The field of the invention generally relates to methods of making multiblock copolymer films and uses of such films. More particularly, the invention relates to methods for making isoporous graded films of multiblock copolymers and uses of such films.
Understanding and controlling the transport of chemical species at the nanoscale is important for the design of novel devices and systems capable of addressing several of the issues facing chemical separations, drug delivery, and molecular sensing. Many of these technologies will rely on a membrane or film with robust mechanical properties and well-controlled pore dimensions and chemistries. In order to advance the understanding and implementation of technologies that exploit transport phenomena at the nanoscale, it is essential to make significant progress towards the fabrication and characterization of next generation, high performance mesoporous materials.
Membranes based on diblock copolymer and triblock terpolymer self-assembly have been generated through bulk casting, but these materials suffer from low permeability due to relatively thick selective layers. Mesoporous films from diblock copolymers have been fabricated by spin coating onto solid substrates; however, this method requires long annealing times and the tedious transfer of a fragile film from the primary substrate to a secondary support membrane.
In an aspect, the present invention provides methods for making an isoporous graded film of a multiblock copolymer. In an embodiment, the method comprises the steps of: forming a film comprising a multiblock copolymer having a hydrogen-bonding block (e.g., poly((4-vinyl)pyridine), poly((2-vinyl) pyridine), poly(ethylene oxide), poly(methacrylate), poly(methyl methacrylate), poly(dimethylethyl amino ethyl methacrylate), poly(acrylic acid), and poly(hydroxystyrene)) that can self-assemble on a substrate using a deposition solution comprising the multiblock copolymer and a solvent system (e.g., 1,4-dioxane); removing at least a portion of the solvent system from the film; and contacting the film from step b) with a phase separation solvent system, such that the isoporous graded film is formed.
In an embodiment, the multiblock copolymer has a low Tg block. For example, the low Tg block can be poly(isoprene), poly(butadiene), poly(butylene), or poly(isobutylene). In an embodiment, the deposition solution further comprises a homopolymer or a small molecule and the film further comprises the homopolymer or the small molecule.
In an aspect, the present invention provides an isoporous graded film. The film comprises a multiblock copolymer. The multiblock copolymer has a hydrogen-bonding block (e.g., poly((4-vinyl)pyridine), poly((2-vinyl) pyridine), poly(ethylene oxide), poly(methacrylate), poly(methyl methacrylate), poly(dimethylethyl amino ethyl methacrylate), poly(acrylic acid), and poly(hydroxystyrene)). In an embodiment, the multiblock copolymer has a low T polymer block (e.g., poly(isoprene), poly(butadiene), poly(butylene), and poly(isobutylene)). The film can have a thickness of from 5 microns to 500 microns.
In an embodiment, the film is a hybrid film. The hybrid film comprises a multiblock copolymer and a homopolymer or small molecule. In an embodiment, the film has at least one inorganic material, and the inorganic material is disposed on at least a portion of the film. For example, the inorganic material is a metal (e.g., metal nanoparticles), metal oxide or a semiconductor.
In an aspect, the present invention provides a device with a film of the present invention. In an embodiment, the film is a filtration membrane in a device.
The present invention provides methods of making an isoporous graded film comprising a multiblock copolymer and isoporous graded films comprising a multiblock copolymer. The present invention also provides devices comprising the films of the present invention.
The present invention is based on the surprising result that using 1,4-dioxane as a solvent in the fabrication of an isoporous graded films of multiblock copolymers provides films comprising a thin selective layer (i.e., a surface layer) having, for example, more than 1014 nearly monodisperse mesopores/m2 above a graded microporous layer. The films of the present invention can have permeabilities comparable to current filtration membranes while producing solute rejections consistent with films containing monodisperse pores. Hybridization of the films via homopolymer or small molecule blending enables tuning of pore size, and can result in pure water flux and solute rejection characteristics.
