Field of the Invention
The present invention generally relates to wireless communications. More specifically, the present invention relates to monopole multi frequency antennas.
Description of the Related Art
In wireless communications systems, there is an ever-increasing demand for higher data throughput and reduced interference that can disrupt data communications. A wireless link in an Institute of Electrical and Electronic Engineers (IEEE) 802.11 network may be susceptible to interference from other access points and stations, other radio transmitting devices, and changes or disturbances in the wireless link environment between an access point and remote receiving node. The interference may degrade the wireless link thereby forcing communication at a lower data rate. The interference may, in some instances, be sufficiently strong as to disrupt the wireless link altogether.
In one particular example, the wireless device 100 may be a handheld device that receives input through an input mechanism configured to be used by a user. The wireless device 100 may process the input and generate a corresponding RF signal, as may be appropriate. The generated RF signal may then be transmitted to one or more receiving nodes 110-140 via wireless links. Nodes 120-140 may receive data, transmit data, or transmit and receive data (i.e., a transceiver).
Wireless device 100 may also be an access point for communicating with one or more remote receiving nodes over a wireless link as might occur in an 802.11 wireless network. The wireless device 100 may receive data as a part of a data signal from a router connected to the Internet (not shown) or a wired network. The wireless device 100 may then convert and wirelessly transmit the data to one or more remote receiving nodes (e.g., receiving nodes 110-140). The wireless device 100 may also receive a wireless transmission of data from one or more of nodes 110-140, convert the received data, and allow for transmission of that converted data over the Internet via the aforementioned router or some other wired device. The wireless device 100 may also form a part of a wireless local area network (LAN) that allows for communications among two or more of nodes 110-140.
For example, node 110 may be a mobile device with Wi-Fi capability. Node 110 (mobile device) may communicate with node 120, which may be a laptop computer including a Wi-Fi card or wireless chipset. Communications by and between node 110 and node 120 may be routed through the wireless device 100, which creates the wireless LAN environment through the emission of RF and 802.11 compliant signals.
Efficient design of wireless device 100 is important to provide a competitive product in the market place. It is important to provide a wireless device 100 with a small footprint that can be utilized in different environments. Wireless device 100 may have dipole antenna elements built into the circuit board or manually mounted to the wireless device. When mounted manually, matching antenna elements are attached to opposing surfaces of the circuit board and typically soldered although those elements may be attached by other means.
A monopole antenna includes only a single radiating element and is coupled to a ground plane of a transmitter. The monopole radiation reflects from the ground plane to provide radiation in a dipole antenna radiation pattern. Dipole antenna elements may provide beam steering RF signals but are more costly to manufacture than monopole antennas. There is a need for an improved beam steering antenna apparatus for use in wireless devices.
A monopole antenna is coupled to a ground plane, such as a metallic ground plane, that includes apertures used to steer a radio frequency (RF) beam of the monopole. The apertures may have a length, width, and distance from the monopole based on the wavelength of the RF signal used to drive the monopole antenna. The aperture may be in any of several shapes and patterns, including circular, square, and other patterns about the footprint of the antenna on a circuit board. One or more radio frequency switches, such as PIN diodes, may selectively provide a short circuit at a portion of the ground plane near the aperture. The portions of the ground plane near the aperture and at which a short circuit is generated provide for steering of the monopole radiation pattern. A circuit board ground plane may include multiple apertures to direct different RF signal frequencies from a single monopole antenna. Multiple monopole antennas may be implemented over a ground plane within a wireless device, each monopole antenna with corresponding apertures. Using the apertures within a ground plane with a monopole antenna saves manufacturing cost and may contribute to providing a low profile for a wireless device.
An embodiment of a wireless device for transmitting a radiation signal includes a circuit board, an antenna, an aperture and a radio frequency switch. The circuit board may include a metallic ground and at least one substrate layer. The antenna may be coupled to the circuit board and transmit radio frequency (RF) signals. The aperture may be in the metallic ground plane layer and the selectable shorting device may be selectable and positioned on the metallic ground plane over the aperture. The shorting device may be selectable to reflect a radio frequency (RF) signal broadcast by the antenna.
An antenna apparatus may include one or more antennas coupled to a circuit board having a ground plane, such as a metallic ground plane, with one or more apertures. The apertures may be used to steer a radio frequency (RF) beam of the one or more monopole antennas. Each monopole antenna may have one or more sets of corresponding apertures. Each aperture or set of apertures may reflect and/or direct different RF signal frequencies from a single monopole antenna. A radio frequency switch such as a PIN diode switch may be positioned over the aperture and be selected to provide a short circuit at that portion of the aperture. The short circuit makes that portion of the aperture act as a ground plane with respect to the RF signal. Beam steering of an RF signal may be provided by selectively providing a short across portions of the aperture which are not to act as a reflector or director.
An aperture used for beam steering may be designed based on the wavelength of one or more RF signals transmitted by a corresponding monopole antenna. A ground plane such as a metallic ground plane may have apertures having a length, width, and a distance from the monopole based on the wavelength of the RF signal used to drive the monopole antenna. Multiple apertures may be used with a single monopole antenna to reflect different frequency RF signals. The aperture may be in any of several shapes and patterns, including slots forming circular, square, and other shapes about the footprint of the monopole antenna on a circuit board. Using the a monopole antenna with apertures to provide beam steering saves manufacturing cost and helps provide a lower profile as compared to dipole antenna-based wireless devices.
The wireless device 200 of
Radio frequency switches may be used within wireless device 200 between pattern selector and the monopole antennas of antenna array 240, such as for example to select aperture portions within a metallic ground plane. Examples of radio frequency switches are discussed with respect to
The data I/O module 205 of
The pattern selector 215 of
Antenna array 240 can include an antenna element array, a metallic ground plane having apertures and selectable radio frequency switches, and reflectors. The antenna element array can include one or more monopole antenna elements. Each monopole antenna element may be mounted to a circuit board and may be configured to operate at one or more particular frequencies, such as 2.4 GHz and 5.0 GHz. Antenna array 240 may also include a reflector/controller array. The mountable antenna element and reflectors can be located at various locales on the circuit board of a wireless device.
