Multiband slot loop antenna apparatus and methods

Information

  • Patent Grant
  • 9450291
  • Patent Number
    9,450,291
  • Date Filed
    Monday, July 25, 2011
    13 years ago
  • Date Issued
    Tuesday, September 20, 2016
    8 years ago
Abstract
A multiband slot loop antenna apparatus, and methods of tuning and utilizing the same. In one embodiment, the antenna configuration is used within a handheld mobile device (e.g., cellular telephone or smartphone). The antenna comprises two radiating structures: a ring or loop structure substantially enveloping an outside perimeter of the device enclosure, and a tuning structure disposed inside the enclosure. The ring structure is grounded to the ground plane of the device so as to create a virtual portion and an operating portion. The tuning structure is spaced from the ground plane, and includes a plurality of radiator branches effecting antenna operation in various frequency bands; e.g., at least one lower frequency band and three upper frequency bands. On one implementation, a second lower frequency band radiator is effected using a reactive matched circuit coupled between a device feed and a radiator branch.
Description
COPYRIGHT

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.


FIELD OF THE INVENTION

The present invention relates generally to antenna apparatus for use in electronic devices such as wireless or portable radio devices, and more particularly in one exemplary aspect to a multiband slotted loop or ring antenna, and methods of tuning and utilizing the same.


DESCRIPTION OF RELATED TECHNOLOGY

Internal antennas are an element found in most modern radio devices, such as mobile computers, mobile phones, Blackberry® Blackberry devices, smartphones, personal digital assistants (PDAs), or other personal communication devices (PCDs). Typically, these antennas comprise a planar radiating plane and a ground plane parallel thereto, which are connected to each other by a short-circuit conductor in order to achieve the matching of the antenna. The structure is configured so that it functions as a resonator at the desired operating frequency. It is also a common requirement that the antenna operate in more than one frequency band (such as dual-band, tri-band, or quad-band mobile phones), in which case two or more resonators are used.


Recent advances in the development of affordable and power-efficient display technologies for mobile applications (such as liquid crystal displays (LCD), light-emitting diodes (LED) displays, organic light emitting diodes (OLED), thin film transistors (TFT), etc.) have resulted in a proliferation of mobile devices featuring large displays, with screen sizes of for instance 89-100 mm (3.5-4 in.) in mobile phones, and on the order of 180 mm (7 in.) in some tablet computers. To achieve the best performance, display ground planes (or shields) are commonly used. These larger ground planes are required by modern displays, yet are no longer optimal for wireless antenna operation. Specifically, this lack of optimization stems from the fact that ground plane size plays a significant role in the design of the antenna for the air interface(s) of the device. As a result, antenna bandwidth is reduced due to, at least in part, impedance mismatch between antenna radiator and the large ground plane.


Furthermore, current trends increase demand for thinner mobile communications devices with large displays that are often used for user input (e.g., touch screen). This in turn requires a rigid structure to support the display assembly, particularly during the touch-screen operation, so as to make the interface robust and durable, and mitigate movement or deflection of the display. A metal body or a metal frame is often utilized in order to provide a better support for the display in the mobile device.


The use of metal enclosures/chassis, large ground planes, and the requirement for thinner device enclosure create new challenges for radio frequency (RF) antenna implementations. Typical antenna solutions (such as monopole, PIFA antennas) require ground clearance area and sufficient height from ground plane in order to operate efficiently in multiple frequency bands (a typical requirement of modern portable devices). These antenna solutions are often inadequate for the aforementioned thin devices with metal housings and/or chassis, as the vertical distance required to separate the radiator from the ground plane is no longer available. Additionally, the metal body of the mobile device acts as an RF shield and degrades antenna performance, particularly when the antenna is required to operate in several frequency bands


Various methods are presently employed to attempt to improve antenna operation in thin communication devices that utilize metal housings and/or chassis, such as for example a slot ring antenna described in European Patent Publication number EP1858112B1. This implementation requires fabrication of a slot within the printed wired board (PWB) in proximity to the feed point, as well as along the entire height of the device. For a device having a larger display, a slot location that is required for optimal antenna operation often interferes with device user interface functionality (e.g. buttons, scroll wheel, etc), therefore limiting device layout implementation flexibility.


Additionally, such metal housing must have openings in close proximity to the slot on both sides of the PCB. To prevent generation of radio frequency cavity modes within the device, the openings are typically connected using metal walls. All of these steps increase device complexity and cost, and impede antenna matching to the desired frequency bands of operation.


Another existing implementation employs a multi-resonant coupled feed antenna comprising a metal ring radiating element fitted around perimeter of the radio device. Several slots are fabricated within the radiator (typically on the sides) in order to achieve multiband antenna functionality; this approach unfortunately increases the cost and complexity of the device. Given that device users typically handle communication devices by their sides/edges, such configuration is susceptible to antenna detuning and communication failures due to a short circuit created when a user hand touches the radiator over the slot. Furthermore, wide slots (typically about 3 mm in width) are required to achieve the desired low band (typically 700-960 MHz) operation, and as such may adversely affect device aesthetic appeal.


Accordingly, there is a salient need for a wireless multiband antenna solution for e.g., a portable radio device, with a small form factor and which is suitable for the device perimeter, and that offers a lower cost and complexity, as well as providing for improved control of antenna resonance.


SUMMARY OF THE INVENTION

The present invention satisfies the foregoing needs by providing, inter alia, a space-efficient multiband antenna apparatus, and methods of tuning and use thereof.


In a first aspect of the invention, a mobile communications device is disclosed. In one embodiment, the device comprises: an enclosure and an electronics assembly contained substantially therein, the electronics assembly comprising a ground plane and at least one feed port; and a multiband antenna apparatus. The multiband antenna apparatus comprises: a first antenna structure comprising an element disposed substantially around an outside perimeter of the enclosure; and a second antenna structure comprising a plurality of monopole radiator branches. In one variant, the first antenna structure is connected to the ground plane in at least two ground points, thereby forming a virtual portion and an operational portion, the operational portion comprising a slot disposed in the element proximate a bottom side of the enclosure; an exterior perimeter of the virtual portion substantially envelops the ground plane; and an exterior perimeter of the operational portion is disposed external to the ground plane, and substantially envelops the second antenna structure.


In another embodiment, the mobile device comprises: a device enclosure; and an antenna having a substantially external radiator element, the radiator element having at least one slot disposed relative to the enclosure so as to minimize the potential for radiator element shorting across the slot due to device handling by a user during use of the device.


In one variant of the alternate embodiment, the radiator element comprises a substantially closed loop, and the at least one slot comprises a single slot disposed substantially on a bottom edge of the enclosure of the device, the bottom edge being not normally grasped by the user during the use of the device.


In another variant, the radiator element comprises a substantially closed loop disposed on top, bottom and side edges of the enclosure of the mobile device; and the at least one slot comprises a single slot disposed at either one of the top or the bottom edges.


In a second aspect of the invention, a multiband antenna apparatus is disclosed. In one embodiment, the apparatus is adapted for use in a portable radio communications device, and comprises: a first antenna structure comprising an element configured to be disposed substantially around an outside perimeter of a device enclosure. In one variant, the first antenna structure is connected to a ground plane of the device in at least two locations, thereby forming a virtual portion and an operational portion; and the operational portion comprises a slot formed in the element so as to be disposed proximate a bottom side of the enclosure.


In another variant, an exterior perimeter of the virtual portion substantially envelops the ground plane; and an exterior perimeter of the second antenna structure is disposed external to the ground plane.


In yet another variant, the slot is configured to effect antenna resonance in at least one upper frequency band.


In a third aspect of the invention, a method of operating a multiband antenna apparatus is disclosed. In one embodiment, the antenna apparatus if for use in a portable radio device and has a feed, a loop radiator element disposed substantially around a perimeter region of an enclosure of the device. The loop radiator element has a slot disposed substantially at a bottom edge of the enclosure, and a ground plane of the radio device is disposed a distance away from a bottom edge of the loop radiator element. The method comprises: energizing the feed with a feed signal comprising a lower frequency component and a higher frequency component; and causing radio frequency oscillations in the loop radiator element at least at the higher frequency. The slot is configured to effect tuning of the antenna apparatus in the range of the higher frequency.


In a fourth aspect of the invention, a method of mitigating the effects of user interference on a radiating and receiving mobile device is disclosed. In one embodiment, the mobile device is characterized by a preferred user grasping location, and the method comprises: energizing a loop antenna element with a signal comprising at least a first frequency component; the loop radiator element being disposed substantially around a perimeter region of an enclosure of the device, and causing an electromagnetic field across a slot formed within the loop antenna element. The slot is distally located relative to the preferred grasping location so as to mitigate electromagnetic interference due to the grasping by the user.


In a fifth aspect of the invention, a method of tuning a multiband antenna apparatus is disclosed.


Further features of the present invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, objectives, and advantages of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:



FIG. 1 is a side elevation view of a mobile device detailing a ring antenna apparatus configured according to one embodiment of the invention and installed therein.



FIG. 1A is a top plan view of a mobile device showing antenna apparatus of the embodiment of FIG. 1.



FIG. 1B is a block diagram detailing a multiband ring antenna tuning configuration according to one embodiment of the invention.



FIG. 1C is a block diagram detailing capacitive coupling of the multiband ring antenna of FIG. 1.



FIG. 2 is a schematic diagram detailing a multiband matching circuit according to one embodiment of the invention.