In an aspect, the present invention provides methods of making isoporous graded films. The films comprise a multiblock copolymer. In an embodiment, the present invention is a facile and scalable method of fabrication of novel, isoporous graded, ABC-type triblock terpolymer-derived films. In an embodiment, the present invention provides an isoporous graded film made by a method disclosed herein.
In an embodiment, the method for forming an isoporous graded film of a multiblock copolymer comprises the steps of: a) forming a film comprising a multiblock copolymer having a hydrogen-bonding block on a substrate using a deposition solution comprising the multiblock copolymer and a solvent system comprising 1,4-dioxane; b) removing at least a portion of the solvent system from the film; and c) contacting the film from step b) with a phase separation solvent system, which results in formation of the isoporous graded film.
Any substrate on which a layer comprising a multiblock copolymer can be formed can be used. A wide range of substrate materials, sizes, and shapes can be used. The substrate can be solid or porous. Examples of suitable substrates include glass plates or rods, silicon, plastic (e.g., Teflon) porous membrane supports such as non-woven polyester, or any combination of the above. For example, non-woven polyester on top of glass can be used as a substrate.
A variety of multiblock copolymers can be used. For example, the multiblock copolymer can be a diblock copolymer, triblock copolymer, or higher order multiblock copolymer. In various embodiments, the multiblock copolymer is a triblock terpolymer having a structure of the form A-B-C, or A-C-B, or other variable arrangements or containing blocks of different chemical composition. In other embodiments, additional structures are higher order multi-block copolymer systems of the form A-B-C-B, or A-B-C-D, or A-B-C-B-A, or A-B-C-D-E, or other variable arrangements of these higher order systems. The multiblock copolymers can be synthesized by methods known in the art. For example, the copolymers can be synthesized using anionic polymerization, atom transfer radical polymerization (ATRP), or other suitable polymerization techniques. The multiblock copolymers can be also be obtained commercially.
The polymer blocks can have a broad molecular weight range. For example, blocks having a number averaged molecular weight (Mn) of from 1×103 to 1×106 g/mol, including all values to the 10 g/mol and ranges therebetween.
The multiblock copolymer has at least one hydrogen-bonding block. The hydrogen-bonding block can self-assemble with another structurally distinct polymer block of the multiblock copolymer (e.g., a hydrophobic block). The hydrogen-bonding block has an acceptor group or donor group that can participate in intramolecular hydrogen bonding. The hydrogen-bonding block can be a hydrophilic block. Examples of suitable hydrogen-bonding blocks include poly((4-vinyl)pyridine), poly((2-vinyl) pyridine), poly(ethylene oxide), poly(methacrylates) such as poly(methacrylate), poly(methyl methacrylate), and poly(dimethylethyl amino ethyl methacrylate), poly(acrylic acid), and poly(hydroxystyrene). In an embodiment, the hydrophilic block is poly((4-vinyl)pyridine).
The multiblock copolymer has additional blocks that are hydrophobic blocks. The hydrophobic blocks form the matrix of the film. For example, the multiblock copolymer can have one or two hydrophobic blocks in addition to the hydrogen-bonding block(s). Examples of suitable hydrophobic blocks include poly(styrenes) such as poly(styrene) and poly(alpha-methyl styrene), polyethylene, polypropylene, polyvinyl chloride, and polytetrafluoroethylene.
In an embodiment, at least one of the additional hydrophobic blocks is a low glass transition temperature (Tg) block. By low Tg block it is meant that the block has a Tg of 25° C. or less. The multiblock copolymer can have multiple low Tg blocks. Examples of suitable low Tg blocks include poly(isoprene), poly(butadiene), poly(butylene), and poly(isobutylene). In an embodiment, the multiblock copolymer comprises a low Tg polymer block, a poly(styrene) block, and a poly((4-vinyl) pyridine) block.
