



FIG. 3 illustrates a perspective view of a circuit board having monopole antennas and a metallic ground plane having apertures.



FIG. 4 illustrates a side view of a circuit board having a monopole antenna and a metallic ground plane having apertures.



FIG. 5 illustrates a top view of a circuit board having a monopole antenna and a metallic ground plane having apertures.



FIG. 6 illustrates a top view of another circuit board having a monopole antenna and a metallic ground plane having apertures.





DETAILED DESCRIPTION

An antenna apparatus may include one or more antennas coupled to a circuit board having a ground plane, such as a metallic ground plane, with one or more apertures. The apertures may be used to steer a radio frequency (RF) beam of the one or more monopole antennas. Each monopole antenna may have one or more sets of corresponding apertures. Each aperture or set of apertures may reflect and/or direct different RF signal frequencies from a single monopole antenna. A radio frequency switch such as a PIN diode switch may be positioned over the aperture and be selected to provide a short circuit at that portion of the aperture. The short circuit makes that portion of the aperture act as a ground plane with respect to the RF signal. Beam steering of an RF signal may be provided by selectively providing a short across portions of the aperture which are not to act as a reflector or director.


An aperture used for beam steering may be designed based on the wavelength of one or more RF signals transmitted by a corresponding monopole antenna. A ground plane such as a metallic ground plane may have apertures having a length, width, and a distance from the monopole based on the wavelength of the RF signal used to drive the monopole antenna. Multiple apertures may be used with a single monopole antenna to reflect different frequency RF signals. The aperture may be in any of several shapes and patterns, including slots forming circular, square, and other shapes about the footprint of the monopole antenna on a circuit board. Using the a monopole antenna with apertures to provide beam steering saves manufacturing cost and helps provide a lower profile as compared to dipole antenna-based wireless devices.



FIG. 2 is a block diagram of a wireless device 200. The wireless device 200 of FIG. 2 can be used in a fashion similar to that of wireless device 100 as shown in and described with respect to FIG. 1. The components of wireless device 200 can be implemented on one or more circuit boards. The wireless device 200 of FIG. 2 includes a data input/output (I/O) module 205, a data processor 210, radio modulator/demodulator 220, a pattern selector 215, and antenna array 240.


The wireless device 200 of FIG. 2 may implement a MIMO system. The MIMO system may include multiple MIMO chains, wherein each chain communicates using a monopole antenna.


Radio frequency switches may be used within wireless device 200 between pattern selector and the monopole antennas of antenna array 240, such as for example to select aperture portions within a metallic ground plane. Examples of radio frequency switches are discussed with respect to FIGS. 5 and 6.


The data I/O module 205 of FIG. 2 receives a data signal from an external source such as a router. The data I/O module 205 provides the signal to wireless device circuitry for wireless transmission to a remote device (e.g., nodes 110-140 of FIG. 1). The wired data signal can be processed by data processor 210 and radio modulator/demodulator 220. The processed and modulated signal may then be transmitted via one or more antenna elements, including monopole antenna elements, within antenna array 240 as described in further detail below. The data I/O module 205 may be any combination of hardware or software operating in conjunction with hardware.


The pattern selector 215 of FIG. 2 can select one or more radio frequency switches within antenna array 240. Each radio frequency switch may be coupled across a portion of an aperture within a metallic ground plane to selectively short portions of an aperture to provide signal beam steering. Pattern selector 215 may also select one or more reflectors/directors for reflecting the signal in a desired direction. Processing of a data signal and feeding the processed signal to one or more selected antenna elements is described in detail in U.S. Pat. No. 7,193,562, entitled “Circuit Board Having a Peripheral Antenna Apparatus with Selectable Antenna Elements,” the disclosure of which is incorporated by reference.


Antenna array 240 can include an antenna element array, a metallic ground plane having apertures and selectable radio frequency switches, and reflectors. The antenna element array can include one or more monopole antenna elements. Each monopole antenna element may be mounted to a circuit board and may be configured to operate at one or more particular frequencies, such as 2.4 GHz and 5.0 GHz. Antenna array 240 may also include a reflector/controller array. The mountable antenna element and reflectors can be located at various locales on the circuit board of a wireless device.



FIG. 3 illustrates a perspective view of a circuit board having monopole antennas and a ground plane having apertures. The ground plane may include a metallic ground plane. Monopole antenna elements 315 and 330 may be coupled to circuit board 310. The monopole antenna element 315 may be a quarter wavelength element and reside above a metallic ground plane within circuit board 310.


Circuit board 310 may include one or more substrate layers and ground planes. One or more of the ground planes may include one or more apertures 320, 325, 335, and 340, illustrated by dashed lines in FIG. 3. Each aperture may include a hole or opening such as a continuous slot in a ground plane of the circuit board. The aperture may be formed by any of a variety of methods, including during the manufacturing process by removing portions of the ground plane. As shown, multiple apertures may be formed for each monopole antenna element to provide beam forming for different frequencies of RF signals. For example, aperture 325 encompasses aperture 320 and aperture 340 encompasses aperture 335. Though FIG. 3 illustrates an antenna apparatus with two monopole antennas 315 and 330, more or fewer monopole antennas may be used within an antenna apparatus of the present invention.



FIG. 4 illustrates a side view of a circuit board 450 having a monopole antenna 440 and a ground plane having apertures. The circuit board 450 includes a top layer 405, metallic ground plane 410, and bottom layer 415. Though only three layers are shown, circuit board 450 may have more or less than the three layers illustrated in FIG. 4.


Antenna element 440 mounts to the top surface of the circuit board 450. The antenna element 440 may be inserted through slots that extend through one or more of circuit board top layer 405, ground layer 410, and bottom layer 420, or may be coupled to the surface in some other manner. The monopole antenna element 440 may be coupled to radio modulator/demodulator 220 to receive an RF signal and radiate at one or more frequencies. A portion of the monopole antenna radiation may be reflected by metallic ground plane 410. The monopole antenna element radiation and reflected radiation may combine to provide a radiation pattern similar to that provided by a dipole antenna.