FIG. 3 is a plot of (i) measured free space input return loss, (ii) CTIA v3.1 beside head, right cheek return loss, and (iii) CTIA v3.1 beside head with hand, right cheek return loss measurements, obtained with an exemplary five-band antenna apparatus configured in accordance with the embodiment of FIG. 1A.



FIG. 4 is a plot of (i) measured total free space efficiency, (ii) CTIA v3.1 beside head, right cheek efficiency, and (iii) CTIA v3.1 beside head with hand, right cheek efficiency measurements, obtained with an exemplary multi-band antenna apparatus configured in accordance with the embodiment of FIG. 1A.



FIG. 5 is a plot of measured free space input return loss of an exemplary five-band antenna apparatus configured in accordance with the embodiment of FIG. 1A, and comprising the tuning circuit of FIG. 2.





All Figures disclosed herein are © Copyright 2011 Pulse Finland Oy. All rights reserved.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Reference is now made to the drawings wherein like numerals refer to like parts throughout.


As used herein, the terms “antenna,” “antenna system,” “antenna assembly”, and “multi-band antenna” refer without limitation to any apparatus or system that incorporates a single element, multiple elements, or one or more arrays of elements that receive/transmit and/or propagate one or more frequency bands of electromagnetic radiation. The radiation may be of numerous types, e.g., microwave, millimeter wave, radio frequency, digital modulated, analog, analog/digital encoded, digitally encoded millimeter wave energy, or the like.


As used herein, the terms “board” and “substrate” refer generally and without limitation to any substantially planar or curved surface or component upon which other components can be disposed. For example, a substrate may comprise a single or multi-layered printed circuit board (e.g., FR4), a semi-conductive die or wafer, or even a surface of a housing or other device component, and may be substantially rigid or alternatively at least somewhat flexible.


The terms “frequency range”, “frequency band”, and “frequency domain” refer without limitation to any frequency range for communicating signals. Such signals may be communicated pursuant to one or more standards or wireless air interfaces.


As used herein, the terms “portable device”, “mobile computing device”, “client device”, “portable computing device”, and “end user device” include, but are not limited to, personal computers (PCs) and minicomputers, whether desktop, laptop, or otherwise, set-top boxes, personal digital assistants (PDAs), handheld computers, personal communicators, tablet computers, portable navigation aids, J2ME equipped devices, cellular telephones, smartphones, personal integrated communication or entertainment devices, or literally any other device capable of interchanging data with a network or another device.


Furthermore, as used herein, the terms “radiator,” “radiating plane,” and “radiating element” refer without limitation to an element that can function as part of a system that receives and/or transmits radio-frequency electromagnetic radiation; e.g., an antenna or portion thereof.


The terms “RF feed,” “feed,” “feed conductor,” and “feed network” refer without limitation to any energy conductor and coupling element(s) that can transfer energy, transform impedance, enhance performance characteristics, and conform impedance properties between an incoming/outgoing RF energy signals to that of one or more connective elements, such as for example a radiator.


As used herein, the terms “loop” and “ring” refer generally and without limitation to a closed (or virtually closed) path, irrespective of any shape or dimensions or symmetry.


As used herein, the terms “top”, “bottom”, “side”, “up”, “down”, “left”, “right”, and the like merely connote a relative position or geometry of one component to another, and in no way connote an absolute frame of reference or any required orientation. For example, a “top” portion of a component may actually reside below a “bottom” portion when the component is mounted to another device (e.g., to the underside of a PCB).


As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth, 3G (e.g., 3GPP, 3GPP2, and UMTS), HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, narrowband/FDMA, OFDM, PCS/DCS, Long Term Evolution (LTE) or LTE-Advanced (LTE-A), analog cellular, CDPD, satellite systems such as GPS, millimeter wave or microwave systems, optical, acoustic, and infrared (i.e., IrDA).


Overview


The present invention provides, in one salient aspect, a multiband antenna apparatus for use in a mobile radio device. The antenna apparatus advantageously provides reduced complexity and cost, and improved antenna performance, as compared to prior art solutions. In one embodiment, the mobile radio device comprises a metallic structure (e.g., a loop or ring) that at least partly encircles the outside perimeter of the device enclosure, and acts as the antenna radiating element. The “loop” radiator in one implementation comprises a single narrow slot disposed so as to minimize potential radiator shorting over the slot due to device handling during use, and to improve device visual appeal.


The exemplary embodiment of the multiband antenna apparatus further comprises a tuning circuit, including multiple branches each configured to effect antenna tuning in a predetermined frequency band. The metallic loop is grounded to the device ground plane at multiple locations, thus controlling the electrical length of the antenna. The dimensions of the slot are selected to optimize antenna performance in an upper frequency band of operation. The slot location effects low band lower band resonance frequency, which is configured to reside well below the lowest operating frequency of the antenna for proper operation of the radio device. In one approach, antenna lower band operation is tuned using an inductor connected in series between the feed and the lower band resonance circuit.


Advantageously, antenna coupling to the device electronics with the exemplary antenna disclosed herein is much simplified, as only a single feed connection is required (albeit not limited to a single feed). In one particular implementation, an upper frequency band tuning strip is galvanically connected to the loop element, thereby enabling tuning of the highest upper band resonances without changing or adversely affecting the visual appearance of the device


In another implementation, the tuning element is capacitively coupled via an electromagnetic field induced over a non-conductive gap between the tuning strip and the loop radiator.


Methods of tuning and operating the antenna apparatus are also disclosed.


DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Detailed descriptions of the various embodiments and variants of the apparatus and methods of the invention are now provided. While primarily discussed in the context of mobile devices, the various apparatus and methodologies discussed herein are not so limited. In fact, many of the apparatus and methodologies described herein are useful in any number of complex antennas, whether associated with mobile or fixed devices, cellular or otherwise.


Exemplary Antenna Apparatus


Referring now to FIGS. 1 through 2, exemplary embodiments of the radio antenna apparatus of the invention are described in detail. One exemplary embodiment of the antenna apparatus for use in a mobile radio device is presented in FIG. 1, showing a side elevation view of the host mobile device 100. The device 100 comprises a display module 104 and a corresponding ground plane 106 disposed in-between two dielectric covers 102, 103. In one variant, one of the dielectric covers 103 comprises an opening corresponding to the display perimeter, so as to enable e.g., touch-screen or other interactive functionality. Notwithstanding, the display 104 may comprise e.g., a display-only device configured only to display information, a touch screen display (e.g., capacitive or other technology) that allows users to provide input into the device via the display 104, or yet other technology. The display 104 may comprise, for example, a liquid crystal display (LCD), light-emitting diode (LED) display, LED-LCD display, organic light emitting diode (OLED) display, or TFT-based device. It is appreciated by those skilled in the art that methodologies of the present invention are equally applicable to any future display technology, provided the display module is generally mechanically compatible with device and antenna configurations such as those described in FIG. 1 through FIG. 2.


A metal loop or ring 110 is disposed substantially at the outside perimeter of the device housing, as shown in FIG. 1. The ring structure of this embodiment provides mechanical rigidity, structural integrity for the device, as well as enhances aesthetic appeal. In one variant (not shown), the ring 110 is replaced with a metal segment (e.g., a portion of the loop) encompassing a portion of the device perimeter.


The ring 110 of FIG. 1 can be fabricated using any of a variety of suitable methods including for example metal casting, stamping, metal strip, or a conductive coating disposed on a non-conductive carrier (such as plastic).



FIG. 1A is a top plan view detailing the exemplary antenna structure of the embodiment of FIG. 1. The ring 110 is connected to the ground plane 106 at multiple locations 116, 117, 119. Furthermore, the top portion of the ring is attached to the ground plane along the top perimeter structure 115.


The ground points 116, 117 are used for antenna tuning, and their locations effectively define the length of the ring or loop antenna operational portion (i.e., the portion of the antenna that emits/receives RF radiation). The ground points 115, 119 are preferably separated by a distance that is less than a quarter wavelength of the antenna (at the highest operating frequency). In one variant, the ground structure 115 is configured to cover the majority of the upper edge of the ring, as shown in FIG. 1A. In another variant (not shown), the ground point 115 grounds a portion of the upper ring edge.


The ring upper part (i.e., bounded by the ground points 116, 117, 119, 115 and marked by the broken line rectangle 112 in FIG. 1A) forms a grounded (or virtual) portion. The virtual antenna portion is configured to be at the same potential as the ground plane. Such configuration minimizes unwanted antenna RF radiation being emitted from the antenna grounded portion and further reduces antenna susceptibility to shorting and loading effects due to handling of the mobile device by users during operation. In one variant, the upper ring portion may be removed as required by the enclosure design to simplify assembly and reduce cost of the radio device. In another variant, the ring is used to provide device structural support and visual appeal.


As a brief aside, the antenna of the embodiment shown in FIGS. 1-1A is configured to operate in both low and high frequency (relative to one another) operational ranges. In one variant, the low operating frequency range is between about 800 MHz and about 960 MHz, and the high operational frequency range is between about 1700 MHz and 2200 MHz. As will be appreciated by those skilled in the art, the above frequency bounds are exemplary, and can be changed from one implementation to another based on specific design requirements and parameters, such as for example antenna size, target country of device operation, etc. Typically, each of the operational frequency ranges may support one or more distinct frequency bands configured in accordance with the specifications governing the relevant wireless application system (such as, for example, LTE/LTE-A or GSM). One antenna embodiment, shown and described with respect to FIG. 1A herein, may support one or two lower frequency bands (LFB1, LFB2) and at least three upper frequency bands (UFB1, UFB2, UFB3). In another embodiment, the high frequency operational range (e.g., between about 2500 MHz and about 2700 MHz) is used to enable antenna operation in a fourth upper frequency band (UFB4).