Circuit board 310 may include one or more substrate layers and ground planes. One or more of the ground planes may include one or more apertures 320, 325, 335, and 340, illustrated by dashed lines in
Antenna element 440 mounts to the top surface of the circuit board 450. The antenna element 440 may be inserted through slots that extend through one or more of circuit board top layer 405, ground layer 410, and bottom layer 420, or may be coupled to the surface in some other manner. The monopole antenna element 440 may be coupled to radio modulator/demodulator 220 to receive an RF signal and radiate at one or more frequencies. A portion of the monopole antenna radiation may be reflected by metallic ground plane 410. The monopole antenna element radiation and reflected radiation may combine to provide a radiation pattern similar to that provided by a dipole antenna.
Metallic ground plane 410 may include a number of apertures 420, 425, 430 and 435. The apertures are formed around monopole antenna element 440. For example, apertures 430 and 435 may be part of a single set of apertures, such as a circular or semi-circular slot, formed around monopole antenna element 440. Apertures 420 and 425 may also form an aperture around monopole antenna element 440. Apertures 430 and 435 are closer to monopole antenna element 440 and, along with one or more radio frequency switches, may direct an RF signal at a first, higher frequency while apertures 420 and 425 are positioned further away from monopole antenna element 440 and may be designed to direct, using one or more radio frequency switches, an RF signal at a second, lower frequency. The apertures closer to the monopole antenna element 440 may beam steer a higher frequency RF signal while the apertures further from the monopole antenna element 440 may beam steer a lower frequency RF signal.
To minimize or reduce the size of the monopole antenna 440, each monopole antenna element may incorporate one or more loading structures. By configuring a loading structure to slow down electrons and change the resonance of each monopole antenna element, the monopole antenna element becomes electrically shorter. In other words, at a given operating frequency, providing loading structures reduces the dimension of the monopole antenna element. Providing the loading structures for one or more of the monopole antenna element minimizes the size of the antenna element.
Circuit board 450 includes radio frequency feed port 455 selectively coupled to antenna 440. Although one antenna element is depicted in
The pattern selector 215 may include radio frequency switches, such as diode switches 225, 230, 235 of
A series of control signals can be used to bias each PIN diode. With the PIN diode forward biased and conducting a DC current, the PIN diode switch is on, and a PIN diode placed over an aperture may provide a short across that portion of the aperture. With the diode reverse biased, the PIN diode switch is off. The PIN diodes may be placed over an aperture to provide a short at a selected portion of the aperture. In various embodiments, the radio frequency feed port 455, the pattern selector 215, and the antenna elements 440 may be close together or spread across the circuit board.
One or more light emitting diodes (LED) (not shown) can be coupled to the antenna element selector. The LEDs function as a visual indicator of which of the antenna elements 320-370 is on or off. In one embodiment, an LED is placed in circuit with the PIN diode so that the LED is lit when the corresponding antenna element is selected.
Monopole antenna element 440 can be coupled to the circuit board 450 using slots in the circuit board, coupling pads, or other coupling methods known to those skilled in the art. In some embodiments, reflectors for reflecting or directing the radiation of a mounted antenna element can also be coupled to the circuit board at one or more coupling pads. Circuit board mounting pads and coupling pad holes are described in more detail in U.S. patent application Ser. No. 12/545,758, filed on Aug. 21, 2009, and titled “Mountable Antenna Elements for Dual Band Antenna,” the disclosure of which is incorporated herein by reference.
The antenna components (e.g., monopole antenna element 440) are formed from RF conductive material. For example, the monopole antenna element 440 and the ground components 410 can be formed from metal or other RF conducting material.
Externally mounted reflector/directors, if any, may further be implemented in circuit board 450 to constrain the directional radiation pattern of one or more of the antenna elements in azimuth. Other benefits with respect to selectable configurations are disclosed in U.S. patent application Ser. No. 11/041,145 filed Jan. 21, 2005 and entitled “System and Method for a Minimized Antenna Apparatus with Selectable Elements,” the disclosure of which is incorporated herein by reference.
Aperture 505 includes a plurality of radio frequency switches 520 placed over, across, or straddling the aperture. As an RF signal of a particular frequency is transmitted by an antennal element 525 towards the ground plane, the reflection of the RF signal induces a current in aperture 505. Aperture 505 may have a length, width and distance from the antenna based on the particular RF frequency in order for the current to be generated by the reflected RF signal. The induced current in aperture 505 causes the aperture to act as a director and/or reflector of the RF signal. Radio frequency switches placed over aperture 505 may be selected to provide a short circuit, or “short”, across the aperture. Each short across portions of aperture 505 causes that portion of the aperture to no longer act as a director and/or reflector, but rather to behave as the ground plane with respect to the RF signal.
Each radio frequency switch positioned over aperture 505 may be selectively coupled to a selecting mechanism such as pattern selector 215. By selecting one or more radio frequency switches 520, the RF frequency beam provided by the monopole antennal element 525 can be steered (i.e., by portions of the slot which are not shorted) in a desired direction.
Aperture 510 is formed as a circular slot that extends around (i.e., encompasses) monopole antenna element 525. The circular aperture 510 is positioned at a distance D1 (radius of circle formed by aperture 510) from monopole antenna element 525 and has a width of W1. The length of aperture 505 is the circumference of the circular aperture, provided approximately by 2πr or 2π(D1).
Aperture 505 is formed as a circular slot that extends around monopole antenna element 525 and inside aperture 510. Aperture 505 is positioned at a distance D2 from monopole antenna element 525 and has a width of W2. The length of aperture 505 is provided approximately by 2π(D2).