Metallic ground plane 410 may include a number of apertures 420, 425, 430 and 435. The apertures are formed around monopole antenna element 440. For example, apertures 430 and 435 may be part of a single set of apertures, such as a circular or semi-circular slot, formed around monopole antenna element 440. Apertures 420 and 425 may also form an aperture around monopole antenna element 440. Apertures 430 and 435 are closer to monopole antenna element 440 and, along with one or more radio frequency switches, may direct an RF signal at a first, higher frequency while apertures 420 and 425 are positioned further away from monopole antenna element 440 and may be designed to direct, using one or more radio frequency switches, an RF signal at a second, lower frequency. The apertures closer to the monopole antenna element 440 may beam steer a higher frequency RF signal while the apertures further from the monopole antenna element 440 may beam steer a lower frequency RF signal.


To minimize or reduce the size of the monopole antenna 440, each monopole antenna element may incorporate one or more loading structures. By configuring a loading structure to slow down electrons and change the resonance of each monopole antenna element, the monopole antenna element becomes electrically shorter. In other words, at a given operating frequency, providing loading structures reduces the dimension of the monopole antenna element. Providing the loading structures for one or more of the monopole antenna element minimizes the size of the antenna element.


Circuit board 450 includes radio frequency feed port 455 selectively coupled to antenna 440. Although one antenna element is depicted in FIG. 4, more antenna elements can be implemented and selectively coupled to radio frequency feed port 455. Further, while antenna element 440 of FIG. 4 is oriented substantially in the middle of circuit board substrate, other shapes and layouts, both symmetrical and non-symmetrical, can be implemented. Radio frequency feed port 455 may be coupled to one or more monopole antenna elements to provide each monopole antenna with an RF signal


The pattern selector 215 may include radio frequency switches, such as diode switches 225, 230, 235 of FIG. 2, a GaAs FET, or other RF switching devices to select one or more monopole antenna elements and/or to short portions of an aperture. A PIN diode may include a single-pole single-throw switch to switch each antenna element either on or off (i.e., couple or decouple antenna element 440 to the radio frequency feed port 310).


A series of control signals can be used to bias each PIN diode. With the PIN diode forward biased and conducting a DC current, the PIN diode switch is on, and a PIN diode placed over an aperture may provide a short across that portion of the aperture. With the diode reverse biased, the PIN diode switch is off. The PIN diodes may be placed over an aperture to provide a short at a selected portion of the aperture. In various embodiments, the radio frequency feed port 455, the pattern selector 215, and the antenna elements 440 may be close together or spread across the circuit board.


One or more light emitting diodes (LED) (not shown) can be coupled to the antenna element selector. The LEDs function as a visual indicator of which of the antenna elements 320-370 is on or off. In one embodiment, an LED is placed in circuit with the PIN diode so that the LED is lit when the corresponding antenna element is selected.


Monopole antenna element 440 can be coupled to the circuit board 450 using slots in the circuit board, coupling pads, or other coupling methods known to those skilled in the art. In some embodiments, reflectors for reflecting or directing the radiation of a mounted antenna element can also be coupled to the circuit board at one or more coupling pads. Circuit board mounting pads and coupling pad holes are described in more detail in U.S. patent application Ser. No. 12/545,758, filed on Aug. 21, 2009, and titled “Mountable Antenna Elements for Dual Band Antenna,” the disclosure of which is incorporated herein by reference.


The antenna components (e.g., monopole antenna element 440) are formed from RF conductive material. For example, the monopole antenna element 440 and the ground components 410 can be formed from metal or other RF conducting material.


Externally mounted reflector/directors, if any, may further be implemented in circuit board 450 to constrain the directional radiation pattern of one or more of the antenna elements in azimuth. Other benefits with respect to selectable configurations are disclosed in U.S. patent application Ser. No. 11/041,145 filed Jan. 21, 2005 and entitled “System and Method for a Minimized Antenna Apparatus with Selectable Elements,” the disclosure of which is incorporated herein by reference.



FIG. 5 illustrates a top view of a circuit board having a monopole antenna and a metallic ground plane having apertures. Circuit board 500 includes apertures 505 and 510, radio frequency switches 515 and 520, and monopole antenna element 525. The circuit board 500 includes a substrate having at least first side and a second side that can be substantially parallel to the first side. The substrate may comprise, for example, a PCB such as FR4, Rogers 4003 or some other dielectric material.


Aperture 505 includes a plurality of radio frequency switches 520 placed over, across, or straddling the aperture. As an RF signal of a particular frequency is transmitted by an antennal element 525 towards the ground plane, the reflection of the RF signal induces a current in aperture 505. Aperture 505 may have a length, width and distance from the antenna based on the particular RF frequency in order for the current to be generated by the reflected RF signal. The induced current in aperture 505 causes the aperture to act as a director and/or reflector of the RF signal. Radio frequency switches placed over aperture 505 may be selected to provide a short circuit, or “short”, across the aperture. Each short across portions of aperture 505 causes that portion of the aperture to no longer act as a director and/or reflector, but rather to behave as the ground plane with respect to the RF signal.


Each radio frequency switch positioned over aperture 505 may be selectively coupled to a selecting mechanism such as pattern selector 215. By selecting one or more radio frequency switches 520, the RF frequency beam provided by the monopole antennal element 525 can be steered (i.e., by portions of the slot which are not shorted) in a desired direction.


Aperture 510 is formed as a circular slot that extends around (i.e., encompasses) monopole antenna element 525. The circular aperture 510 is positioned at a distance D1 (radius of circle formed by aperture 510) from monopole antenna element 525 and has a width of W1. The length of aperture 505 is the circumference of the circular aperture, provided approximately by 2πr or 2π(D1).