Examples of suitable diblock copolymers include-b-, poly(styrene)-b-poly((4-vinyl)pyridine), poly(styrene)-b-poly((2-vinyl) pyridine), poly(styrene)-b-poly(ethylene oxide), poly(styrene)-b-poly(methyl methacrylate), poly(styrene)-b-poly(acrylic acid), poly(styrene)-b-poly(dimethylethyl amino ethyl methacrylate), poly(styrene)-b-poly(hydroxystyrene), poly(α-methyl styrene)-b-poly((4-vinyl)pyridine), poly(α-methyl styrene)-b-poly((2-vinyl) pyridine), poly(α-methyl styrene)-b-poly(ethylene oxide), poly(α-methyl styrene)-b-poly(methyl methacrylate), poly((α-methyl styrene)-b-poly(acrylic acid), poly(α-methyl styrene)-b-poly(dimethylethyl amino ethyl methacrylate), poly(α-methyl styrene)-b-poly(hydroxystyrene), poly(isoprene)-b-poly((4-vinyl)pyridine), poly(isoprene)-b-poly((2-vinyl) pyridine), poly(isoprene)-b-poly(ethylene oxide), poly(isoprene)-b-poly(methyl methacrylate), poly(isoprene)-b-poly(acrylic acid), poly(isoprene)-b-poly(dimethylethyl amino ethyl methacrylate), poly(isoprene)-b-poly(hydroxystyrene), poly(butadiene)-b-poly((4-vinyl)pyridine), poly(butadiene)-b-poly((2-vinyl) pyridine), poly(butadiene)-b-poly(ethylene oxide), poly(butadiene)-b-poly(methyl methacrylate), poly(butadiene)-b-poly(acrylic acid), poly(butadiene)-b-poly(dimethylethyl amino ethyl methacrylate), and poly(butadiene)-b-poly(hydroxystyrene).
Examples of suitable triblock copolymers include poly(isoprene-b-styrene-b-4-vinylpyridine), poly(isoprene)-b-poly(styrene)-b-poly((4-vinyl)pyridine), poly(isoprene)-b-poly(styrene)-b-poly((2-vinyl) pyridine), poly(isoprene)-b-poly(styrene)-b-poly(ethylene oxide), poly(isoprene)-b-poly(styrene)-b-poly(methyl methacrylate), poly(isoprene)-b-poly(styrene)-b-poly(acrylic acid), poly(isoprene)-b-poly(styrene)-b-poly(dimethylethyl amino ethyl methacrylate), poly(isoprene)-b-poly(styrene)-b-poly(hydroxystyrene), poly(isoprene)-b-poly(α-methyl styrene)-b-poly((4-vinyl)pyridine), poly(isoprene)-b-poly(α-methyl styrene)-b-poly((2-vinyl) pyridine), poly(isoprene)-b-poly(α-methyl styrene)-b-poly(ethylene oxide), poly(isoprene)-b-poly(α-methyl styrene)-b-poly(methyl methacrylate), poly(isoprene)-b-poly(α-methyl styrene)-b-poly(acrylic acid), poly(isoprene)-b-poly(α-methyl styrene)-b-poly(dimethylethyl amino ethyl methacrylate), poly(butadiene)-b-poly(styrene)-b-poly((4-vinyl)pyridine), poly(butadiene)-b-poly(styrene)-b-poly((2-vinyl) pyridine), poly(butadiene)-b-poly(styrene)-b-poly(ethylene oxide), poly(butadiene)-b-poly(styrene)-b-poly(methyl methacrylate), poly(butadiene)-b-poly(styrene)-b-poly(acrylic acid), poly(butadiene)-b-poly(styrene)-b-poly(dimethylethyl amino ethyl methacrylate), poly(butadiene)-b-poly(styrene)-b-poly(hydroxystyrene), poly(butadiene)-b-poly(α-methyl styrene)-b-poly((4-vinyl)pyridine), poly(butadiene)-b-poly(α-methyl styrene)-b-poly((2-vinyl) pyridine), poly(butadiene)-b-poly(α-methyl styrene)-b-poly(ethylene oxide), poly(butadiene)-b-poly(α-methyl styrene)-b-poly(methyl methacrylate), poly(butadiene)-b-poly(α-methyl styrene)-b-poly(acrylic acid), poly(butadiene)-b-poly(α-methyl styrene)-b-poly(dimethylethyl amino ethyl methacrylate), and poly(butadiene)-b-poly(styrene)-b-poly(hydroxystyrene).