Returning now to FIG. 1A, the bottom part of the loop or ring structure (disposed below the virtual portion 112) forms an operational structure of the antenna radiator, and is referred to herein as the ring or loop operational portion. One ground point 116 determines the electrical length of the operational portion in the high frequency range, while another ground point 117 determines the antenna electrical length in the low frequency range. The ring 110 of this embodiment comprises a narrow slot 114 disposed along the bottom edge of the host device, and is configured to effect antenna tuning in the high frequency range. In one variant, the slot is about 0.8 mm in width, although other values may be used depending on the desired performance and physical attributes. In order to maintain device aesthetic appeal and to increase structural integrity of the enclosure, the slot may be filled with a dielectric material (such as e.g., plastic).


Moreover, the present invention contemplates the use of (i) a slot with a varying or non-constant width (that is: different slot width at different locations across the ring thickness); and (ii) use of two or more slots.


In the embodiment of FIG. 1A, the ground plane 106 is spaced from the bottom edge of the ring 110 by a prescribed distance 118; e.g., about 13 mm. The ground-free bottom portion 108 of the device houses the antenna tuning structure 120. The tuning structure 120 is configured to effect simultaneous operation of the antenna in lower and upper operating frequency bands of the portable radio device 100. The structure 120 is coupled to the feed electronics of the device at a feed point 138, and comprises several tuning branches 122, 124, 128, 130.


Antenna frequency tuning in the illustrated embodiment is achieved as follows: the tuning branch 124 effects antenna tuning in a first lower frequency band (LFB1), which corresponds to antenna low frequency resonance f1. In one variant, the LFB1 comprises frequency band from 824 to 894 MHz, and f1 is centered at about 850 MHz (also referred to as the 850 MHz band). In another variant, the LFB1 comprises frequency band from 880 to 960 MHz, and f1 is centered at about 900 MHz (also referred to as the 900 MHz band).


In one variant of the embodiment of FIG. 1A, a series tuning circuit 136 is disposed between the feed 136 and the horizontal portion of the branch 124. The tuning circuit 136 is configured to adjust the electric length of the lower frequency antenna resonator, and to increase the antenna operational bandwidth in the lower band. This increased lower frequency bandwidth enables antenna operation in two lower frequency bands LFB1, LFB2.


In one implementation, the tuning circuit 136 comprises a coil configured to provide a series inductance of about 10 nano-Henry (nH) to the radiator branch 124, with LFB1 being the 850 MHz band, and LFB2 being the 900 MHz band. As will be appreciated by those skilled in the art, other tuning element implementations are equally applicable to the invention including, but not limited to a discrete inductor, a capacitive element, or a combination thereof.


Antenna operation of the embodiment shown in FIG. 1A in the LFB1 (and LFB2) band is tuned by the overall length of the resonator 124, and the reactance value of the tuning element 136.


The long section 126 (formed between the ground point 117 and the slot 114) of the ring structure bottom portion forms a resonance at frequency f0. In order to achieve desired antenna operation at lower frequencies (e.g., LFB1, LFB2) and to prevent coupled low frequency resonances, the f0 resonance is tuned to be below the antenna low operating frequency range (for example, 820 to 960 MHz). In one variant, the bottom portion resonance frequency f0 is selected at about 600 MHz.]


The antenna high frequency operational range is formed by at least two high frequency resonances, hereinafter referred to as the f2 resonance and the f3 resonance. The first high frequency resonance (f2) is formed by the shorter portion 127 of the ring 110 formed between the slot 114 and the ground point 116. Antenna tuning of this resonance is achieved in the illustrated embodiment by varying the length of the strip in the tuning branch 130. The tuning branch 130 is coupled to the ring 110 either galvanically or capacitively, as described in detail below with respect to FIGS. 1B-1C.


The directly fed antenna high frequency tuning structure 128 is configured to form a resonance at the second high frequency resonance (f3). The value of the f3 resonance is tuned in the illustrated embodiment by the length of the tuning branch 128 (and its proximity to the bottom portion of the ring). Each of the f2 and f3 resonances may be configured to provide antenna functionality in one or more upper frequency bands.


In one variant, the combination of f2 and f3 resonance bands spans a frequency range from about 1710 MHz to 2170 MHz, thus enabling device operation in the following high-frequency bands of an LTE-compliant system: 1710-1880 MHz, 1850-1990 MHz, and 1930-2170 MHz, corresponding to UFB1-UFB3, respectively.


In another embodiment, the directly fed low frequency range radiating structure 122 is used, in combination with the tuning branch 124, to form a harmonic resonance, referred to as the f4 resonance, of a frequency component of the low frequency range, thereby effecting antenna operation in a fourth upper frequency band (UFB4). The value of the UFB4 is tuned by the length of the horizontal branch 122 of the C-shaped structure (having two turns) formed by the tuning branches 122, 124 of FIG. 1A.


Referring now to FIGS. 1B-1C, two exemplary embodiments of the antenna tuning structure are shown and described. The antenna tuning structure 120 of FIG. 1B corresponds to the antenna embodiment of FIG. 1A and comprises the f2 tuning branch 130 that is directly connected to the ring structure 110 at a point 139.


In another embodiment (shown in FIG. 1C), the tuning branch 142 of the tuning structure 140 comprises two vertical strips 145, 146 and a loop structure 144 disposed there between. The vertical strip 146 is grounded at a ground point 148. The tuning branch 142 is electrically isolated from the ring 110. In one variant, the isolation is effected by a thin layer of dielectric material disposed along the inner surface of the ring 110. The tuning branch 142 is capacitively coupled to the ring 110 via an electric field induced over non-conductive gaps 150, 152. In one implementation, the gap is selected to be about 0.3 mm in width, although other values may be used with equal success.


In the capacitive coupling setup, the dielectric gap between the tuning strip and the operational portion of the metal ring needs to be sufficiently small in order to form the gap resonance above the highest operating frequency of the antenna. Capacitive coupling of the tuning branch to the ring structure does not require any physical attachment (e.g., soldering, welding) of the tuning structure to the ring, therefore advantageously facilitating antenna manufacturing and allowing for a wider range of material selection.


The gap between the ring portion 127 and the tuning branch 142 causes a gap resonance at a frequency that is defined by the capacitance between the surfaces of the ring portion 127 and the tuning branch 142 due to a strong electric field between these surfaces. Reducing the gap creates a tighter coupling between these elements, and shifts the gap resonance frequency higher and beyond the antenna operating bands. The gap resonance frequency is further affected by the size the overlapping surface area (also referred to as the coupling area) between the strips 144, 146 of the tuning branch 142 and the ring portion 127. Larger coupling area allows for a larger gap.


In another embodiment (not shown), the multiband antenna is configured without the tuning element 136, thereby forming a 4-band resonator with a single lower band frequency band LFB1 and three upper frequency bands (UFB1, UFB2, UFB3).


In another aspect of the invention, the antenna structure (such as that shown in FIG. 1A) is fitted with a tuning network in order to optimize antenna performance; e.g., to increase antenna efficiency and reduce losses. FIG. 2 shows one embodiment of such tuning network configured to operate in four or more frequency bands, here within the frequency range from about 800 kHz to 2700 MHz. The network 200 comprises an input port 202, characterized by the nominal impedance of 50 Ohm, which is connected to the feed port of the portable device electronics. The circuit ground point 216 is connected to the device ground plane, and the circuit output port 214 is connected to antenna radiating structure, such as, for example, the feed point 138 in FIG. 1A. The inductive element 204 and the capacitive element 206 form a first resonance circuit (L2C2) configured to effect antenna tuning in the LFB2 and the UFB4 frequency bands. Exemplary values of the capacitive elements 206, 208, 210 and the inductive 204, 212 elements, are as illustrated in FIG. 2. A first inductive element 212 and first capacitive element 208 control impedance transformation between the antenna radiator and the L2C2 circuit. The second capacitive element 210 is used for tuning purposes, and may be omitted in some implementations if desired. It will be recognized that the exact component values and/or tuning network configuration are/is selected based on specific application and parametric requirements, and may change from one application to another, such values being readily determined by those skilled in the electronic arts given this disclosure.


Performance



FIGS. 3 through 5 present performance results obtained during simulation and testing by the Assignee hereof of an exemplary antenna apparatus constructed according to one embodiment of the invention.



FIG. 3 shows a plot of free-space return loss S11 (in dB) as a function of frequency, measured with the four-band multiband antenna constructed similarly to the embodiment depicted in FIG. 1A. The antenna four frequency bands include one 900 MHz low frequency band, and three upper frequency bands (1710-1880 MHz, 1850-1990 MHz, and 1930-2170 MHz). The solid line designated with the designator 302 in FIG. 3 marks the boundaries of the lower frequency band, while the line designated with the designator 304 marks the boundaries of the high frequency range between 1710 and 2170 MHz. The curves marked with designators 306-310 correspond to measurements obtained in the following device configurations: (i) the first curve 306 is taken in free space; (ii) the second curve 308 is taken according to CTIA v3.1 beside head, right cheek (BHR) measurement configuration; and (iii) the third curve 310 is taken according to CTIA v3.1 beside head with hand, right cheek (BHHR) measurement configuration. Data presented in FIG. 3 demonstrate that the exemplary antenna comprising a single small slot positioned along the bottom of the device is advantageously not detuned off-band by the presence of the user's hand, and a 6 dB return loss is maintained throughout the BHHR measurements.