Aperture 505 is formed as a circular slot that extends around monopole antenna element 525 and inside aperture 510. Aperture 505 is positioned at a distance D2 from monopole antenna element 525 and has a width of W2. The length of aperture 505 is provided approximately by 2π(D2).


The width and length of an aperture for providing beam steering as well the distance of the aperture from a monopole antenna may be determined based on the frequency of the RF signal the aperture and radio frequency switches are intended to reflect via beam steering. For example, for shorter wavelength RF signals, an aperture with short circuit causing radio frequency switches may be provided closer to a monopole antenna element. An aperture with short circuit causing radio frequency switches for beam steering larger wavelength signals may be positioned further from a monopole antenna. In some embodiments, multiple apertures for a single antenna such as a monopole antenna may be used to reflect signals of 5.0 GHz signal, 2.4 GHz signal, and other frequencies of RF signals. If aperture 510 may be used to reflect/direct a 2.4 GHz RF signal and aperture 505 may be used to direct/reflect a 5.0 GHz signal, the dimension of each aperture may be selected such that aperture 510 with radio frequency switches 515 may beam steer the 2.4 GHz signal while appearing invisible and not significantly affecting the radiation pattern of a 5.0 GHz signal. Aperture 505 with radio frequency switches 520 may beam steer the 5.0 GHz signal while appearing invisible and not significantly affecting the radiation pattern of a 2.4 GHz signal.



FIG. 6 illustrates a top view of a circuit board having a monopole antenna and a metallic ground plane having apertures. Circuit board 600 includes apertures 605, 610, 615, and 620 forming an outer square shape aperture, apertures 635, 640, 645, and 650 forming an inner square shape aperture, radio frequency switches 630 and 655, and monopole antenna element 660. The circuit board of FIG. 6 may be similar to the circuit board of FIG. 5.


Each of apertures 605, 610, 615, and 620 is formed as a relatively straight slot with outward-bent ends and includes a radio frequency switches 655 placed at each end of each aperture. The apertures are positioned to form a square-like shape around monopole antenna 660 at distance D2 from antenna 660 and each have a width W2. The length of each aperture is approximately the length of each slot between diodes 630. Each radio frequency switches 630 may be selectively coupled to a selecting mechanism such as pattern selector 215. When one of the radio frequency switches 630 is selectively switched on, a short circuit is formed across the corresponding aperture. By selecting one or more radio frequency switches 630, the RF frequency beam provided by the monopole antennal element 660 can be steered to a desired direction, such as that associated with a receiving node.


Apertures 635, 640, 645, and 650 also form a square shape but are positioned closer to monopole antenna element 660, within the square formed by apertures 605, 610, 615 and 620. Apertures 635, 640, 645, and 650 are positioned at distance D1 from antenna 660 and each have a width W2. A selectable radio frequency switch 655 is placed at each end of each of each of apertures 635, 640, 645, and 650. Radio frequency switches 655 are placed over, across, or straddling apertures 605, 610, 615 and 620. When a radio frequency switch 655 is switched on, a short circuit is formed across the aperture. In FIG. 6, the apertures 605, 610, 615 and 620 with radio frequency switches 630 may be used to beam steer a 2.4 GHz signal while inner apertures 635, 640, 645, and 650 with radio frequency switches 655 may be used to beam steer a 5.0 GHz signal.


The embodiments disclosed herein are illustrative. Various modifications or adaptations of the structures and methods described herein may become apparent to those skilled in the art. Such modifications, adaptations, and/or variations that rely upon the teachings of the present disclosure and through which these teachings have advanced the art are considered to be within the spirit and scope of the present invention. Hence, the descriptions and drawings herein should be limited by reference to the specific limitations set forth in the claims appended hereto.