The width and length of an aperture for providing beam steering as well the distance of the aperture from a monopole antenna may be determined based on the frequency of the RF signal the aperture and radio frequency switches are intended to reflect via beam steering. For example, for shorter wavelength RF signals, an aperture with short circuit causing radio frequency switches may be provided closer to a monopole antenna element. An aperture with short circuit causing radio frequency switches for beam steering larger wavelength signals may be positioned further from a monopole antenna. In some embodiments, multiple apertures for a single antenna such as a monopole antenna may be used to reflect signals of 5.0 GHz signal, 2.4 GHz signal, and other frequencies of RF signals. If aperture 510 may be used to reflect/direct a 2.4 GHz RF signal and aperture 505 may be used to direct/reflect a 5.0 GHz signal, the dimension of each aperture may be selected such that aperture 510 with radio frequency switches 515 may beam steer the 2.4 GHz signal while appearing invisible and not significantly affecting the radiation pattern of a 5.0 GHz signal. Aperture 505 with radio frequency switches 520 may beam steer the 5.0 GHz signal while appearing invisible and not significantly affecting the radiation pattern of a 2.4 GHz signal.
Each of apertures 605, 610, 615, and 620 is formed as a relatively straight slot with outward-bent ends and includes a radio frequency switches 655 placed at each end of each aperture. The apertures are positioned to form a square-like shape around monopole antenna 660 at distance D2 from antenna 660 and each have a width W2. The length of each aperture is approximately the length of each slot between diodes 630. Each radio frequency switches 630 may be selectively coupled to a selecting mechanism such as pattern selector 215. When one of the radio frequency switches 630 is selectively switched on, a short circuit is formed across the corresponding aperture. By selecting one or more radio frequency switches 630, the RF frequency beam provided by the monopole antennal element 660 can be steered to a desired direction, such as that associated with a receiving node.
Apertures 635, 640, 645, and 650 also form a square shape but are positioned closer to monopole antenna element 660, within the square formed by apertures 605, 610, 615 and 620. Apertures 635, 640, 645, and 650 are positioned at distance D1 from antenna 660 and each have a width W2. A selectable radio frequency switch 655 is placed at each end of each of each of apertures 635, 640, 645, and 650. Radio frequency switches 655 are placed over, across, or straddling apertures 605, 610, 615 and 620. When a radio frequency switch 655 is switched on, a short circuit is formed across the aperture. In
The embodiments disclosed herein are illustrative. Various modifications or adaptations of the structures and methods described herein may become apparent to those skilled in the art. Such modifications, adaptations, and/or variations that rely upon the teachings of the present disclosure and through which these teachings have advanced the art are considered to be within the spirit and scope of the present invention. Hence, the descriptions and drawings herein should be limited by reference to the specific limitations set forth in the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
723188 | Tesla | Mar 1903 | A |
725605 | Tesla | Apr 1903 | A |
1869659 | Broertjes | Aug 1932 | A |
2292387 | Markey et al. | Aug 1942 | A |
3488445 | Chang | Jan 1970 | A |
3568105 | Felsenheld et al. | Mar 1971 | A |
3577196 | Pereda | May 1971 | A |
3846799 | Gueguen | Nov 1974 | A |
3918059 | Adrian | Nov 1975 | A |
3922685 | Opas | Nov 1975 | A |
3967067 | Potter | Jun 1976 | A |
3982214 | Burns | Sep 1976 | A |
3991273 | Mathes | Nov 1976 | A |
4001734 | Burns | Jan 1977 | A |
4145693 | Fenwick | Mar 1979 | A |
4176356 | Foster et al. | Nov 1979 | A |
4193077 | Greenberg et al. | Mar 1980 | A |
4253193 | Kennard | Feb 1981 | A |
4305052 | Baril et al. | Dec 1981 | A |
4513412 | Cox | Apr 1985 | A |
4554554 | Olesen et al. | Nov 1985 | A |
4587524 | Hall | May 1986 | A |
4733203 | Ayasli | Mar 1988 | A |
4814777 | Monser | Mar 1989 | A |
4845507 | Archer et al. | Jul 1989 | A |
4975711 | Lee | Dec 1990 | A |
5063574 | Moose | Nov 1991 | A |
5097484 | Akaiwa | Mar 1992 | A |
5132698 | Swineford | Jul 1992 | A |
5173711 | Takeuchi et al. | Dec 1992 | A |
5203010 | Felix | Apr 1993 | A |
5208564 | Burns et al. | May 1993 | A |
5220340 | Shafai | Jun 1993 | A |
5282222 | Fattouche et al. | Jan 1994 | A |
5291289 | Hulyalkar et al. | Mar 1994 | A |
5311550 | Fouche et al. | May 1994 | A |