FIG. 4 presents data regarding measured free-space efficiency for the same antenna as described above with respect to FIG. 3. Efficiency of an antenna (in dB) is defined as decimal logarithm of a ratio of radiated to input power:









AntennaEfficiency
=

10







log
10



(


Radiated





Power


Input





Power


)







Eqn
.





(
1
)








An efficiency of zero (0) dB corresponds to an ideal theoretical radiator, wherein all of the input power is radiated in the form of electromagnetic energy.


The curves marked with designators 402-412 in FIG. 4 correspond to measurements obtained in the following device configurations: (i) curves 402, 408 are taken in free space; (ii) curves 404, 410 are taken according to CTIA v3.1 beside head, right cheek (BHR) measurement configuration; and (iii) curves 406-412 are taken according to CTIA v3.1 beside head with hand, right cheek (BHHR) measurement configuration. The data in FIG. 4 demonstrate that the antenna embodiment constructed according with the principles of the present invention is not susceptible to higher losses due to user hand and head proximity, thereby enabling robust operation of the radio device.



FIG. 5 shows a plot of free-space return loss S11 (in dB) as a function of frequency, obtained for the five-band multiband antenna constructed in accordance with the embodiment depicted in FIG. 1A, and utilizing the tuning circuit of the embodiment of FIG. 2 herein. The antenna frequency bands include 850 and 900 MHz (the two low frequency bands), and 1710-1880 MHz, 1850-1990 MHz, and 1930-2170 MHz (the three upper frequency bands). Designators 502, 504 mark the lower (824 MHz) and the upper (960 MHz) extents of the lower frequency range, while designators 506, 508 mark the lower (1710 MHz) and the upper (2170 MHz) extents of the upper frequency range, respectively. The curve with designator 512 corresponds to the measured response of the 4-band antenna described with respect to FIG. 3, supra. The curve marked with designator 510 depicts antenna response simulated using the matching circuit 200 of the embodiment of FIG. 2. A measured s-parameter of the circuit 200 was used in simulating the response 510.


Comparison between the two antenna responses 510, 512 demonstrates an increased antenna bandwidth in the lower frequency range for the response 510, which allows antenna operation in the 850 MHz and 900 MHz lower frequency bands.


The data presented in FIGS. 3-5 demonstrate that a loop or ring antenna configured with a narrow slot is capable of operation within a wide frequency range; i.e., covering the lower frequency band from 824 to 960 MHz, as well as the higher frequency band from 1710 MHz to 2170 MHz. This capability advantageously allows operation of a portable computing device with a single antenna over several mobile frequency bands such as GSM850, GSM900, GSM1900, GSM1800, PCS-1900, as well as LTE/LTE-A and/or WiMAX (IEEE Std. 802.16) frequency bands. Furthermore, the use of a separate tuning branch enables formation of a higher order antenna resonance, therefore enabling antenna operation in an additional high frequency band (e.g., 2500-2600 MHz band). Such capability further expands antenna uses to Wi-Fi (802.11) and additional LTE/LTE-A bands. As persons skilled in the art will appreciate, the frequency band composition given above may be modified as required by the particular application(s) desired, and additional bands may be supported/used as well.


Advantageously, the slotted loop or ring antenna configuration (as in the illustrated embodiments described herein) further allows for improved device operation by reducing potential for antenna shorting (and associated adverse effects) due to user handling, in addition to the aforementioned breadth and multiplicity of operating bands. Furthermore, the use a bottom-placed gap (for example, a small single gap as shown in the exemplary embodiments herein) improves device aesthetic appeal in that the bottom of the device is rarely if ever seen during use, and reduces the need for non-conductive or decorative covering elements (often required in prior art solutions), thereby reducing the device cost as well.


It will be recognized that while certain aspects of the invention are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the invention, and may be modified as required by the particular application. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the invention disclosed and claimed herein.


While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the invention. The foregoing description is of the best mode presently contemplated of carrying out the invention. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the invention. The scope of the invention should be determined with reference to the claims.