Claims
  • 1. A wireless device for transmitting a radiation signal, comprising: a circuit board including a metallic ground plane and at least one substrate layer;a monopole antenna coupled to the circuit board and transmitting radio frequency (RF) signals, wherein the monopole antenna includes one or more loading structures to change a resonance of the monopole antenna; andone or more apertures in the metallic ground plane associated with the monopole antenna, wherein each of the one or more apertures has a corresponding shape and pattern, the corresponding shape and pattern being circular, elliptical, or regular polygonal, wherein at least one selectable radio frequency switch is positioned over each of the one or more apertures, and wherein the one or more apertures associated with the monopole antenna are selected based on their corresponding shape and pattern to beam steer specific RF signals transmitted from the monopole antenna via selection of associated RF switches.
  • 2. The wireless device of claim 1, wherein the antenna is perpendicular to the circuit board.
  • 3. The wireless device of claim 1, wherein the aperture has a length related to the RF signal wavelength.
  • 4. The wireless device of claim 1, wherein the aperture has a width related to the RF signal wavelength.
  • 5. The wireless device of claim 1, wherein the aperture is positioned a distance away from the antenna, the distance related to RF signal wavelength.
  • 6. The wireless device of claim 1, wherein the metallic ground plane includes a second aperture, the second aperture having a second radio frequency switch selectable to reflect a second RF signal broadcast by the antenna, the second RF signal having a different frequency than the first RF signal.
  • 7. The wireless device of claim 1, wherein the selectable radio frequency switch includes a PIN diode.
  • 8. The wireless device of claim 7, wherein the radiation pattern of the antenna is controlled by selecting one or more selectable radio frequency switches.
  • 9. The wireless device of claim 1, wherein the first aperture encompasses a second aperture within the metallic ground plane, the second aperture and a second radio frequency switch causing reflection of an RF signal by the metallic ground plane, the second RF signal having a higher frequency than the RF signal reflected by the metallic ground plane near the first aperture.
  • 10. The wireless device of claim 1, wherein the aperture is formed by a single opening in the metallic ground plane.
  • 11. The wireless device of claim 1, wherein the aperture is formed by a plurality of openings in the metallic ground plane.
  • 12. The wireless device of claim 1, wherein the one or more apertures associated with the monopole antenna include slots forming a variety of shapes about a footprint of the monopole antenna on the circuit board.
US Referenced Citations (302)
Number Name Date Kind
723188 Tesla Mar 1903 A
725605 Tesla Apr 1903 A
1869659 Broertjes Aug 1932 A
2292387 Markey et al. Aug 1942 A
3488445 Chang Jan 1970 A
3568105 Felsenheld et al. Mar 1971 A
3577196 Pereda May 1971 A
3846799 Gueguen Nov 1974 A
3918059 Adrian Nov 1975 A
3922685 Opas Nov 1975 A
3967067 Potter Jun 1976 A
3982214 Burns Sep 1976 A
3991273 Mathes Nov 1976 A
4001734 Burns Jan 1977 A
4145693 Fenwick Mar 1979 A
4176356 Foster et al. Nov 1979 A
4193077 Greenberg et al. Mar 1980 A
4253193 Kennard Feb 1981 A
4305052 Baril et al. Dec 1981 A
4513412 Cox Apr 1985 A
4554554 Olesen et al. Nov 1985 A
4587524 Hall May 1986 A
4733203 Ayasli Mar 1988 A
4814777 Monser Mar 1989 A
4845507 Archer et al. Jul 1989 A
4975711 Lee Dec 1990 A
5063574 Moose Nov 1991 A
5097484 Akaiwa Mar 1992 A
5132698 Swineford Jul 1992 A
5173711 Takeuchi et al. Dec 1992 A
5203010 Felix Apr 1993 A
5208564 Burns et al. May 1993 A
5220340 Shafai Jun 1993 A
5282222 Fattouche et al. Jan 1994 A
5291289 Hulyalkar et al. Mar 1994 A
5311550 Fouche et al. May 1994 A
5373548 McCarthy Dec 1994 A
5507035 Bantz Apr 1996 A
5532708 Krenz et al. Jul 1996 A
5559800 Mousseau et al. Sep 1996 A
5610617 Gans et al. Mar 1997 A
5629713 Mailandt et al. May 1997 A
5754145 Evans May 1998 A
5767755 Kim et al. Jun 1998 A
5767809 Chuang et al. Jun 1998 A
5786793 Maeda et al. Jul 1998 A
5802312 Lazaridis et al. Sep 1998 A
5964830 Durrett Oct 1999 A
5990838 Burns et al. Nov 1999 A
6006075 Smith et al. Dec 1999 A
6011450 Miya Jan 2000 A
6018644 Minarik Jan 2000 A
6031503 Preiss, II et al. Feb 2000 A
6034638 Thiel et al. Mar 2000 A
6052093 Yao et al. Apr 2000 A
6091364 Murakami et al. Jul 2000 A
6094177 Yamamoto Jul 2000 A
6097347 Duan et al. Aug 2000 A
6101397 Grob et al. Aug 2000 A
6104356 Hikuma et al. Aug 2000 A
6166694 Ying Dec 2000 A
6169523 Ploussios Jan 2001 B1
6204825 Wilz Mar 2001 B1
6239762 Lier May 2001 B1
6252559 Donn Jun 2001 B1
6266528 Farzaneh Jul 2001 B1
6292153 Aiello et al. Sep 2001 B1
6307524 Britain Oct 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323810 Poilasne et al. Nov 2001 B1