5373548 | McCarthy | Dec 1994 | A |
5507035 | Bantz | Apr 1996 | A |
5532708 | Krenz et al. | Jul 1996 | A |
5559800 | Mousseau et al. | Sep 1996 | A |
5610617 | Gans et al. | Mar 1997 | A |
5629713 | Mailandt et al. | May 1997 | A |
5754145 | Evans | May 1998 | A |
5767755 | Kim et al. | Jun 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5786793 | Maeda et al. | Jul 1998 | A |
5802312 | Lazaridis et al. | Sep 1998 | A |
5964830 | Durrett | Oct 1999 | A |
5990838 | Burns et al. | Nov 1999 | A |
6006075 | Smith et al. | Dec 1999 | A |
6011450 | Miya | Jan 2000 | A |
6018644 | Minarik | Jan 2000 | A |
6031503 | Preiss, II et al. | Feb 2000 | A |
6034638 | Thiel et al. | Mar 2000 | A |
6052093 | Yao et al. | Apr 2000 | A |
6091364 | Murakami et al. | Jul 2000 | A |
6094177 | Yamamoto | Jul 2000 | A |
6097347 | Duan et al. | Aug 2000 | A |
6101397 | Grob et al. | Aug 2000 | A |
6104356 | Hikuma et al. | Aug 2000 | A |
6166694 | Ying | Dec 2000 | A |
6169523 | Ploussios | Jan 2001 | B1 |
6204825 | Wilz | Mar 2001 | B1 |
6239762 | Lier | May 2001 | B1 |
6252559 | Donn | Jun 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6292153 | Aiello et al. | Sep 2001 | B1 |
6307524 | Britain | Oct 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6323810 | Poilasne et al. | Nov 2001 | B1 |
6326922 | Hegendoerfer | Dec 2001 | B1 |
6337628 | Campana et al. | Jan 2002 | B2 |
6337668 | Ito et al. | Jan 2002 | B1 |
6339404 | Johnson et al. | Jan 2002 | B1 |
6345043 | Hsu | Feb 2002 | B1 |
6356242 | Ploussios | Mar 2002 | B1 |
6356243 | Schneider et al. | Mar 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6377227 | Zhu et al. | Apr 2002 | B1 |
6392610 | Braun et al. | May 2002 | B1 |
6404386 | Proctor, Jr. et al. | Jun 2002 | B1 |
6407719 | Ohira et al. | Jun 2002 | B1 |
RE37802 | Fattouche et al. | Jul 2002 | E |
6414647 | Lee | Jul 2002 | B1 |
6424311 | Tsai et al. | Jul 2002 | B1 |
6442507 | Skimore et al. | Aug 2002 | B1 |
6445688 | Garces et al. | Sep 2002 | B1 |
6452556 | Ha et al. | Sep 2002 | B1 |
6452981 | Raleigh | Sep 2002 | B1 |
6456242 | Crawford | Sep 2002 | B1 |
6493679 | Rappaport et al. | Dec 2002 | B1 |
6496083 | Kushitani et al. | Dec 2002 | B1 |
6498589 | Horii | Dec 2002 | B1 |
6499006 | Rappaport et al. | Dec 2002 | B1 |
6507321 | Oberschmidt et al. | Jan 2003 | B2 |
6531985 | Jones et al. | Mar 2003 | B1 |
6583765 | Schamberger et al. | Jun 2003 | B1 |
6586786 | Kitazawa et al. | Jul 2003 | B2 |
6606059 | Barabash | Aug 2003 | B1 |
6611230 | Phelan | Aug 2003 | B2 |
6621464 | Fang | Sep 2003 | B1 |
6625454 | Rappaport et al. | Sep 2003 | B1 |
6633206 | Kato | Oct 2003 | B1 |
6642889 | McGrath | Nov 2003 | B1 |
6674459 | Ben-Shachar et al. | Jan 2004 | B2 |
6701522 | Rubin et al. | Mar 2004 | B1 |
6720925 | Wong et al. | Apr 2004 | B2 |
6724346 | Le Bolzer | Apr 2004 | B2 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6741219 | Shor | May 2004 | B2 |
6747605 | Lebaric | Jun 2004 | B2 |
6753814 | Killen et al. | Jun 2004 | B2 |
6753826 | Chiang et al. | Jun 2004 | B2 |
6762723 | Nallo et al. | Jul 2004 | B2 |
6774846 | Fullerton et al. | Aug 2004 | B2 |
6779004 | Zintel | Aug 2004 | B1 |
6786769 | Lai | Sep 2004 | B2 |
6801790 | Rudrapatna | Oct 2004 | B2 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6839038 | Weinstein | Jan 2005 | B2 |
6859176 | Choi | Feb 2005 | B2 |
6859182 | Horii | Feb 2005 | B2 |
6876280 | Nakano | Apr 2005 | B2 |
6876836 | Lin et al. | Apr 2005 | B2 |
6888504 | Chiang et al. | May 2005 | B2 |
6888893 | Li et al. | May 2005 | B2 |
6892230 | Gu et al. | May 2005 | B1 |
6903686 | Vance et al. | Jun 2005 | B2 |
6906678 | Chen | Jun 2005 | B2 |
6910068 | Zintel et al. | Jun 2005 | B2 |
6914581 | Popek | Jul 2005 | B1 |
6924768 | Wu et al. | Aug 2005 | B2 |
6931429 | Gouge et al. | Aug 2005 | B2 |
6937206 | Puente Ballarda et al. | Aug 2005 | B2 |
6941143 | Mathur | Sep 2005 | B2 |
6943749 | Paun | Sep 2005 | B2 |
6946996 | Koyama | Sep 2005 | B2 |
6950019 | Bellone et al. | Sep 2005 | B2 |
6950069 | Gaucher et al. | Sep 2005 | B2 |
6961026 | Toda | Nov 2005 | B2 |
6961028 | Joy et al. | Nov 2005 | B2 |
6965353 | Shirosaka et al. | Nov 2005 | B2 |
6973622 | Rappaport et al. | Dec 2005 | B1 |
6975834 | Forster | Dec 2005 | B1 |
6980782 | Braun et al. | Dec 2005 | B1 |
7023909 | Adams et al. | Apr 2006 | B1 |
7034769 | Surducan et al. | Apr 2006 | B2 |
7034770 | Yang et al. | Apr 2006 | B2 |
7039363 | Kasapi et al. | May 2006 | B1 |
7043277 | Pfister | May 2006 | B1 |
7050809 | Lim | May 2006 | B2 |
7053844 | Gaucher et al. | May 2006 | B2 |
7053845 | Holloway et al. | May 2006 | B1 |
7064717 | Kaluzni et al. | Jun 2006 | B2 |
7068234 | Sievenpiper | Jun 2006 | B2 |