The total molar mass of the multi-block copolymer is such that the multiblock copolymer undergoes self-assembly (i.e., microphase separation). It is desirable that defect-free surfaces are formed upon meso- and macro-porous structure formation. For example, the total molar mass of the multiblock copolymer is from 5×103 to 5×105 g/mol, including all values to the 10 g/mol and ranges therebetween.
Multiblock copolymers can have a range of polydispersities (Mw/Mn). For example, the multiblock copolymer can have a polydispersity index (PDI) of from 1.0 to 2.0, including all values to the 0.1 and ranges therebetween. It is desirable that the multiblock copolymer have a PDI of 1 to 1.4.
The deposition solution is used to form a film comprising the multiblock copolymer on the substrate. The deposition solution includes at least a multiblock copolymer and a solvent system. It is desirable that the solvent system include at least 1,4-dioxane. The solvent system can also include an additional solvent or solvents. In various examples, the solvent system is 1,4-dioxane or a mixture of solvents where at least one of the solvents in the mixture is 1,4-dioxane. In various examples, the solvent system has at least 33% by weight or at least 50% by weight 1,4-dioxane. For example, a solvent system with 70/30 1,4-dioxane/tetrahdryofuran by weight can be used.
Without intending to be bound by any particular theory, it is considered that use of 1,4-dioxane in the deposition solvent results in the desired orientation of self-assembled morphology of the surface layer of the film upon evaporation.
The films can be formed without using a metal salt. In an embodiment, the deposition solution does not have a metal salt.
In an embodiment, the methods can be used to produce hybrid multiblock copolymer mesoporous films. The hybrid films are blends (e.g., blends of multiblock copolymers with a homopolymer (or homopolymers) or small molecules (or mixtures of small molecules). Accordingly, the deposition solution can also include a homopolymer or a small molecule. Examples of suitable homopolymers and small molecules are provided herein.
Examples of suitable solvents include tetrahydrofuran (THF), methanol, ethanol, toluene, chloroform, dimethylformamide, acetone, and dimethylsulfoxide. These solvents can be used in solvent systems with 1,4-dioxane.
The concentration of the multiblock copolymer in the deposition solution can be a factor in the structure of the resulting film. The concentration of multiblock copolymer can be selected based on parameters such as the chemical composition and molecular weight of the multiblock copolymer and the deposition solvent(s). The polymer concentration of the casting solution can be, for example, 5 to 50% by weight, including all integer values of % by weight and ranges therebetween. Typical concentrations of the multiblock copolymer in the deposition solution can be 8 to 20% by weight.
The multiblock copolymer layer can be deposited by a variety of methods known in the art. Examples of suitable deposition methods include doctor blade coating, dip coating, flow coating, slot coating, slide coating, inkjet printing, screen printing, gravure (flexographic) printing, spray-coating, and knife coating. For example, when doctor blade coating is used, the gate height can be adjusted to the desired height depending on the concentration of the copolymer in the casting solution. The doctor blade height can be set at, for example, from 50 μm to 500 μm.
At least a portion of the solvents in the solvent system is removed from the film after the film is formed from the deposition solution prior to contacting the film with a phase separation solvent system. Without intending to be bound by any particular theory, it is considered the solvent removal results in pores oriented perpendicular to the thin dimension of the film (i.e., the dimension normal to the substrate). For example, from 1 to 80% by weight, including all integer values of % by weight and ranges therebetween, of the solvent is removed. The amount of solvent in the film can be measured by techniques known in the art. For example, the amount of solvent in the film can be measured by infrared or UV/vis spectroscopy, or thermogravimetric analysis (TGA).