6326922 Hegendoerfer Dec 2001 B1
6337628 Campana et al. Jan 2002 B2
6337668 Ito et al. Jan 2002 B1
6339404 Johnson et al. Jan 2002 B1
6345043 Hsu Feb 2002 B1
6356242 Ploussios Mar 2002 B1
6356243 Schneider et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6377227 Zhu et al. Apr 2002 B1
6392610 Braun et al. May 2002 B1
6404386 Proctor, Jr. et al. Jun 2002 B1
6407719 Ohira et al. Jun 2002 B1
RE37802 Fattouche et al. Jul 2002 E
6414647 Lee Jul 2002 B1
6424311 Tsai et al. Jul 2002 B1
6442507 Skimore et al. Aug 2002 B1
6445688 Garces et al. Sep 2002 B1
6452556 Ha et al. Sep 2002 B1
6452981 Raleigh Sep 2002 B1
6456242 Crawford Sep 2002 B1
6493679 Rappaport et al. Dec 2002 B1
6496083 Kushitani et al. Dec 2002 B1
6498589 Horii Dec 2002 B1
6499006 Rappaport et al. Dec 2002 B1
6507321 Oberschmidt et al. Jan 2003 B2
6531985 Jones et al. Mar 2003 B1
6583765 Schamberger et al. Jun 2003 B1
6586786 Kitazawa et al. Jul 2003 B2
6606059 Barabash Aug 2003 B1
6611230 Phelan Aug 2003 B2
6621464 Fang Sep 2003 B1
6625454 Rappaport et al. Sep 2003 B1
6633206 Kato Oct 2003 B1
6642889 McGrath Nov 2003 B1
6674459 Ben-Shachar et al. Jan 2004 B2
6701522 Rubin et al. Mar 2004 B1
6720925 Wong et al. Apr 2004 B2
6724346 Le Bolzer Apr 2004 B2
6725281 Zintel et al. Apr 2004 B1
6741219 Shor May 2004 B2
6747605 Lebaric Jun 2004 B2
6753814 Killen et al. Jun 2004 B2
6753826 Chiang et al. Jun 2004 B2
6762723 Nallo et al. Jul 2004 B2
6774846 Fullerton et al. Aug 2004 B2
6779004 Zintel Aug 2004 B1
6786769 Lai Sep 2004 B2
6801790 Rudrapatna Oct 2004 B2
6819287 Sullivan et al. Nov 2004 B2
6839038 Weinstein Jan 2005 B2
6859176 Choi Feb 2005 B2
6859182 Horii Feb 2005 B2
6876280 Nakano Apr 2005 B2
6876836 Lin et al. Apr 2005 B2
6888504 Chiang et al. May 2005 B2
6888893 Li et al. May 2005 B2
6892230 Gu et al. May 2005 B1
6903686 Vance et al. Jun 2005 B2
6906678 Chen Jun 2005 B2
6910068 Zintel et al. Jun 2005 B2
6914581 Popek Jul 2005 B1
6924768 Wu et al. Aug 2005 B2
6931429 Gouge et al. Aug 2005 B2
6937206 Puente Ballarda et al. Aug 2005 B2
6941143 Mathur Sep 2005 B2
6943749 Paun Sep 2005 B2
6946996 Koyama Sep 2005 B2
6950019 Bellone et al. Sep 2005 B2
6950069 Gaucher et al. Sep 2005 B2
6961026 Toda Nov 2005 B2
6961028 Joy et al. Nov 2005 B2
6965353 Shirosaka et al. Nov 2005 B2
6973622 Rappaport et al. Dec 2005 B1
6975834 Forster Dec 2005 B1
6980782 Braun et al. Dec 2005 B1
7023909 Adams et al. Apr 2006 B1
7034769 Surducan et al. Apr 2006 B2
7034770 Yang et al. Apr 2006 B2
7039363 Kasapi et al. May 2006 B1
7043277 Pfister May 2006 B1
7050809 Lim May 2006 B2
7053844 Gaucher et al. May 2006 B2
7053845 Holloway et al. May 2006 B1
7064717 Kaluzni et al. Jun 2006 B2
7068234 Sievenpiper Jun 2006 B2
7075485 Song et al. Jul 2006 B2
7084816 Watanabe Aug 2006 B2
7084823 Caimi et al. Aug 2006 B2
7085814 Ghandhi et al. Aug 2006 B1
7088299 Siegler et al. Aug 2006 B2
7089307 Zintel et al. Aug 2006 B2
7130895 Zintel et al. Oct 2006 B2
7171475 Weisman et al. Jan 2007 B2
7193562 Shtrom et al. Mar 2007 B2
7196674 Timofeev et al. Mar 2007 B2
7277063 Shirosaka et al. Oct 2007 B2
7308047 Sadowsky Dec 2007 B2
7312762 Puente Ballarda et al. Dec 2007 B2
7319432 Andersson Jan 2008 B2
7327328 Yoneya et al. Feb 2008 B2
7362280 Shtrom et al. Apr 2008 B2
7388552 Mori Jun 2008 B2
7424298 Lastinger et al. Sep 2008 B2
7493143 Jalali Feb 2009 B2
7498996 Shtrom et al. Mar 2009 B2
7525486 Shtrom et al. Apr 2009 B2
7603141 Dravida Oct 2009 B2
7609223 Manasson et al. Oct 2009 B2
7646343 Shtrom et al. Jan 2010 B2
7652632 Shtrom et al. Jan 2010 B2
7675474 Shtrom et al. Mar 2010 B2
7696940 Macdonald Apr 2010 B1
7696943 Chiang et al. Apr 2010 B2
7696948 Abramov et al. Apr 2010 B2
7868842 Chair Jan 2011 B2
7880683 Shtrom et al. Feb 2011 B2
7899497 Kish et al. Mar 2011 B2
7965252 Shtrom et al. Jun 2011 B2
8031129 Shtrom et al. Oct 2011 B2
8199063 Moon et al. Jun 2012 B2
8314749 Shtrom et al. Nov 2012 B2
8698675 Shtrom et al. Apr 2014 B2
8860629 Shtrom et al. Oct 2014 B2
20010046848 Kenkel Nov 2001 A1
20020031130 Tsuchiya et al. Mar 2002 A1
20020047800 Proctor, Jr. et al. Apr 2002 A1
20020054580 Strich et al. May 2002 A1
20020080767 Lee Jun 2002 A1
20020084942 Tsai et al. Jul 2002 A1
20020101377 Crawford Aug 2002 A1
20020105471 Kojima et al. Aug 2002 A1
20020112058 Weisman et al. Aug 2002 A1
20020140607 Zhou Oct 2002 A1
20020158798 Chiang et al. Oct 2002 A1
20020170064 Monroe et al. Nov 2002 A1
20030026240 Eyuboglu et al. Feb 2003 A1
20030030588 Kalis et al. Feb 2003 A1
20030063591 Leung et al. Apr 2003 A1
20030076264 Yuanzhu Apr 2003 A1
20030122714 Wannagot et al. Jul 2003 A1
20030169330 Ben-Shachar et al. Sep 2003 A1
20030184490 Raiman et al. Oct 2003 A1
20030189514 Miyano et al. Oct 2003 A1
20030189521 Yamamoto et al. Oct 2003 A1
20030189523 Ojantakanen et al. Oct 2003 A1
20030210207 Suh et al. Nov 2003 A1
20030227414 Saliga et al. Dec 2003 A1
20040014432 Boyle Jan 2004 A1
20040017310 Runkle et al. Jan 2004 A1
20040017315 Fang et al. Jan 2004 A1
20040017860 Liu Jan 2004 A1
20040027291 Zhang et al. Feb 2004 A1