Claims
  • 1. A multiband antenna apparatus for use in a portable radio communications device, the antenna apparatus comprising: a first antenna structure comprising an element configured to be disposed around an external surface of a device enclosure;wherein: the first antenna structure is connected to a ground plane of the device in at least two locations in order to form a virtual portion and an operational portion; andthe operational portion comprises a slot formed in the element so as to be disposed proximate a bottom side of the device enclosure, the slot further dividing the operational portion into a longer section and a shorter section; anda plurality of tuning branches with at least one of the tuning branches coupled to a feed port of the portable radio communications device, the plurality of tuning branches collectively configured to effectuate a plurality of resonances within the longer section and the shorter section of the operational portion.
  • 2. The antenna apparatus of claim 1, wherein the slot is configured to effect antenna resonance in at least one upper frequency band.
  • 3. The antenna apparatus of claim 1, further comprising a second antenna structure comprised of the plurality of tuning branches, the plurality of tuning branches collectively comprising a plurality of monopole radiator branches, where the plurality of monopole radiator branches comprises: a first radiator branch electrically coupled to the feed port of the device, and configured to operate in a first upper frequency band;a second radiator branch coupled to the feed port of the device, and configured to operate in a second upper frequency band; anda third radiator branch electrically coupled to the feed port of the device, and configured to operate in a first lower frequency band.
  • 4. The antenna apparatus of claim 3, wherein: an exterior perimeter of the virtual portion substantially envelops the ground plane; andan exterior perimeter of the second antenna structure is disposed external to the ground plane.
  • 5. The antenna apparatus of claim 3, further comprising a reactive circuit coupled between the third radiator branch and the feed port.
  • 6. The antenna apparatus of claim 5, wherein the reactive circuit comprises: (i) a capacitive element; and (ii) an inductive element.
  • 7. The antenna apparatus of claim 5, wherein a second reactive circuit is configured to adjust an electrical length of the third radiator branch.
  • 8. The antenna apparatus of claim 5, wherein the first lower frequency band comprises a GSM band, and the first and the second upper frequency bands are selected from a group consisting of 1700 MHz, 2100 MHz, and 2500 MHz bands.
  • 9. The antenna apparatus of claim 3, wherein the slot is disposed proximate a lower corner of the device enclosure.
  • 10. The antenna apparatus of claim 1, wherein the at least two locations are configured to affect an electrical length of the element.
  • 11. The antenna apparatus of claim 10, wherein the at least two locations comprise (i) a first ground structure disposed on a first side of the element, and (ii) a second ground structure disposed on a second side of the element, the second side opposes the first side, such that the first ground structure and the second ground structure are configured distant to the slot.
  • 12. The antenna apparatus of claim 1, wherein a portion of the element is disposed proximate the bottom side and is spaced from the ground plane along substantially a lateral extent of the bottom side.
  • 13. A method of operating a multiband antenna apparatus for use in a portable radio device, the apparatus having a feed, a loop radiator element disposed around a perimeter region and on an external surface of an enclosure of the device, the loop radiator element having a slot disposed substantially at a bottom edge of the enclosure, and a ground plane of the radio device disposed a distance away from a bottom edge of the loop radiator element, the method comprising; energizing the feed with a feed signal comprising a lower frequency component and a higher frequency component; andcausing radio frequency oscillations in the loop radiator element at least at the higher frequency via use of one or more tuning branches coupled to the feed, the one or more tuning branches disposed adjacent the loop radiator element;wherein, the slot is configured to effect tuning of the antenna apparatus at the higher frequency.
  • 14. A mobile device, comprising: a device enclosure; andan antenna comprising: an external radiator element, the external radiator element having at least one slot disposed relative to the device enclosure so as to minimize potential for the external radiator element shorting across the slot due to the device being handled by a user during use of the device; anda plurality of tuning branches with at least one of the tuning branches coupled to a feed of the mobile device, the plurality of tuning branches configured to effectuate a plurality of resonances within respective portions of the external radiator element.
  • 15. The mobile device of claim 14, wherein the external radiator element comprises a substantially closed loop, and the at least one slot comprises a single slot disposed substantially on a bottom edge of the device enclosure of the device, the bottom edge being not normally grasped by the user when in use of the device.
  • 16. The mobile device of claim 14, wherein: the external radiator element comprises a substantially closed loop disposed on a top edge, a bottom edge, and side edges of the device enclosure of the mobile device; andthe at least one slot comprises a single slot disposed at either one of the top edge or the bottom edge.
  • 17. The mobile device of claim 14, wherein: the external radiator element comprises a first structure being connected to a ground plane of the device in at least two locations so as to form a virtual portion and an operational portion; andthe slot is disposed in the operational portion on a bottom side of the device enclosure.
  • 18. The mobile device of claim 17, wherein the plurality of tuning branches collectively comprise a plurality of monopole radiator branches.
  • 19. The mobile device of claim 18, wherein an exterior perimeter of the operational portion is disposed external to the ground plane, and substantially envelops the plurality of monopole radiator branches.
  • 20. The mobile device of claim 18, wherein the plurality of monopole radiator branches comprises: a first radiator branch electrically coupled to a feed port of the device, and configured to operate in a first frequency band;a second radiator branch coupled to the feed port of the device, and configured to operate in a second frequency band; anda third radiator branch electrically coupled to the feed port of the device, and configured to operate in a third frequency band.
  • 21. The mobile device of claim 20, wherein each of the plurality of monopole radiator branches comprises a conductive strip having at least one turn.
  • 22. The mobile device of claim 21, wherein the at least one turn forms at least a portion of a C-shaped structure.
  • 23. The mobile device of claim 20, wherein the third radiator branch is further configured to operate in a fourth frequency band having a resonance proximate a harmonic of a resonance of the third frequency band.
  • 24. The mobile device of claim 20, wherein: the external radiator element comprises a substantially closed loop; andthe second radiator branch is electrically coupled to the loop proximate the slot.
  • 25. The mobile device of claim 20, wherein: the radiator element comprises a substantially closed loop element; andthe second radiator branch is electromagnetically coupled over a non-conductive gap to the loop element proximate the slot.
  • 26. The mobile device of claim 14, wherein the radiator element comprises a substantially closed loop, the loop forming a single contiguous structure.
  • 27. The mobile device of claim 14, wherein at least one of the plurality of tuning branches is electrically isolated from the external radiator element.
  • 28. The mobile device of claim 27, wherein the electrical isolation between the at least one tuning branch and the external radiator element is effectuated by a layer of dielectric material.