7075485 | Song et al. | Jul 2006 | B2 |
7084816 | Watanabe | Aug 2006 | B2 |
7084823 | Caimi et al. | Aug 2006 | B2 |
7085814 | Ghandhi et al. | Aug 2006 | B1 |
7088299 | Siegler et al. | Aug 2006 | B2 |
7089307 | Zintel et al. | Aug 2006 | B2 |
7130895 | Zintel et al. | Oct 2006 | B2 |
7171475 | Weisman et al. | Jan 2007 | B2 |
7193562 | Shtrom et al. | Mar 2007 | B2 |
7196674 | Timofeev et al. | Mar 2007 | B2 |
7277063 | Shirosaka et al. | Oct 2007 | B2 |
7308047 | Sadowsky | Dec 2007 | B2 |
7312762 | Puente Ballarda et al. | Dec 2007 | B2 |
7319432 | Andersson | Jan 2008 | B2 |
7327328 | Yoneya et al. | Feb 2008 | B2 |
7362280 | Shtrom et al. | Apr 2008 | B2 |
7388552 | Mori | Jun 2008 | B2 |
7424298 | Lastinger et al. | Sep 2008 | B2 |
7493143 | Jalali | Feb 2009 | B2 |
7498996 | Shtrom et al. | Mar 2009 | B2 |
7525486 | Shtrom et al. | Apr 2009 | B2 |
7603141 | Dravida | Oct 2009 | B2 |
7609223 | Manasson et al. | Oct 2009 | B2 |
7646343 | Shtrom et al. | Jan 2010 | B2 |
7652632 | Shtrom et al. | Jan 2010 | B2 |
7675474 | Shtrom et al. | Mar 2010 | B2 |
7696940 | Macdonald | Apr 2010 | B1 |
7696943 | Chiang et al. | Apr 2010 | B2 |
7696948 | Abramov et al. | Apr 2010 | B2 |
7868842 | Chair | Jan 2011 | B2 |
7880683 | Shtrom et al. | Feb 2011 | B2 |
7899497 | Kish et al. | Mar 2011 | B2 |
7965252 | Shtrom et al. | Jun 2011 | B2 |
8031129 | Shtrom et al. | Oct 2011 | B2 |
8199063 | Moon et al. | Jun 2012 | B2 |
8314749 | Shtrom et al. | Nov 2012 | B2 |
8698675 | Shtrom et al. | Apr 2014 | B2 |
8860629 | Shtrom et al. | Oct 2014 | B2 |
20010046848 | Kenkel | Nov 2001 | A1 |
20020031130 | Tsuchiya et al. | Mar 2002 | A1 |
20020047800 | Proctor, Jr. et al. | Apr 2002 | A1 |
20020054580 | Strich et al. | May 2002 | A1 |
20020080767 | Lee | Jun 2002 | A1 |
20020084942 | Tsai et al. | Jul 2002 | A1 |
20020101377 | Crawford | Aug 2002 | A1 |
20020105471 | Kojima et al. | Aug 2002 | A1 |
20020112058 | Weisman et al. | Aug 2002 | A1 |
20020140607 | Zhou | Oct 2002 | A1 |
20020158798 | Chiang et al. | Oct 2002 | A1 |
20020170064 | Monroe et al. | Nov 2002 | A1 |
20030026240 | Eyuboglu et al. | Feb 2003 | A1 |
20030030588 | Kalis et al. | Feb 2003 | A1 |
20030063591 | Leung et al. | Apr 2003 | A1 |
20030076264 | Yuanzhu | Apr 2003 | A1 |
20030122714 | Wannagot et al. | Jul 2003 | A1 |
20030169330 | Ben-Shachar et al. | Sep 2003 | A1 |
20030184490 | Raiman et al. | Oct 2003 | A1 |
20030189514 | Miyano et al. | Oct 2003 | A1 |
20030189521 | Yamamoto et al. | Oct 2003 | A1 |
20030189523 | Ojantakanen et al. | Oct 2003 | A1 |
20030210207 | Suh et al. | Nov 2003 | A1 |
20030227414 | Saliga et al. | Dec 2003 | A1 |
20040014432 | Boyle | Jan 2004 | A1 |
20040017310 | Runkle et al. | Jan 2004 | A1 |
20040017315 | Fang et al. | Jan 2004 | A1 |
20040017860 | Liu | Jan 2004 | A1 |
20040027291 | Zhang et al. | Feb 2004 | A1 |
20040027304 | Chiang et al. | Feb 2004 | A1 |
20040032378 | Volman et al. | Feb 2004 | A1 |
20040036651 | Toda | Feb 2004 | A1 |
20040036654 | Hsieh | Feb 2004 | A1 |
20040041732 | Aikawa et al. | Mar 2004 | A1 |
20040048593 | Sano | Mar 2004 | A1 |
20040058690 | Ratzel et al. | Mar 2004 | A1 |
20040061653 | Webb et al. | Apr 2004 | A1 |
20040070543 | Masaki | Apr 2004 | A1 |
20040075609 | Li | Apr 2004 | A1 |
20040080455 | Lee | Apr 2004 | A1 |
20040095278 | Kanemoto et al. | May 2004 | A1 |
20040114535 | Hoffmann et al. | Jun 2004 | A1 |
20040125777 | Doyle et al. | Jul 2004 | A1 |
20040145528 | Mukai et al. | Jul 2004 | A1 |
20040150567 | Yuanzhu | Aug 2004 | A1 |
20040160376 | Hornsby et al. | Aug 2004 | A1 |
20040183727 | Choi | Sep 2004 | A1 |
20040190477 | Olson et al. | Sep 2004 | A1 |
20040203347 | Nguyen | Oct 2004 | A1 |
20040239571 | Papziner et al. | Dec 2004 | A1 |
20040260800 | Gu et al. | Dec 2004 | A1 |
20050001777 | Suganthan et al. | Jan 2005 | A1 |
20050022210 | Zintel et al. | Jan 2005 | A1 |
20050041739 | Li et al. | Feb 2005 | A1 |
20050042988 | Hoek et al. | Feb 2005 | A1 |
20050048934 | Rawnick et al. | Mar 2005 | A1 |
20050074018 | Zintel et al. | Apr 2005 | A1 |
20050074108 | Dezonno et al. | Apr 2005 | A1 |
20050083236 | Louzir et al. | Apr 2005 | A1 |
20050097503 | Zintel et al. | May 2005 | A1 |
20050105632 | Catreux-Erces et al. | May 2005 | A1 |
20050128983 | Kim et al. | Jun 2005 | A1 |
20050135480 | Li et al. | Jun 2005 | A1 |
20050138137 | Encarnacion et al. | Jun 2005 | A1 |
20050138193 | Encarnacion et al. | Jun 2005 | A1 |
20050146475 | Bettner et al. | Jul 2005 | A1 |
20050180381 | Retzer et al. | Aug 2005 | A1 |
20050188193 | Kuehnel et al. | Aug 2005 | A1 |
20050200529 | Watanabe | Sep 2005 | A1 |
20050219128 | Tan et al. | Oct 2005 | A1 |
20050240665 | Gu et al. | Oct 2005 | A1 |
20050266902 | Khatri | Dec 2005 | A1 |