20040027304 Chiang et al. Feb 2004 A1
20040032378 Volman et al. Feb 2004 A1
20040036651 Toda Feb 2004 A1
20040036654 Hsieh Feb 2004 A1
20040041732 Aikawa et al. Mar 2004 A1
20040048593 Sano Mar 2004 A1
20040058690 Ratzel et al. Mar 2004 A1
20040061653 Webb et al. Apr 2004 A1
20040070543 Masaki Apr 2004 A1
20040075609 Li Apr 2004 A1
20040080455 Lee Apr 2004 A1
20040095278 Kanemoto et al. May 2004 A1
20040114535 Hoffmann et al. Jun 2004 A1
20040125777 Doyle et al. Jul 2004 A1
20040145528 Mukai et al. Jul 2004 A1
20040150567 Yuanzhu Aug 2004 A1
20040160376 Hornsby et al. Aug 2004 A1
20040183727 Choi Sep 2004 A1
20040190477 Olson et al. Sep 2004 A1
20040203347 Nguyen Oct 2004 A1
20040239571 Papziner et al. Dec 2004 A1
20040260800 Gu et al. Dec 2004 A1
20050001777 Suganthan et al. Jan 2005 A1
20050022210 Zintel et al. Jan 2005 A1
20050041739 Li et al. Feb 2005 A1
20050042988 Hoek et al. Feb 2005 A1
20050048934 Rawnick et al. Mar 2005 A1
20050074018 Zintel et al. Apr 2005 A1
20050074108 Dezonno et al. Apr 2005 A1
20050083236 Louzir et al. Apr 2005 A1
20050097503 Zintel et al. May 2005 A1
20050105632 Catreux-Erces et al. May 2005 A1
20050128983 Kim et al. Jun 2005 A1
20050135480 Li et al. Jun 2005 A1
20050138137 Encarnacion et al. Jun 2005 A1
20050138193 Encarnacion et al. Jun 2005 A1
20050146475 Bettner et al. Jul 2005 A1
20050180381 Retzer et al. Aug 2005 A1
20050188193 Kuehnel et al. Aug 2005 A1
20050200529 Watanabe Sep 2005 A1
20050219128 Tan et al. Oct 2005 A1
20050240665 Gu et al. Oct 2005 A1
20050266902 Khatri Dec 2005 A1
20050267935 Ghandhi et al. Dec 2005 A1
20060007891 Aoki et al. Jan 2006 A1
20060038734 Shtrom et al. Feb 2006 A1
20060050005 Shirosaka et al. Mar 2006 A1
20060078066 Yun Apr 2006 A1
20060094371 Nguyen May 2006 A1
20060098607 Zeng et al. May 2006 A1
20060109191 Shtrom et al. May 2006 A1
20060123124 Weisman et al. Jun 2006 A1
20060123125 Weisman et al. Jun 2006 A1
20060123455 Pai et al. Jun 2006 A1
20060160495 Strong Jul 2006 A1
20060168159 Weisman et al. Jul 2006 A1
20060184660 Rao et al. Aug 2006 A1
20060184661 Weisman et al. Aug 2006 A1
20060184693 Rao et al. Aug 2006 A1
20060187660 Liu Aug 2006 A1
20060224690 Falkenburg et al. Oct 2006 A1
20060225107 Seetharaman et al. Oct 2006 A1
20060227761 Scott, III et al. Oct 2006 A1
20060239369 Lee Oct 2006 A1
20060262015 Thornell-Pers et al. Nov 2006 A1
20060291434 Gu et al. Dec 2006 A1
20070027622 Cleron et al. Feb 2007 A1
20070135167 Liu Jun 2007 A1
20070162819 Kawamoto Jul 2007 A1
20080062063 Matsushita et al. Mar 2008 A1
20080266189 Wu et al. Oct 2008 A1
20080284657 Rudant Nov 2008 A1
20090075606 Shtrom et al. Mar 2009 A1
20100289705 Shtrom et al. Nov 2010 A1
20110205137 Shtrom et al. Aug 2011 A1
20120007790 Shtrom et al. Jan 2012 A1
20120068892 Shtrom et al. Mar 2012 A1
20130181882 Shtrom et al. Jul 2013 A1
20140225807 Shtrom et al. Aug 2014 A1
20140285391 Baron Sep 2014 A1
Foreign Referenced Citations (40)
Number Date Country
1210839 Jul 2005 CN
1 934 750 Mar 2007 CN
102868024 Jan 2013 CN
103201908 Jul 2013 CN
ZL 200780020943.9 Nov 2013 CN
101473488 Feb 2014 CN
352 787 Jan 1990 EP
0 534 612 Mar 1993 EP
0 756 381 Jan 1997 EP
1 152 452 Nov 2001 EP
1 376 920 Jun 2002 EP
1 220 461 Jul 2002 EP
1 315 311 May 2003 EP
1 450 521 Aug 2004 EP
1 562 259 Aug 2005 EP
1 608 108 Dec 2005 EP
1 152 453 Nov 2011 EP
2 479 837 Jul 2012 EP
2 619 848 Jul 2013 EP
2 893 593 Jul 2015 EP
1180836 Oct 2013 HK
2003-038933 Feb 1991 JP
2008-088633 Feb 1996 JP
2011-215040 Aug 1999 JP
2001-057560 Feb 2002 JP
2005-244302 Sep 2005 JP
2005-354249 Dec 2005 JP
2006-060408 Mar 2006 JP
I372487 Sep 2012 TW
I451624 Sep 2014 TW
WO 9004893 May 1990 WO
WO 0225967 Mar 2002 WO
WO 03079484 Sep 2003 WO
WO 2006023247 Mar 2006 WO
WO 2007127087 Nov 2007 WO
WO 2007127088 Nov 2007 WO
WO 2012040397 Mar 2012 WO
WO 2014039949 Mar 2014 WO
WO 2014146038 Sep 2014 WO
WO 2010086587 Apr 2016 WO
Non-Patent Literature Citations (101)
Entry
“Authorization of spread spectrum and other wideband emissions not presently provided for in the FCC Rules and Regulations,” Before the Federal Communications Commission, FCC 81-289, 87 F.C.C.2d 876, Jun. 30, 1981.
“Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations,” Rules and Regulations Federal Communications Commission, 47 CFR Part 2, 15, and 90, Jun. 18, 1985.
Alard, M., et al., “Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers,” 8301 EBU Review Technical, Aug. 1987, No. 224, Brussels, Belgium.
Ando et al., “Study of Dual-Polarized Omni-Directional Antennas for 5.2 GHz-Band 2x2 MIMO-OFDM Systems,” Antennas and Propogation Society International Symposium, 2004, IEEE, pp. 1740-1743, vol. 2.
Areg Alimian et al., “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004.
Bedell, Paul “Wireless Crash Course,” 2005, p. 84, The McGraw-Hill Companies, Inc., USA.
Behdad et al., Slot Antenna Miniaturization Using Distributed Inductive Loading, Antenna and Propagation Society International Symposium, 2003 IEEE, vol. 1, pp. 308-311 (Jun. 2003).