  • 29. The mobile device of claim 28, wherein the at least one tuning branch is capacitively coupled to the external radiator element over one or more non-conductive gaps.
US Referenced Citations (404)
Number Name Date Kind
2745102 Norgorden May 1956 A
3938161 Sanford Feb 1976 A
4004228 Mullett Jan 1977 A
4028652 Wakino et al. Jun 1977 A
4031468 Ziebell et al. Jun 1977 A
4054874 Oltman Oct 1977 A
4069483 Kaloi Jan 1978 A
4123756 Nagata et al. Oct 1978 A
4123758 Shibano et al. Oct 1978 A
4131893 Munson et al. Dec 1978 A
4201960 Skutta et al. May 1980 A
4255729 Fukasawa et al. Mar 1981 A
4313121 Campbell et al. Jan 1982 A
4356492 Kaloi Oct 1982 A
4370657 Kaloi Jan 1983 A
4423396 Makimoto et al. Dec 1983 A
4431977 Sokola et al. Feb 1984 A
4546357 Laughon et al. Oct 1985 A
4559508 Nishikawa et al. Dec 1985 A
4625212 Oda et al. Nov 1986 A
4652889 Bizouard et al. Mar 1987 A
4661992 Garay et al. Apr 1987 A
4692726 Green et al. Sep 1987 A
4703291 Nishikawa et al. Oct 1987 A
4706050 Andrews Nov 1987 A
4716391 Moutrie et al. Dec 1987 A
4740765 Ishikawa et al. Apr 1988 A
4742562 Kommrusch May 1988 A
4761624 Igarashi et al. Aug 1988 A
4800348 Rosar et al. Jan 1989 A
4800392 Garay et al. Jan 1989 A
4821006 Ishikawa et al. Apr 1989 A
4823098 DeMuro et al. Apr 1989 A
4827266 Sato et al. May 1989 A
4829274 Green et al. May 1989 A
4862181 PonceDeLeon et al. Aug 1989 A
4879533 De Muro et al. Nov 1989 A
4896124 Schwent Jan 1990 A
4954796 Green et al. Sep 1990 A
4965537 Kommrusch Oct 1990 A
4977383 Niiranen Dec 1990 A
4980694 Hines Dec 1990 A
5017932 Ushiyama et al. May 1991 A
5047739 Kuokkanene Sep 1991 A
5053786 Silverman et al. Oct 1991 A
5097236 Wakino et al. Mar 1992 A
5103197 Turunen Apr 1992 A
5109536 Kommrusch Apr 1992 A
5155493 Thursby et al. Oct 1992 A
5157363 Puurunen Oct 1992 A
5159303 Flink Oct 1992 A
5166697 Viladevall et al. Nov 1992 A
5170173 Krenz et al. Dec 1992 A
5203021 Repplinger et al. Apr 1993 A
5210510 Karsikas May 1993 A
5210542 Pett et al. May 1993 A
5220335 Huang Jun 1993 A
5229777 Doyle Jul 1993 A
5239279 Turunen Aug 1993 A
5278528 Turunen Jan 1994 A
5281326 Galla Jan 1994 A
5298873 Ala-Kojola Mar 1994 A
5302924 Jantunen Apr 1994 A
5304968 Ohtonen Apr 1994 A
5307036 Turunen Apr 1994 A
5319328 Turunen Jun 1994 A
5349315 Ala-Kojola Sep 1994 A
5349700 Parker Sep 1994 A
5351023 Niiranen Sep 1994 A
5354463 Turunen Oct 1994 A
5355142 Marshall et al. Oct 1994 A
5357262 Blaese Oct 1994 A
5363114 Shoemaker Nov 1994 A
5369782 Kawano et al. Nov 1994 A
5382959 Pett et al. Jan 1995 A
5386214 Sugawara Jan 1995 A
5387886 Takalo Feb 1995 A
5394162 Korovesis et al. Feb 1995 A
RE34898 Turunen Apr 1995 E
5408206 Turunen Apr 1995 A
5418508 Puurunen May 1995 A
5432489 Yrjola Jul 1995 A
5438697 Fowler et al. Aug 1995 A
5440315 Wright et al. Aug 1995 A
5442280 Baudart Aug 1995 A
5442366 Sanford Aug 1995 A
5444453 Lalezari Aug 1995 A
5467065 Turunen Nov 1995 A
5473295 Turunen Dec 1995 A
5506554 Ala-Kojola Apr 1996 A
5508668 Prokkola Apr 1996 A
5517683 Collett et al. May 1996 A
5521561 Yrjola May 1996 A
5532703 Stephens et al. Jul 1996 A
5541560 Turunen Jul 1996 A
5541617 Connolly et al. Jul 1996 A
5543764 Turunen Aug 1996 A
5550519 Korpela Aug 1996 A
5557287 Pottala et al. Sep 1996 A
5557292 Nygren et al. Sep 1996 A
5570071 Ervasti Oct 1996 A
5585771 Ervasti Dec 1996 A
5585810 Tsuru et al. Dec 1996 A
5589844 Belcher et al. Dec 1996 A
5594395 Niiranen Jan 1997 A
5604471 Rattila Feb 1997 A
5627502 Ervasti May 1997 A
5649316 Prodhomme et al. Jul 1997 A
5668561 Perrotta et al. Sep 1997 A
5675301 Nappa et al. Oct 1997 A
5689221 Niiranen Nov 1997 A
5694135 Dikun et al. Dec 1997 A
5703600 Burrell et al. Dec 1997 A
5709832 Hayes et al. Jan 1998 A
5711014 Crowley et al. Jan 1998 A
5717368 Niiranen Feb 1998 A
5731749 Yrjola Mar 1998 A
5734305 Ervasti Mar 1998 A
5734350 Deming et al. Mar 1998 A
5734351 Ojantakanen Mar 1998 A
5739735 Pyykko Apr 1998 A
5742259 Annamaa Apr 1998 A
5757327 Yajima et al. May 1998 A
5764190 Murch et al. Jun 1998 A
5767809 Chuang et al. Jun 1998 A
5768217 Sonoda et al. Jun 1998 A
5777581 Lilly et al. Jul 1998 A
5777585 Tsuda et al. Jul 1998 A
5793269 Ervasti Aug 1998 A
5812094 Maldonado Sep 1998 A
5815048 Ala-Kojola Sep 1998 A
5822705 Lehtola Oct 1998 A
5852421 Maldonado Dec 1998 A
5861854 Kawahata et al. Jan 1999 A
5874926 Tsuru et al. Feb 1999 A
5880697 McCarrick et al. Mar 1999 A
5886668 Pedersen et al. Mar 1999 A
5892490 Asakura et al. Apr 1999 A
5903820 Hagstrom May 1999 A
5905475 Annamaa May 1999 A
5920290 McDonough et al. Jul 1999 A
5926139 Korisch Jul 1999 A
5929813 Eggleston Jul 1999 A
5936583 Sekine et al. Aug 1999 A
5943016 Snyder, Jr. et al. Aug 1999 A
5952975 Pedersen et al. Sep 1999 A
5959583 Funk Sep 1999 A
5963180 Leisten Oct 1999 A
5966097 Fukasawa et al. Oct 1999 A
5970393 Khorrami et al. Oct 1999 A
5977710 Kuramoto et al. Nov 1999 A
5986606 Kossiavas et al. Nov 1999 A
5986608 Korisch et al. Nov 1999 A
5990848 Annamaa Nov 1999 A
5999132 Kitchener et al. Dec 1999 A
6005529 Hutchinson Dec 1999 A
6006419 Vandendolder et al. Dec 1999 A
6008764 Ollikainen Dec 1999 A
6009311 Killion et al. Dec 1999 A
6014106 Annamaa Jan 2000 A
6016130 Annamaa Jan 2000 A
6023608 Yrjola Feb 2000 A
6031496 Kuittinen et al. Feb 2000 A
6034637 McCoy et al. Mar 2000 A
6037848 Alila Mar 2000 A
6043780 Funk et al. Mar 2000 A
6072434 Papatheodorou Jun 2000 A
6078231 Pelkonen Jun 2000 A
6091363 Komatsu et al. Jul 2000 A
6097345 Walton Aug 2000 A
6100849 Tsubaki et al. Aug 2000 A
6112106 Crowley et al. Aug 2000 A
6133879 Grangeat et al. Oct 2000 A
6134421 Lee et al. Oct 2000 A
6140973 Annamaa Oct 2000 A
6147650 Kawahata et al. Nov 2000 A
6157819 Vuokko Dec 2000 A
6177908 Kawahata Jan 2001 B1
6185434 Hagstrom Feb 2001 B1
6190942 Wilm et al. Feb 2001 B1
6195049 Kim et al. Feb 2001 B1
6204826 Rutkowski et al. Mar 2001 B1
6215376 Hagstrom Apr 2001 B1
6246368 Deming et al. Jun 2001 B1
6252552 Tarvas et al. Jun 2001 B1
6252554 Isohatala Jun 2001 B1
6255994 Saito Jul 2001 B1
6268831 Sanford Jul 2001 B1
6295029 Chen et al. Sep 2001 B1
6297776 Pankinaho Oct 2001 B1
6304220 Herve et al. Oct 2001 B1
6308720 Modi Oct 2001 B1
6316975 O'Toole et al. Nov 2001 B1
6323811 Tsubaki Nov 2001 B1
6326921 Egorov et al. Dec 2001 B1
6337663 Chi-Minh Jan 2002 B1
6340954 Annamaa et al. Jan 2002 B1
6342859 Kurz et al. Jan 2002 B1
6346914 Annamaa Feb 2002 B1
6348892 Annamaa Feb 2002 B1
6353443 Ying Mar 2002 B1
6366243 Isohatala Apr 2002 B1
6377827 Rydbeck Apr 2002 B1
6380905 Annamaa Apr 2002 B1
6396444 Goward May 2002 B1
6404394 Hill Jun 2002 B1
6417813 Durham Jul 2002 B1
6423915 Winter Jul 2002 B1
6429818 Johnson et al. Aug 2002 B1
6452551 Chen Sep 2002 B1
6452558 Saitou et al. Sep 2002 B1
6456249 Johnson et al. Sep 2002 B1
6459413 Tseng et al. Oct 2002 B1
6462716 Kushihi Oct 2002 B1
6469673 Kaiponen Oct 2002 B2
6473056 Annamaa Oct 2002 B2
6476769 Lehtola Nov 2002 B1
6480155 Eggleston Nov 2002 B1
6501425 Nagumo Dec 2002 B1
6518925 Annamaa Feb 2003 B1
6529168 Mikkola Mar 2003 B2
6535170 Sawamura et al. Mar 2003 B2
6538604 Isohatala Mar 2003 B1
6549167 Yoon Apr 2003 B1
6556812 Pennanen et al. Apr 2003 B1
6566944 Pehlke May 2003 B1
6580396 Lin Jun 2003 B2
6580397 Lindell Jun 2003 B2
6600449 Onaka Jul 2003 B2
6603430 Hill et al. Aug 2003 B1
6606016 Takamine et al. Aug 2003 B2
6611235 Barna et al. Aug 2003 B2
6614400 Egorov Sep 2003 B2
6614405 Mikkonen Sep 2003 B1
6634564 Kuramochi Oct 2003 B2
6636181 Asano Oct 2003 B2
6639564 Johnson Oct 2003 B2
6646606 Mikkola Nov 2003 B2
6650295 Ollikainen et al. Nov 2003 B2
6657593 Nagumo et al. Dec 2003 B2
6657595 Phillips et al. Dec 2003 B1
6670926 Miyasaka Dec 2003 B2
6677903 Wang Jan 2004 B2
6683573 Park Jan 2004 B2
6693594 Pankinaho et al. Feb 2004 B2
6717551 Desclos et al. Apr 2004 B1
6727857 Mikkola Apr 2004 B2
6734825 Guo et al. May 2004 B1
6734826 Dai et al. May 2004 B1
6738022 Klaavo et al. May 2004 B2
6741214 Kadambi et al. May 2004 B1
6753813 Kushihi Jun 2004 B2
6759989 Tarvas et al. Jul 2004 B2
6765536 Phillips et al. Jul 2004 B2
6774853 Wong et al. Aug 2004 B2
6781545 Sung Aug 2004 B2
6801166 Mikkola Oct 2004 B2
6801169 Chang et al. Oct 2004 B1
6806835 Iwai Oct 2004 B2
6819287 Sullivan et al. Nov 2004 B2
6819293 De Graauw Nov 2004 B2
6825818 Toncich Nov 2004 B2
6836249 Kenoun et al. Dec 2004 B2
6847329 Ikegaya et al. Jan 2005 B2
6856293 Bordi Feb 2005 B2
6862437 McNamara Mar 2005 B1
6862441 Ella Mar 2005 B2
6873291 Aoyama Mar 2005 B2
6876329 Milosavljevic Apr 2005 B2
6882317 Koskiniemi Apr 2005 B2
6891507 Kushihi et al. May 2005 B2
6897810 Dai et al. May 2005 B2