For example, at least a portion of the solvent(s) in the film is removed by allowing the as deposited film to stand for a period of time. The solvent evaporation is a variable process and can take place over a wide range of times (e.g., from seconds to minutes). The time is dependent on, for example, the deposition solution composition. The solvent removal step can include flowing a gas (e.g. air or nitrogen) or exposing the film to reduced pressure. Such steps can increase the rate of solvent removal.
After the solvent removal step, the film is contacted with a phase separation solvent system. This step is referred to herein as a NIPS (non-solvent induced phase separation) process. The solvent system can be a single solvent or a mixture of solvents. The solvent system is a non-solvent for the multiblock copolymer (i.e., at least one of the blocks of the multiblock copolymer precipitates in the solvent system). Further, in the case where 1,4-dioxane is used in the deposition solution, 1,4-dioxane must be miscible with the non-solvent for the NIPS process. Examples of suitable solvents for use in the NIPS process include water, methanol, ethanol, acetone, and combinations thereof.
Without intending to be bound by any particular theory, it is considered that contacting the film with a non-solvent causes the polymer blocks in the bulk layer to precipitate. The structure of the film is therefore locked in due to vitrification of the polymer. This step results in formation of a graded layer in the film.
The films resulting from the method have an identifiable surface layer and an identifiable bulk layer. There is an identifiable transition layer between the surface layer and the bulk layer. The transition layer has a structure having characteristics of both the surface layer and the bulk layer. The surface layer, transition layer, and bulk layer form a continuous film. The surface layer of the film is away from the substrate and bulk layer of film is disposed on the substrate. The film can be removed from the substrate providing a free-standing film.
The steps of the method described in the various embodiments and examples disclosed herein are sufficient to produce thin films of the present invention. Thus, in an embodiment, the method consists essentially of a combination of the steps of the method disclosed herein. In another embodiment, the method consists of such steps.
In an aspect, the present invention provides an isoporous graded film (also referred to herein as a mesoporous film). By “isoporous” it is meant that the surface layer of the films have a narrow pore size distribution. By “graded” it is meant that the films have a bulk layer where the bulk layer has asymmetric porosity. Isoporous graded films can be made by the methods disclosed herein. The film includes at least a multiblock copolymer. The multiblock copolymer can be one of those described herein. The film can be disposed on a substrate or can be a free standing film.
The isoporous graded films can have a variety of shapes. One having skill in the art will appreciate that films having a variety of shapes can be fabricated. The films can have a broad range of sizes (e.g., film thicknesses and film area). For example, the films can have a thickness of from 5 microns to 500 microns, including all values to the micron and ranges therebetween. Depending on the application (e.g., bench-top applications, biopharmaceutical applications, and water purification applications, the films can have areas ranging from 10s of cm2 to 10s (even 100s) of m2.
The isoporous graded films can have desirable properties. For example, the films can have desirable mechanical properties (e.g., toughness) and permeability. The mechanical properties of the films can be tailored by use of selected multiblock copolymers. For example, film toughness can be improved by using a low Tg poly(isoprene) block in the multiblock copolymer. In the case of isoporous graded films comprising triblock copolymers having a low Tg block, the films can exhibit desirable toughness. For example, the films can have a toughness of greater than 5 GJ/m3. For example, depending on the multiblock copolymer used and structure of the film, the films can exhibit a hydraulic permeability of at least 700 L m−2 hr−1 bar−1.
The structural and performance characteristics of the films can include both stimuli responsive permeation and separation. The parent (i.e., not including a homopolymer or small molecule) and hybrid films can be tuned in a manner so that transport of various liquids and solids can be controlled. For example, the pore size of the films can be turned (e.g., increased or decreased) by hybridization of the film by incorporating a homopolymer or a small molecule in the deposition solution or by exposing the film to a specific pH solution (e.g., the film is exposed a feed solution having a desired pH after the NIPS process).