Berenguer, Inaki, et al., “Adaptive MIMO Antenna Selection,” Nov. 2003.
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels-Part I: Analysis and Experimental Results,” IEEE Transactions on Communications, vol. 39, No. 5, May 1991, pp. 783-793.
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels-Part II: Performance Improvement,” Department of Electrical Engineering, University of British Colombia.
Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access,” Sep. 2007.
Chang, Robert W., “Synthesis of Band-Limited Orthogonal Signals for Mutichannel Data Transmission,” The Bell System Technical Journal, Dec. 1966, pp. 1775-1796.
Chang, Robert W., et al., “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme,” IEEE Transactions on Communication Technology, vol. Com-16, No. 4, Aug. 1968, pp. 529-540.
Chuang et al., A 2.4 GHz Polarization-diversity Planar Printed Dipole Antenna for WLAN and Wireless Communication Applications, Microwave Journal, vol. 45, No. 6, pp. 50-62 (Jun. 2002).
Cimini, Jr., Leonard J, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. Com-33, No. 7, Jul. 1985, pp. 665-675.
Cisco Systems, “Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service,” Aug. 2003.
Dell Inc., “How Much Broadcast and Multicast Traffic Should I Allow in My Network,” PowerConnect Application Note #5, Nov. 2003.
Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004.
Dunkels, Adam et al., “Making TCP/IP Viable for Wireless Sensor Networks,” Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004.
Dutta, Ashutosh et al., “MarconiNet Supporting Streaming Media Over Localized Wireless Multicast,” Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002.
English Translation of PCT Pub. No. WO2004/051798 (as filed U.S. Appl. No. 10/536,547).
Festag, Andreas, “What is MOMBASA?” Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002.
Frederick et al., Smart Antennas Based on Spatial Multiplexing of Local Elements (SMILE) for Mutual Coupling Reduction, IEEE Transactions of Antennas and Propogation, vol. 52., No. 1, pp. 106-114 (Jan. 2004).
Gaur, Sudhanshu, et al., “Transmit/Receive Antenna Selection for MIMO Systems to Improve Error Performance of Linear Receivers,” School of ECE, Georgia Institute of Technology, Apr. 4, 2005.
Gledhill, J. J., et al., “The Transmission of Digital Television in the UHF Band Using Orthogonal Frequency Division Multiplexing,” Sixth International Conference on Digital Processing of Signals in Communications, Sep. 2-6, 1991, pp. 175-180.
Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands,” Cambridge University Press, 2006.
Hewlett Packard, “HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions,” 2003.
Hirayama, Koji et al., “Next-Generation Mobile-Access IP Network,” Hitachi Review vol. 49, No. 4, 2000.
Ian R. Akyildiz, et al., “A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks,” Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, no date.
Information Society Technologies Ultrawaves, “System Concept / Architecture Design and Communication Stack Requirement Document,” Feb. 23, 2004.
Ken Tang, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks,” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548.
Ken Tang, et al., “MAC Reliable Broadcast in Ad Hoc Networks,” Computer Science Department, University of California, Los Angeles, 2001 IEEE, pp. 1008-1013.
Mawa, Rakesh, “Power Control in 3G Systems,” Hughes Systique Corporation, Jun. 28, 2006.
Microsoft Corporation, “IEEE 802.11 Networks and Windows XP,” Windows Hardware Developer Central, Dec. 4, 2001.
Molisch, Andreas F., et al., “MIMO Systems with Antenna Selection—an Overview,” Draft, Dec. 31, 2003.
Moose, Paul H., “Differential Modulation and Demodulation of Multi-Frequency Digital Communications Signals,” 1990 IEEE, CH2831-6/90/0000-0273.
Pat Calhoun et al., “802.11 r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005, http://www.networkworld.com/news/tech/2005/082208techupdate.html.
Press Release, Netgear RangeMax(TM) Wireless Networking Solutions Incorporate Smart MIMO Technology to Eliminate Wireless Dead Spots and Take Consumers Farther, Ruckus Wireles Inc. (Mar. 7, 2005), available at http://ruckuswireless.com/press/releases/20050307.php.
RL Miller, “4.3 Project X—A True Secrecy System for Speech,” Engineering and Science in the Bell System, A History of Engineering and Science in the Bell System National Service in War and Peace (1925-1975), pp. 296-317, 1978, Bell Telephone Laboratories, Inc.
Sadek, Mirette, et al., “Active Antenna Selection in Multiuser MIMO Communications,” IEEE Transactions on Signal Processing, vol. 55, No. 4, Apr. 2007, pp. 1498-1510.
Saltzberg, Burton R., “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology, vol. Com-15, No. 6, Dec. 1967, pp. 805-811.
Steger, Christopher et al., “Performance of IEEE 802.11b Wireless LAN in an Emulated Mobile Channel,” 2003.
Toskala, Antti, “Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN,” Nokia Networks, Palm Springs, California, Mar. 13-16, 2001.