6900768 Iguchi et al. May 2005 B2
6903692 Kivekas Jun 2005 B2
6911945 Korva Jun 2005 B2
6922171 Annamaa Jul 2005 B2
6925689 Folkmar Aug 2005 B2
6927729 Legay Aug 2005 B2
6937196 Korva Aug 2005 B2
6950066 Hendler et al. Sep 2005 B2
6950068 Bordi Sep 2005 B2
6952144 Javor Oct 2005 B2
6952187 Annamaa Oct 2005 B2
6958730 Nagumo et al. Oct 2005 B2
6961544 Hagstrom Nov 2005 B1
6963308 Korva Nov 2005 B2
6963310 Horita et al. Nov 2005 B2
6967618 Ojantakanen Nov 2005 B2
6975278 Song et al. Dec 2005 B2
6985108 Mikkola Jan 2006 B2
6992543 Luetzelschwab et al. Jan 2006 B2
6995710 Sugimoto et al. Feb 2006 B2
7023341 Stilp Apr 2006 B2
7031744 Kuriyama et al. Apr 2006 B2
7042403 Colburn et al. May 2006 B2
7053841 Ponce De Leon et al. May 2006 B2
7054671 Kaiponen et al. May 2006 B2
7057560 Erkocevic Jun 2006 B2
7081857 Kinnunen et al. Jul 2006 B2
7084831 Takagi et al. Aug 2006 B2
7099690 Milosavljevic Aug 2006 B2
7113133 Chen et al. Sep 2006 B2
7119749 Miyata et al. Oct 2006 B2
7126546 Annamaa Oct 2006 B2
7136019 Mikkola Nov 2006 B2
7136020 Yamaki Nov 2006 B2
7142824 Kojima et al. Nov 2006 B2
7148847 Yuanzhu Dec 2006 B2
7148849 Lin Dec 2006 B2
7148851 Takaki et al. Dec 2006 B2
7170464 Tang et al. Jan 2007 B2
7176838 Kinezos Feb 2007 B1
7180455 Oh et al. Feb 2007 B2
7193574 Chiang et al. Mar 2007 B2
7205942 Wang et al. Apr 2007 B2
7218280 Annamaa May 2007 B2
7218282 Humpfer et al. May 2007 B2
7224313 McKinzie, III et al. May 2007 B2
7230574 Johnson Jun 2007 B2
7237318 Annamaa Jul 2007 B2
7256743 Korva Aug 2007 B2
7274334 O'Riordan et al. Sep 2007 B2
7283097 Wen et al. Oct 2007 B2
7289064 Cheng Oct 2007 B2
7292200 Posluszny et al. Nov 2007 B2
7319432 Andersson Jan 2008 B2
7330153 Rentz Feb 2008 B2
7333067 Hung et al. Feb 2008 B2
7339528 Wang et al. Mar 2008 B2
7340286 Korva et al. Mar 2008 B2
7345634 Ozkar et al. Mar 2008 B2
7352326 Korva Apr 2008 B2
7358902 Erkocevic Apr 2008 B2
7382319 Kawahata et al. Jun 2008 B2
7385556 Chung et al. Jun 2008 B2
7388543 Vance Jun 2008 B2
7391378 Mikkola Jun 2008 B2
7405702 Annamaa et al. Jul 2008 B2
7417588 Castany et al. Aug 2008 B2
7423592 Pros et al. Sep 2008 B2
7432860 Huynh Oct 2008 B2
7439929 Ozkar Oct 2008 B2
7468700 Milosavljevic Dec 2008 B2
7468709 Niemi Dec 2008 B2
7498990 Park et al. Mar 2009 B2
7501983 Mikkola Mar 2009 B2
7502598 Kronberger Mar 2009 B2
7589678 Perunka Sep 2009 B2
7616158 Mark et al. Nov 2009 B2
7633449 Oh Dec 2009 B2
7663551 Nissinen Feb 2010 B2
7679565 Sorvala Mar 2010 B2
7692543 Copeland Apr 2010 B2
7710325 Cheng May 2010 B2
7724204 Annamaa May 2010 B2
7760146 Ollikainen Jul 2010 B2
7764245 Loyet Jul 2010 B2
7786938 Sorvala Aug 2010 B2
7800544 Thornell-Pers Sep 2010 B2
7830327 He Nov 2010 B2
7889139 Hobson et al. Feb 2011 B2
7889143 Milosavljevic Feb 2011 B2
7901617 Taylor Mar 2011 B2
7916086 Koskiniemi et al. Mar 2011 B2
7963347 Pabon Jun 2011 B2
7973720 Sorvala Jul 2011 B2
8049670 Jung et al. Nov 2011 B2
8179322 Nissinen May 2012 B2
8270914 Pascolini et al. Sep 2012 B2
20010050636 Weinberger Dec 2001 A1
20020183013 Auckland et al. Dec 2002 A1
20020196192 Nagumo et al. Dec 2002 A1
20030146873 Blancho Aug 2003 A1
20040090378 Dai et al. May 2004 A1
20040145525 Annabi et al. Jul 2004 A1
20040171403 Mikkola Sep 2004 A1
20050057401 Yuanzhu Mar 2005 A1
20050159131 Shibagaki et al. Jul 2005 A1
20050176481 Jeong Aug 2005 A1
20060071857 Pelzer Apr 2006 A1
20060192723 Harada et al. Aug 2006 A1
20070042615 Liao Feb 2007 A1
20070082789 Nissila Apr 2007 A1
20070152881 Chan Jul 2007 A1
20070188388 Feng Aug 2007 A1
20080055164 Zhang et al. Mar 2008 A1
20080059106 Wight Mar 2008 A1
20080088511 Sorvala Apr 2008 A1
20080266199 Milosavljevic Oct 2008 A1
20090009415 Tanska Jan 2009 A1
20090066596 Fujishima et al. Mar 2009 A1
20090135066 Raappana et al. May 2009 A1
20090146902 Li et al. Jun 2009 A1
20090156151 Anguera et al. Jun 2009 A1
20090174604 Keskitalo Jul 2009 A1
20090196160 Crombach Aug 2009 A1
20090197654 Teshima et al. Aug 2009 A1
20090231213 Ishimiya Sep 2009 A1
20100220016 Nissinen Sep 2010 A1
20100244978 Milosavljevic Sep 2010 A1
20100309092 Lambacka Dec 2010 A1
20110102290 Milosavljevic May 2011 A1
20110133994 Korva Jun 2011 A1
20120119955 Milosavljevic May 2012 A1
Foreign Referenced Citations (197)
Number Date Country
1823445 Aug 2006 CN
1983714 Jun 2007 CN
1316797 Oct 2007 CN
101297440 Oct 2008 CN
102110873 Jun 2011 CN
10015583 Nov 2000 DE
10104862 Aug 2002 DE
101 50 149 Apr 2003 DE
0208424 Jan 1987 EP
0278069 Aug 1988 EP
0279050 Aug 1988 EP
0339822 Mar 1989 EP
0 332 139 Sep 1989 EP
0 376 643 Apr 1990 EP
0383292 Aug 1990 EP
0399975 Dec 1990 EP
0400872 Dec 1990 EP
0401839 Sep 1991 EP
0447218 Sep 1994 EP
0615285 Oct 1994 EP
0621653 Feb 1995 EP
0 749 214 Dec 1996 EP
0637094 Jan 1997 EP
0 759 646 Feb 1997 EP
0 766 341 Feb 1997 EP
0 766 340 Apr 1997 EP
0751043 Apr 1997 EP
0807988 Nov 1997 EP
0 831 547 Mar 1998 EP
0851530 Jul 1998 EP
0856907 Aug 1998 EP
1 294 048 Jan 1999 EP
0892459 Jan 1999 EP
0766339 Feb 1999 EP
0 942 488 Sep 1999 EP
1 003 240 May 2000 EP
1006605 Jun 2000 EP
1006606 Jun 2000 EP
1014487 Jun 2000 EP
1024553 Aug 2000 EP
1026774 Aug 2000 EP
0999607 Oct 2000 EP
1 052 723 Nov 2000 EP
1052722 Nov 2000 EP
1 063 722 Dec 2000 EP
1067627 Jan 2001 EP
1094545 Apr 2001 EP
1 102 348 May 2001 EP
1098387 May 2001 EP
1 113 524 Jul 2001 EP
1113524 Jul 2001 EP
1 128 466 Aug 2001 EP
1 139 490 Oct 2001 EP
1 146 589 Oct 2001 EP
1 162 688 Dec 2001 EP
1162688 Dec 2001 EP
0993070 Apr 2002 EP
1 248 316 Sep 2002 EP
0923158 Sep 2002 EP
1 267 441 Dec 2002 EP
1271690 Jan 2003 EP
1 294 049 Mar 2003 EP
1306922 May 2003 EP
1 329 980 Jul 2003 EP
1 351 334 Aug 2003 EP
1 361 623 Nov 2003 EP
1248316 Jan 2004 EP
1396906 Mar 2004 EP
1 406 345 Apr 2004 EP
1 414 108 Apr 2004 EP
1 432 072 Jun 2004 EP
1 437 793 Jul 2004 EP
1439603 Jul 2004 EP
1 445 822 Aug 2004 EP
1 453 137 Sep 2004 EP
1 469 549 Oct 2004 EP
1220456 Oct 2004 EP
1467456 Oct 2004 EP
1 482 592 Dec 2004 EP
1 498 984 Jan 2005 EP
1 564 839 Jan 2005 EP
1170822 Apr 2005 EP
1 544 943 Jun 2005 EP
1753079 Feb 2007 EP
1 791 213 May 2007 EP
1843432 Oct 2007 EP
20020829 Nov 2003 FI
2553584 Oct 1983 FR
2724274 Mar 1996 FR
2873247 Jan 2006 FR
2266997 Nov 1993 GB
2 360 422 Sep 2001 GB
239246 Dec 2003 GB
59202831 Nov 1984 JP
600206304 Oct 1985 JP
61245704 Nov 1986 JP
06152463 May 1994 JP
7131234 May 1995 JP
7221536 Aug 1995 JP
7249923 Sep 1995 JP
07307612 Nov 1995 JP
08216571 Aug 1996 JP
09083242 Mar 1997 JP
9260934 Oct 1997 JP
9307344 Nov 1997 JP
10 028013 Jan 1998 JP
10107671 Apr 1998 JP
10173423 Jun 1998 JP
10 209733 Aug 1998 JP
10224142 Aug 1998 JP
10 327011 Dec 1998 JP
10322124 Dec 1998 JP
11 004117 Jan 1999 JP
114113 Jan 1999 JP
11 068456 Mar 1999 JP
11127010 May 1999 JP
11127014 May 1999 JP
11136025 May 1999 JP
11 355033 Dec 1999 JP
2000278028 Oct 2000 JP
200153543 Feb 2001 JP
2001267833 Sep 2001 JP
2001217631 Oct 2001 JP
2001326513 Nov 2001 JP
2002319811 Oct 2002 JP
2002329541 Nov 2002 JP
2002335117 Nov 2002 JP
200360417 Feb 2003 JP
2003124730 Apr 2003 JP
2003179426 Jun 2003 JP
2003318638 Nov 2003 JP
2004112028 Apr 2004 JP
2004363859 Dec 2004 JP
2005005985 Jan 2005 JP
2005252661 Sep 2005 JP
20010080521 Oct 2001 KR
10-2006-7027462 Dec 2002 KR
20020096016 Dec 2002 KR
511900 Dec 1999 SE
201023051 Jun 2010 TW
WO 9200635 Jan 1992 WO
WO 9627219 Sep 1996 WO
WO 9801919 Jan 1998 WO
WO 9801921 Jan 1998 WO
WO 9837592 Aug 1998 WO
WO 9930479 Jun 1999 WO
WO 0036700 Jun 2000 WO
WO 0120718 Mar 2001 WO
WO 0124316 Apr 2001 WO
WO 0128035 Apr 2001 WO
WO 0129927 Apr 2001 WO
WO 0133665 May 2001 WO
WO 0161781 Aug 2001 WO
WO 0191236 Nov 2001 WO
WO 0208672 Jan 2002 WO
WO 0211236 Feb 2002 WO
WO 0213307 Feb 2002 WO
WO 0241443 May 2002 WO
WO 02067385 Aug 2002 WO
WO 02078123 Oct 2002 WO
WO 02078124 Oct 2002 WO
WO 02095870 Nov 2002 WO
WO 03094290 Nov 2003 WO
WO 2004017462 Feb 2004 WO
WO 2004036778 Apr 2004 WO
WO 2004057697 Jul 2004 WO
WO 2004070872 Aug 2004 WO
WO 2004100313 Nov 2004 WO
WO 2004112189 Dec 2004 WO
WO 2005011055 Feb 2005 WO
WO 2005018045 Feb 2005 WO
WO 2005034286 Apr 2005 WO
WO 2005038981 Apr 2005 WO
WO 2005055364 Jun 2005 WO
WO 2005062416 Jul 2005 WO
WO 2006000631 Jan 2006 WO
WO 2006000650 Jan 2006 WO
WO 2006051160 May 2006 WO
WO 2006084951 Aug 2006 WO
WO 2006097567 Sep 2006 WO
WO 2007000483 Jan 2007 WO
WO 2007000483 Jan 2007 WO
WO 2007012697 Feb 2007 WO
WO 2007039667 Apr 2007 WO
WO 2007039668 Apr 2007 WO
WO 2007042614 Apr 2007 WO
WO 2007042615 Apr 2007 WO
WO 2007050600 May 2007 WO
WO 2007080214 Jul 2007 WO
WO 2007098810 Sep 2007 WO