20050267935 | Ghandhi et al. | Dec 2005 | A1 |
20060007891 | Aoki et al. | Jan 2006 | A1 |
20060038734 | Shtrom et al. | Feb 2006 | A1 |
20060050005 | Shirosaka et al. | Mar 2006 | A1 |
20060078066 | Yun | Apr 2006 | A1 |
20060094371 | Nguyen | May 2006 | A1 |
20060098607 | Zeng et al. | May 2006 | A1 |
20060109191 | Shtrom et al. | May 2006 | A1 |
20060123124 | Weisman et al. | Jun 2006 | A1 |
20060123125 | Weisman et al. | Jun 2006 | A1 |
20060123455 | Pai et al. | Jun 2006 | A1 |
20060160495 | Strong | Jul 2006 | A1 |
20060168159 | Weisman et al. | Jul 2006 | A1 |
20060184660 | Rao et al. | Aug 2006 | A1 |
20060184661 | Weisman et al. | Aug 2006 | A1 |
20060184693 | Rao et al. | Aug 2006 | A1 |
20060187660 | Liu | Aug 2006 | A1 |
20060224690 | Falkenburg et al. | Oct 2006 | A1 |
20060225107 | Seetharaman et al. | Oct 2006 | A1 |
20060227761 | Scott, III et al. | Oct 2006 | A1 |
20060239369 | Lee | Oct 2006 | A1 |
20060262015 | Thornell-Pers et al. | Nov 2006 | A1 |
20060291434 | Gu et al. | Dec 2006 | A1 |
20070027622 | Cleron et al. | Feb 2007 | A1 |
20070135167 | Liu | Jun 2007 | A1 |
20070162819 | Kawamoto | Jul 2007 | A1 |
20080062063 | Matsushita et al. | Mar 2008 | A1 |
20080266189 | Wu et al. | Oct 2008 | A1 |
20080284657 | Rudant | Nov 2008 | A1 |
20090075606 | Shtrom et al. | Mar 2009 | A1 |
20100289705 | Shtrom et al. | Nov 2010 | A1 |
20110205137 | Shtrom et al. | Aug 2011 | A1 |
20120007790 | Shtrom et al. | Jan 2012 | A1 |
20120068892 | Shtrom et al. | Mar 2012 | A1 |
20130181882 | Shtrom et al. | Jul 2013 | A1 |
20140225807 | Shtrom et al. | Aug 2014 | A1 |
20140285391 | Baron | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1210839 | Jul 2005 | CN |
1 934 750 | Mar 2007 | CN |
102868024 | Jan 2013 | CN |
103201908 | Jul 2013 | CN |
ZL 200780020943.9 | Nov 2013 | CN |
101473488 | Feb 2014 | CN |
352 787 | Jan 1990 | EP |
0 534 612 | Mar 1993 | EP |
0 756 381 | Jan 1997 | EP |
1 152 452 | Nov 2001 | EP |
1 376 920 | Jun 2002 | EP |
1 220 461 | Jul 2002 | EP |
1 315 311 | May 2003 | EP |
1 450 521 | Aug 2004 | EP |
1 562 259 | Aug 2005 | EP |
1 608 108 | Dec 2005 | EP |
1 152 453 | Nov 2011 | EP |
2 479 837 | Jul 2012 | EP |
2 619 848 | Jul 2013 | EP |
2 893 593 | Jul 2015 | EP |
1180836 | Oct 2013 | HK |
2003-038933 | Feb 1991 | JP |
2008-088633 | Feb 1996 | JP |
2011-215040 | Aug 1999 | JP |
2001-057560 | Feb 2002 | JP |
2005-244302 | Sep 2005 | JP |
2005-354249 | Dec 2005 | JP |
2006-060408 | Mar 2006 | JP |
I372487 | Sep 2012 | TW |
I451624 | Sep 2014 | TW |
WO 9004893 | May 1990 | WO |
WO 0225967 | Mar 2002 | WO |
WO 03079484 | Sep 2003 | WO |
WO 2006023247 | Mar 2006 | WO |
WO 2007127087 | Nov 2007 | WO |
WO 2007127088 | Nov 2007 | WO |
WO 2012040397 | Mar 2012 | WO |
WO 2014039949 | Mar 2014 | WO |
WO 2014146038 | Sep 2014 | WO |
WO 2010086587 | Apr 2016 | WO |
Entry |
---|
“Authorization of spread spectrum and other wideband emissions not presently provided for in the FCC Rules and Regulations,” Before the Federal Communications Commission, FCC 81-289, 87 F.C.C.2d 876, Jun. 30, 1981. |
“Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations,” Rules and Regulations Federal Communications Commission, 47 CFR Part 2, 15, and 90, Jun. 18, 1985. |
Alard, M., et al., “Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers,” 8301 EBU Review Technical, Aug. 1987, No. 224, Brussels, Belgium. |
Ando et al., “Study of Dual-Polarized Omni-Directional Antennas for 5.2 GHz-Band 2x2 MIMO-OFDM Systems,” Antennas and Propogation Society International Symposium, 2004, IEEE, pp. 1740-1743, vol. 2. |
Areg Alimian et al., “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004. |
Bedell, Paul “Wireless Crash Course,” 2005, p. 84, The McGraw-Hill Companies, Inc., USA. |
Behdad et al., Slot Antenna Miniaturization Using Distributed Inductive Loading, Antenna and Propagation Society International Symposium, 2003 IEEE, vol. 1, pp. 308-311 (Jun. 2003). |
Berenguer, Inaki, et al., “Adaptive MIMO Antenna Selection,” Nov. 2003. |
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels-Part I: Analysis and Experimental Results,” IEEE Transactions on Communications, vol. 39, No. 5, May 1991, pp. 783-793. |
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels-Part II: Performance Improvement,” Department of Electrical Engineering, University of British Colombia. |
Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access,” Sep. 2007. |
Chang, Robert W., “Synthesis of Band-Limited Orthogonal Signals for Mutichannel Data Transmission,” The Bell System Technical Journal, Dec. 1966, pp. 1775-1796. |
Chang, Robert W., et al., “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme,” IEEE Transactions on Communication Technology, vol. Com-16, No. 4, Aug. 1968, pp. 529-540. |