Tsunekawa, Kouichi “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology, May 1-3, 1989, San Francisco, CA.
Varnes et al., A Switched Radial Divider for an L-Band Mobile Satellite Antenna, European Microwave Conference (Oct. 1995), pp. 1037-1041.
Vincent D. Park, et al., “A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598.
W.E. Doherty, Jr. et al., The Pin Diode Circuit Designer's Handbook 1998.
Weinstein, S. B., et al., “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communication Technology, vol. Com-19, No. 5, Oct. 1971, pp. 628-634.
Wennstrom, Mattias et al., “Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference,” 2001.
Petition Decision Denying Request to Order Additional Claims for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009.
Right of Appeal Notice for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009.
Supplementary Eurpean Search Report for EP Application No. 07755519 dated Mar. 11, 2009.
PCT/US07/09278, PCT Search Report and Written Opinion mailed Aug. 18, 2008.
PCT/US11/052661, PCT Search Report and Written Opinion mailed Jan. 17, 2012.
Chinese patent application No. 200780023325.X, First Office Action mailed Feb. 13, 2012.
U.S. Appl. No. 11/413,670, Final Office Action mailed Jul. 13, 2009.
U.S. Appl. No. 11/413,670, Office Action mailed Jan. 6, 2009.
U.S. Appl. No. 11/413,670, Final Office Action mailed Aug. 11, 2008.
U.S. Appl. No. 11/413,670, Office Action mailed Feb. 4, 2008.
U.S. Appl. No. 11/414,117, Final Office Action mailed Jul. 6, 2009.
U.S. Appl. No. 11/414,117, Office Action mailed Sep. 25, 2008.
U.S. Appl. No. 11/414,117, Office Action mailed Mar. 21, 2008.
U.S. Appl. No. 12/545,758, Office Action mailed Jan. 2, 2013.
U.S. Appl. No. 12/545,758, Final Office Action mailed Oct. 3, 2012.
U.S. Appl. No. 12/545,758, Office Action mailed Oct. 3, 2012.
U.S. Appl. No. 12/605,256, Office Action mailed Dec. 28, 2010.
U.S. Appl. No. 12/887,448, Office Action mailed Jan. 7, 2013.
U.S. Appl. No. 13/240,687, Office Action mailed Feb. 22, 2012.
PCT/US14/030911, PCT International Search Report and Written Opinion mailed Aug. 22, 2014.
Chinese Patent Application No. 201210330398.6, First Office Action mailed Feb. 20, 2014.
Siemens, Carrier Lifetime and Forward Resistance in RF PIN Diodes. 1997. [retrieved on Dec. 1, 2013]. Retrieved from the Internet: <URL:http://palgong.kyungpook.ac.kr/˜ysyoon/Pdf/appli034.pdf>.
Chinese Patent Application No. 200780023325.X, Second Office Action mailed Oct. 19, 2012.
Chinese Patent Application No. 200780020943.9, Second Office Action mailed Aug. 29, 2012.
Taiwan Patent Application No. 096114271, Office Action mailed Dec. 18, 2013.
Taiwan Patent Application No. 096114265, Office Action mailed Jun. 20, 2011.
PCT/US11/052661, PCT Preliminary Report on Patentability mailed Mar. 26, 2013.
PCT/US07/009276, PCT International Search Report and Written Opinion mailed Aug. 11, 2008.
PCT/US13/058713, PCT International Search Report and Written Opinion mailed Dec. 13, 2013.
U.S. Appl. No. 12/545,758, Final Office Action mailed Sep. 10, 2013.
U.S. Appl. No. 12/887,448, Final Office Action mailed Jan. 14, 2014.
U.S. Appl. No. 12/887,448, Office Action mailed Sep. 26, 2013.
U.S. Appl. No. 12/887,448, Final Office Action mailed Jul. 2, 2013.
U.S. Appl. No. 13/681,421, Office Action mailed Dec. 3, 2013.
Chinese Patent Application No. 201180050872.3, First Office Action mailed May 30, 2014.
U.S. Appl. No. 12/887,448, Office Action mailed Apr. 28, 2014.
European Application No. 11827493.5 Extended European Search Report dated Nov. 6, 2014.
European Application No. 7775498.4 Examination Report dated Mar. 12, 2013.
European Application No. 7775498.4 Examination Report dated Oct. 17, 2011.
Chinese Patent Application No. 201210330398.6, Second Office Action mailed Sep. 24, 2014.
U.S. Appl. No. 12/887,448, Final Office Action mailed Feb. 10, 2015.
Chinese Patent Application No. 201180050872.3, Second Office Action mailed Jan. 30, 2015.
Chinese Patent Application No. 201210330398.6, Third Office Action mailed Jun. 2, 2015.
U.S. Appl. No. 14/217,392, Office Action mailed Sep. 16, 2015.
Chinese Patent Application No. 201180050872.3, Third Office Action mailed Aug. 4, 2015.
Chinese Patent Application No. 201210330398.6, Fourth Office Action mailed Sep. 17, 2015.
SIPO Office Action for related Chinese Application No. 201210330398.6, dated Jan. 4, 2016 (12 sheets).
SIPO Notification of Grant for related Chinese Application No. 201180050872.3, dated Jan. 11, 2016 (4 sheets).
Final Office Action for co-pending U.S. Appl. No. 14/217,392, dated Mar. 4, 2016 (17 sheets).
Notice of Allowance for related U.S. Appl. No. 12/887,448, dated Mar. 28, 2016 (9 sheets).
Notice of Allowance for related U.S. Appl. No. 14/252,857, dated Apr. 13, 2016 (8 sheets).
Extended European Search Report for corresponding EP Application No. 13834691.1, dated Apr. 6, 2016 (7 sheets).
Related Publications (1)
Number Date Country
20140071013 A1 Mar 2014 US