The isoporous graded film has a surface layer (also referred to herein as a top layer) and a bulk layer. The surface layer can have a range of thicknesses. For example, the surface layer can have a thickness of from 20 nm to 500 nm, including all values to the nm and ranges therebetween. The surface layer has a plurality of pores extending thorough the depth of the surface layer. The pores can have morphologies such as cylindrical and gyroid morphologies. The pores can have a size (e.g., diameter) of from 5 nm to 100 m, including all values to the nm and ranges therebetween. The surface layer can have a range of pore densities. For example, the surface layer pore density can be from 1×1014 pores/m2 to 1×1015 pores/m2, including all values to the 10 pores/m2 and ranges therebetween. In an embodiment, the density of the surface pores of a membrane as described herein is at least 1014 pores/m2. The surface layer is isoporous. By “isoporous” it is meant that the pores have narrow pore size distribution. For example, a narrow pore size distribution (defined as the ratio of the maximum pore diameter to the minimum pore diameter (dmax/dmin)) can be from 1 to 3, including all values to 0.1 and ranges therebetween. In various examples, (dmax/dmin) is 1, 1.5, 2, 2.5, or 3. For example, the film comprises a surface layer having vertically aligned and nearly monodisperse mesopores. In an embodiment, the isoporous surface layer has a pore density of at least 1×1014 pores/m2 and a pore size distribution (dmax/dmin) of less than 3.
Without intending to be bound by any particular theory, it is considered that the morphology of the surface layer is, in part, a result of the self-assembly of the block copolymer. The morphology of this layer is dependent on the casting conditions (e.g., flow rate of environment around the film, water (humidity)/solvent concentration in environment around the film, evaporation time, casting speed, gate height) as well as the composition of the casting solvent (e.g., polymer molecular weight, chemistry, concentration, casting solvent or mixture of solvents).
The bulk layer is disposed between the surface layer and the substrate where the film is disposed on the substrate. This layer is a supporting sub-structure layer. The bulk layer can have a range of thicknesses. For example, the thickness of the bulk layer can be from 5 microns to 500 microns, including all values to the micron and ranges therebetween. The pores in the bulk layer can be from 10 nm to 100 microns in size (e.g., diameter), including all values to the nm and ranges therebetween. The bulk layer has an asymmetric structure. For example, the layer can have a sponge-like or finger-like structure. Moving from the top of this layer (e.g., the surface in contact with the surface layer) to the bottom of the layer (e.g., the free surface or surface in contact with the substrate), the pores increase in size. For example, the bulk layer can have pores having a size of 10 nm at the top of the bulk layer (layer in contact with the surface layer) and the pores increase in size to 100 μm at the bottom of the bulk layer. The increase in pore size moving though the depth of the film (e.g., from the surface of the bulk film in contact with the surface layer to the surface of the film in contact with the substrate) provides an asymmetric structure. This bulk layer is formed as a result of contacting (e.g., immersing) the film into a non-solvent bath (e.g., the NIPS process).
In an embodiment, the film is a hybrid film. The hybrid film further comprises a homopolymer or small molecule additive. The homopolymer or small molecule is blended in the multiblock copolymer. The homopolymer or small molecule can be blended in (i.e., mixed with) the hydrogen-bonding block or hydrophobic block of the multiblock copolymer. The homopolymer or small molecule preferentially associates with one of the blocks of the multiblock copolymer and locates in the vicinity of that block. For example, poly(phenylene oxide) can mix with a poly(styrene) block of a multiblock copolymer. For example, poly(butadiene) can mix with a poly(isoprene) block of a multiblock copolymer. Hybrid films can be prepared as described herein.