Chuang et al., A 2.4 GHz Polarization-diversity Planar Printed Dipole Antenna for WLAN and Wireless Communication Applications, Microwave Journal, vol. 45, No. 6, pp. 50-62 (Jun. 2002). |
Cimini, Jr., Leonard J, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. Com-33, No. 7, Jul. 1985, pp. 665-675. |
Cisco Systems, “Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service,” Aug. 2003. |
Dell Inc., “How Much Broadcast and Multicast Traffic Should I Allow in My Network,” PowerConnect Application Note #5, Nov. 2003. |
Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004. |
Dunkels, Adam et al., “Making TCP/IP Viable for Wireless Sensor Networks,” Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004. |
Dutta, Ashutosh et al., “MarconiNet Supporting Streaming Media Over Localized Wireless Multicast,” Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002. |
English Translation of PCT Pub. No. WO2004/051798 (as filed U.S. Appl. No. 10/536,547). |
Festag, Andreas, “What is MOMBASA?” Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002. |
Frederick et al., Smart Antennas Based on Spatial Multiplexing of Local Elements (SMILE) for Mutual Coupling Reduction, IEEE Transactions of Antennas and Propogation, vol. 52., No. 1, pp. 106-114 (Jan. 2004). |
Gaur, Sudhanshu, et al., “Transmit/Receive Antenna Selection for MIMO Systems to Improve Error Performance of Linear Receivers,” School of ECE, Georgia Institute of Technology, Apr. 4, 2005. |
Gledhill, J. J., et al., “The Transmission of Digital Television in the UHF Band Using Orthogonal Frequency Division Multiplexing,” Sixth International Conference on Digital Processing of Signals in Communications, Sep. 2-6, 1991, pp. 175-180. |
Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands,” Cambridge University Press, 2006. |
Hewlett Packard, “HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions,” 2003. |
Hirayama, Koji et al., “Next-Generation Mobile-Access IP Network,” Hitachi Review vol. 49, No. 4, 2000. |
Ian R. Akyildiz, et al., “A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks,” Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, no date. |
Information Society Technologies Ultrawaves, “System Concept / Architecture Design and Communication Stack Requirement Document,” Feb. 23, 2004. |
Ken Tang, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks,” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548. |
Ken Tang, et al., “MAC Reliable Broadcast in Ad Hoc Networks,” Computer Science Department, University of California, Los Angeles, 2001 IEEE, pp. 1008-1013. |
Mawa, Rakesh, “Power Control in 3G Systems,” Hughes Systique Corporation, Jun. 28, 2006. |
Microsoft Corporation, “IEEE 802.11 Networks and Windows XP,” Windows Hardware Developer Central, Dec. 4, 2001. |
Molisch, Andreas F., et al., “MIMO Systems with Antenna Selection—an Overview,” Draft, Dec. 31, 2003. |
Moose, Paul H., “Differential Modulation and Demodulation of Multi-Frequency Digital Communications Signals,” 1990 IEEE, CH2831-6/90/0000-0273. |
Pat Calhoun et al., “802.11 r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005, http://www.networkworld.com/news/tech/2005/082208techupdate.html. |
Press Release, Netgear RangeMax(TM) Wireless Networking Solutions Incorporate Smart MIMO Technology to Eliminate Wireless Dead Spots and Take Consumers Farther, Ruckus Wireles Inc. (Mar. 7, 2005), available at http://ruckuswireless.com/press/releases/20050307.php. |
RL Miller, “4.3 Project X—A True Secrecy System for Speech,” Engineering and Science in the Bell System, A History of Engineering and Science in the Bell System National Service in War and Peace (1925-1975), pp. 296-317, 1978, Bell Telephone Laboratories, Inc. |
Sadek, Mirette, et al., “Active Antenna Selection in Multiuser MIMO Communications,” IEEE Transactions on Signal Processing, vol. 55, No. 4, Apr. 2007, pp. 1498-1510. |
Saltzberg, Burton R., “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology, vol. Com-15, No. 6, Dec. 1967, pp. 805-811. |
Steger, Christopher et al., “Performance of IEEE 802.11b Wireless LAN in an Emulated Mobile Channel,” 2003. |
Toskala, Antti, “Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN,” Nokia Networks, Palm Springs, California, Mar. 13-16, 2001. |
Tsunekawa, Kouichi “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology, May 1-3, 1989, San Francisco, CA. |
Varnes et al., A Switched Radial Divider for an L-Band Mobile Satellite Antenna, European Microwave Conference (Oct. 1995), pp. 1037-1041. |
Vincent D. Park, et al., “A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598. |