WO 2007138157 Dec 2007 WO
WO 2008059106 Mar 2008 WO
WO 2008129125 Oct 2008 WO
WO 2009027579 May 2009 WO
WO 2009095531 Aug 2009 WO
WO 2009106682 Sep 2009 WO
WO 2010122220 Oct 2010 WO
Non-Patent Literature Citations (52)
Entry
“An Adaptive Microstrip Patch Antenna for Use in Portable Transceivers”, Rostbakken et al., Vehicular Technology Conference, 1996, Mobile Technology for The Human Race, pp. 339-343.
“Dual Band Antenna for Hand Held Portable Telephones”, Liu et al., Electronics Letters, vol. 32, No. 7, 1996, pp. 609-610.
“Improved Bandwidth of Microstrip Antennas using Parasitic Elements,” IEE Proc. vol. 127, Pt. H. No. 4, Aug. 1980.
“A 13.56MHz RFID Device and Software for Mobile Systems”, by H. Ryoson, et al., Micro Systems Network Co., 2004 IEEE, pp. 241-244.
“A Novel Approach of a Planar Multi-Band Hybrid Series Feed Network for Use in Antenna Systems Operating at Millimeter Wave Frequencies,” by M.W. Elsallal and B.L. Hauck, Rockwell Collins, Inc., 2003 pp. 15-24, waelsall@rockwellcollins.com and blhauck@rockwellcollins.com.
Abedin, M. F. and M. Ali, “Modifying the ground plane and its erect on planar inverted-F antennas (PIFAs) for mobile handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 2, 226-229, 2003.
C. R. Rowell and R. D. Murch, “A compact PIFA suitable for dual frequency 900/1800-MHz operation,” IEEE Trans. Antennas Propag., vol. 46, No. 4, pp. 596-598, Apr. 1998.
Cheng-Nan Hu, Willey Chen, and Book Tai, “A Compact Multi-Band Antenna Design for Mobile Handsets”, APMC 2005 Proceedings.
Endo, T., Y. Sunahara, S. Satoh and T. Katagi, “Resonant Frequency and Radiation Efficiency of Meander Line Antennas,” Electronics and Commu-nications in Japan, Part 2, vol. 83, No. 1, 52-58, 2000.
European Office Action, May 30, 2005 issued during prosecution of EP 04 396 001.2-1248.
Examination Report dated May 3, 2006 issued by the EPO for European Patent Application No. 04 396 079.8.
F.R. Hsiao, et al. “A dual-band planar inverted-F patch antenna with a branch-line slit,” Microwave Opt. Technol. Lett., vol. 32, Feb. 20, 2002.
Griffin, Donald W. et al., “Electromagnetic Design Aspects of Packages for Monolithic Microwave Integrated Circuit-Based Arrays with Integrated Antenna Elements”, IEEE Transactions on Antennas and Propagation, vol. 43, No. 9, pp. 927-931, Sep. 1995.
Guo, Y. X. and H. S. Tan, “New compact six-band internal antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 3, 295-297, 2004.
Guo, Y. X. and Y.W. Chia and Z. N. Chen, “Miniature built-in quadband antennas for mobile handsets”, IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 30-32, 2004.
Hoon Park, et al. “Design of an Internal antenna with wide and multiband characteristics for a mobile handset”, IEEE Microw. & Opt. Tech. Lett. vol. 48, No. 5, May 2006.
Hoon Park, et al. “Design of Planar Inverted-F Antenna With Very Wide Impedance Bandwidth”, IEEE Microw. & Wireless Comp., Lett., vol. 16, No. 3, pp. 113-115-, Mar. 2006.
Hossa, R., A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Microwave and Wireless Components Letters, vol. 14, 283-285, 2004.
I. Ang, Y. X. Guo, and Y. W. Chia, “Compact internal quad-band antenna for mobile phones” Micro. Opt. Technol. Lett., vol. 38, No. 3 pp. 217-223 Aug. 2003.
International Preliminary Report on Patentability for International Application No. PCT/FI2004/000554, date of issuance of report May 1, 2006.
Jing, X., et al.; “Compact Planar Monopole Antenna for Multi-Band Mobile Phones”; Microwave Conference Proceedings, 4.-7.12.2005.APMC 2005, Asia-Pacific Conference Proceedings, vol. 4.
Kim, B. C., J. H. Yun, and H. D. Choi, “Small wideband PIFA for mobile phones at 1800 MHz,” IEEE International Conference on Vehicular Technology, 27{29, Daejeon, South Korea, May 2004.
Kim, Kihong et al., “Integrated Dipole Antennas on Silicon Substrates for Intra-Chip Communication”, IEEE, pp. 1582-1585, 1999.
Kivekas., O., J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, “Bandwidth, SAR, and eciency of internal mobile phone antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 46, 71{86, 2004.
K-L Wong, Planar Antennas for Wireless Communications., Hoboken, NJ: Willey, 2003, ch. 2.
Lindberg., P. and E. Ojefors, “A bandwidth enhancement technique for mobile handset antennas using wavetraps,” IEEE Transactions on Antennas and Propagation, vol. 54, 2226{2232, 2006.
Marta Martinez-Vazquez, et al., “Integrated Planar Multiband Antennas for Personal Communication Handsets”, IEEE Trasactions on Antennas and propagation, vol. 54, No. 2, Feb. 2006.
P. Ciais, et al., “Compact Internal Multiband Antennas for Mobile and WLAN Standards”, Electronic Letters, vol. 40, No. 15, pp. 920-921, Jul. 2004.
P. Ciais, R. Staraj, G. Kossiavas, and C. Luxey, “Design of an internal quadband antenna for mobile phones”, IEEE Microwave Wireless Comp. Lett., vol. 14, No. 4, pp. 148-150, Apr. 2004.
P. Salonen, et al. “New slot configurations for dual-band planar inverted-F antenna,” Microwave Opt. Technol., vol. 28, pp. 293-298, 2001.
Papapolymerou, Ioannis et al., “Micromachined Patch Antennas”, IEEE Transactions on Antennas and Propagation, vol. 46, No. 2, pp. 275-283, Feb. 1998.
Product of the Month, RFDesign, “GSM/CPRS Quad Band Power Amp Includes Antenna Switch,” 1 page, reprinted Nov. 2004 issue of RF Design (www.rfdesign.com), Copyright 2004, Freescale Semiconductor, RFD-24-EK.
S. Tarvas, et al. “An internal dual-band mobile phone antenna,” in 2000 IEEE Antennas Propagat Soc. Int. Symp. Dig., pp. 266-269, Salt Lake City, UT, USA.
Wang, F., Z. Du, Q. Wang, and K. Gong, “Enhanced-bandwidth PIFA with T-shaped ground plane,” Electronics Letters, vol. 40, 1504-1505, 2004.
Wang, H.; “Dual-Resonance Monopole Antenna with Tuning Stubs”; IEEE Proceedings, Microwaves, Antennas & Propagation, vol. 153, No. 4, Aug. 2006; pp. 395-399.
Wong, K., et al.; “A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets”; IEEE Transactions on Antennas and Propagation, Jan. '03, vol. 51, No. 1.
X.-D. Cai and J.-Y. Li, Analysis of asymmetric TEM cell and its optimum design of electric field distribution, IEE Proc 136 (1989), 191-194.
X.-Q. Yang and K.-M. Huang, Study on the key problems of interaction between microwave and chemical reaction, Chin Jof Radio Sci 21 (2006), 802-809.
Chiu, C.-W., et al., “A Meandered Loop Antenna for LTE/WWAN Operations in a Smartphone,” Progress in Electromagnetics Research C, vol. 16, pp. 147-160, 2010.
Lin, Sheng-Yu; Liu, Hsien-Wen; Weng, Chung-Hsun; and Yang, Chang-Fa, “A miniature Coupled loop Antenna to be Embedded in a Mobile Phone for Penta-band Applications,” Progress in Electromagnetics Research Symposium Proceedings, Xi'an, China, Mar. 22-26, 2010, pp. 721-724.
Zhang, Y.Q., et al. “Band-Notched UWB Crossed Semi-Ring Monopole Antenna,” Progress in Electronics Research C, vol. 19, 107-118, 2011, pp. 107-118.
Joshi, Ravi Kumar, et al. “Broadband Concentric Rings Fractal Slot Antenna,” Department of Electrical Engineering, Indian Institute of Technology, Kanpur-208 016, India.
Singh, Rajender, “Broadband Planar Monopole Antennas,” M. Tech credit seminar report, Electronic Systems group, EE Dept, IIT Bombay, Nov. 2003, pp. 1-24.
Gobien, Andrew, T. “Investigation of Low Profile Antenna Designs for Use in Hand-Held Radios,” Ch.3, The Inverted-L Antenna and Variations; Aug. 1997, pp. 42-76.
See, C.H., et al., “Design of Planar Metal-Plate Monopole Antenna for Third Generation Mobile Handsets,” Telecommunications Research Centre, Bradford University, 2005, pp. 27-30.
Chen, Jin-Sen, et al., “CPW-fed Ring Slot Antenna with Small Ground Plane,” Department of Electronic Engineering, Cheng Shiu University.
“LTE—an introduction,” Ericsson White Paper, Jun. 2009, pp. 1-16.
“Spectrum Analysis for Future LTE Deployments,” Motorola White Paper, 2007, pp. 1-8.
Chi, Yun-Wen, et al. “Quarter-Wavelength Printed Loop Antenna With an Internal Printed Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 9m Sep. 2009, pp. 2541-2547.
Wong, Kin-Lu, et al. “Planar Antennas for WLAN Applications,” Dept. of Electrical Engineering, National Sun Yat-Sen University, 2002 09 Ansoft Workshop, pp. 1-45.
“λ/4 printed monopole antenna for 2.45GHz”, Nordic Semiconductor, White Paper, 2005, pp. 1-6.
White, Carson, R., “Single- and Dual-Polarized Slot and Patch Antennas with Wide Tuning Ranges,” The University of Michigan, 2008.
Related Publications (1)
Number Date Country
20130027254 A1 Jan 2013 US