W.E. Doherty, Jr. et al., The Pin Diode Circuit Designer's Handbook 1998. |
Weinstein, S. B., et al., “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communication Technology, vol. Com-19, No. 5, Oct. 1971, pp. 628-634. |
Wennstrom, Mattias et al., “Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference,” 2001. |
Petition Decision Denying Request to Order Additional Claims for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009. |
Right of Appeal Notice for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009. |
Supplementary Eurpean Search Report for EP Application No. 07755519 dated Mar. 11, 2009. |
PCT/US07/09278, PCT Search Report and Written Opinion mailed Aug. 18, 2008. |
PCT/US11/052661, PCT Search Report and Written Opinion mailed Jan. 17, 2012. |
Chinese patent application No. 200780023325.X, First Office Action mailed Feb. 13, 2012. |
U.S. Appl. No. 11/413,670, Final Office Action mailed Jul. 13, 2009. |
U.S. Appl. No. 11/413,670, Office Action mailed Jan. 6, 2009. |
U.S. Appl. No. 11/413,670, Final Office Action mailed Aug. 11, 2008. |
U.S. Appl. No. 11/413,670, Office Action mailed Feb. 4, 2008. |
U.S. Appl. No. 11/414,117, Final Office Action mailed Jul. 6, 2009. |
U.S. Appl. No. 11/414,117, Office Action mailed Sep. 25, 2008. |
U.S. Appl. No. 11/414,117, Office Action mailed Mar. 21, 2008. |
U.S. Appl. No. 12/545,758, Office Action mailed Jan. 2, 2013. |
U.S. Appl. No. 12/545,758, Final Office Action mailed Oct. 3, 2012. |
U.S. Appl. No. 12/545,758, Office Action mailed Oct. 3, 2012. |
U.S. Appl. No. 12/605,256, Office Action mailed Dec. 28, 2010. |
U.S. Appl. No. 12/887,448, Office Action mailed Jan. 7, 2013. |
U.S. Appl. No. 13/240,687, Office Action mailed Feb. 22, 2012. |
PCT/US14/030911, PCT International Search Report and Written Opinion mailed Aug. 22, 2014. |
Chinese Patent Application No. 201210330398.6, First Office Action mailed Feb. 20, 2014. |
Siemens, Carrier Lifetime and Forward Resistance in RF PIN Diodes. 1997. [retrieved on Dec. 1, 2013]. Retrieved from the Internet: <URL:http://palgong.kyungpook.ac.kr/˜ysyoon/Pdf/appli034.pdf>. |
Chinese Patent Application No. 200780023325.X, Second Office Action mailed Oct. 19, 2012. |
Chinese Patent Application No. 200780020943.9, Second Office Action mailed Aug. 29, 2012. |
Taiwan Patent Application No. 096114271, Office Action mailed Dec. 18, 2013. |
Taiwan Patent Application No. 096114265, Office Action mailed Jun. 20, 2011. |
PCT/US11/052661, PCT Preliminary Report on Patentability mailed Mar. 26, 2013. |
PCT/US07/009276, PCT International Search Report and Written Opinion mailed Aug. 11, 2008. |
PCT/US13/058713, PCT International Search Report and Written Opinion mailed Dec. 13, 2013. |
U.S. Appl. No. 12/545,758, Final Office Action mailed Sep. 10, 2013. |
U.S. Appl. No. 12/887,448, Final Office Action mailed Jan. 14, 2014. |
U.S. Appl. No. 12/887,448, Office Action mailed Sep. 26, 2013. |
U.S. Appl. No. 12/887,448, Final Office Action mailed Jul. 2, 2013. |
U.S. Appl. No. 13/681,421, Office Action mailed Dec. 3, 2013. |
Chinese Patent Application No. 201180050872.3, First Office Action mailed May 30, 2014. |
U.S. Appl. No. 12/887,448, Office Action mailed Apr. 28, 2014. |
European Application No. 11827493.5 Extended European Search Report dated Nov. 6, 2014. |
European Application No. 7775498.4 Examination Report dated Mar. 12, 2013. |
European Application No. 7775498.4 Examination Report dated Oct. 17, 2011. |
Chinese Patent Application No. 201210330398.6, Second Office Action mailed Sep. 24, 2014. |
U.S. Appl. No. 12/887,448, Final Office Action mailed Feb. 10, 2015. |
Chinese Patent Application No. 201180050872.3, Second Office Action mailed Jan. 30, 2015. |
Chinese Patent Application No. 201210330398.6, Third Office Action mailed Jun. 2, 2015. |
U.S. Appl. No. 14/217,392, Office Action mailed Sep. 16, 2015. |
Chinese Patent Application No. 201180050872.3, Third Office Action mailed Aug. 4, 2015. |
Chinese Patent Application No. 201210330398.6, Fourth Office Action mailed Sep. 17, 2015. |
SIPO Office Action for related Chinese Application No. 201210330398.6, dated Jan. 4, 2016 (12 sheets). |
SIPO Notification of Grant for related Chinese Application No. 201180050872.3, dated Jan. 11, 2016 (4 sheets). |
Final Office Action for co-pending U.S. Appl. No. 14/217,392, dated Mar. 4, 2016 (17 sheets). |
Notice of Allowance for related U.S. Appl. No. 12/887,448, dated Mar. 28, 2016 (9 sheets). |
Notice of Allowance for related U.S. Appl. No. 14/252,857, dated Apr. 13, 2016 (8 sheets). |
Extended European Search Report for corresponding EP Application No. 13834691.1, dated Apr. 6, 2016 (7 sheets). |
Number | Date | Country | |
---|---|---|---|
20140071013 A1 | Mar 2014 | US |