Any homopolymer that has the same chemical composition as or can hydrogen bond to at least one block (e.g., the hydrogen-bonding block) of the multiblock copolymer can be used. The homopolymer can have hydrogen bond donors or hydrogen bond acceptors. Examples of suitable homopolymers include poly((4-vinyl)pyridine), poly(acrylic acid), and poly(hydroxy styrene). It is desirable that the homopolymers or small molecules have a low or negative chi parameter with the hydrogen-bonding block (e.g., poly((4-vinyl)pyridine)). A range of ratios of multiblock copolymer to homopolymer can be used. For example, the molar ratio of multiblock copolymer to homopolymer can be from 1:0.05 to 1:10, including all ranges therebetween. The homopolymer can have a range of molecular weight. For example, the homopolymer can have a molecular weight of from 5×102 g/mol to 5×104 g/mol.
Any small molecule that can hydrogen bond to at least one block of the multiblock copolymer can be used. The small molecule can have hydrogen bond donors or hydrogen bond acceptors. Examples of suitable small molecules include pentadecyl phenol, dodecyl phenol, 2-4′-(hydroxybenzeneazo)benzoic acid (HABA). 1,8-naphthalene-dimethanol, 3-hydroxy-2-naphthoic acid, and 6-hydroxy-2-naphthoic acid. A range of ratios of multiblock copolymer to small molecule can be used. For example, the molar ratio of multiblock copolymer to small molecule can be from 1:1 to 1:1000, including all integer ratios therebetween.
In an embodiment, the film further comprises an inorganic material. The inorganic material is disposed on at least a portion of the film (e.g., the top, self-assembled surface layer surface, pore surface of the surface layer, and pore surface of the graded substructure). For example, the inorganic material can be in the form of nanoparticles. The nanoparticles can be, for example, 1 to 200 nm, including all values to the nanometer and ranges therebetween, in diameter. Examples of suitable inorganic materials include metals, metal oxides (e.g., silver oxide and copper oxide) and semiconductors (e.g., semiconducting nanoparticles such as CdS nanoparticles). For example, the inorganic material can be disposed on at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99% of the surfaces of the film. In an example, the inorganic material is disposed on 100% of the surfaces of the film.
For example, the film further comprises a plurality of metal nanoparticles. The metal nanoparticles inorganic are disposed on at least a portion of the film (e.g., the top, self-assembled surface layer surface, pore surface of the surface layer, and pore surface of the graded substructure). The nanoparticles can complex (e.g., through weak intramolecular forces) with the multiblock copolymer of the film surface. The nanoparticles can be, for example, 1 to 200 n, including all values to the nanometer and ranges therebetween, in diameter. Examples of suitable metals for the metal nanoparticles include gold, silver, platinum, palladium, cobalt, copper, nickel, iron, zinc, chromium, ruthenium, titanium, zirconium, molybdenum, aluminum, and cadmium. The nanoparticles can be mixtures of different nanoparticles. For example, the metal nanoparticles can be disposed on at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99% of the surfaces of the film. In an example, the metal nanoparticles are disposed on 100% of the surfaces of the film. Films with silver nanoparticles can exhibit antimicrobial behavior.
The inorganic materials can be deposited on the film by methods known in the art. For example, the inorganic material can be deposited by electroless deposition methods.
In an aspect, the present invention provides devices comprising a film of the present invention. The films can be used in filtration applications (e.g. chemical/biological molecule separations, and water purification), drug delivery, and molecular sensing. Examples of filtration applications include concentration or purification of therapeutic proteins or other macromolecules, removal of water contaminants, and use as an air filter or penetrable catalyst support substrate. For example, the films can be used as filtration membranes in filtration devices (e.g., ultrafiltration devices) for concentration and/or purification or proteins, viruses, or other dissolved material, and as a separation media for liquid or vapor solutions. The devices can be made using methods known in the art.
The multiblock copolymers offer a functional approach for designing a versatile assortment of mesoscale hybrid materials, such as patterned media, and devices, including batteries, solar cells, and fuel cells. In addition to applications in drug delivery and nanofluidics, copolymer-derived mesoporous films can be used as separation media.
The following examples are presented to illustrate the present invention. They are not intended to limiting in any manner.
A novel triblock terpolymer, poly(isoprene-b-styrene-b-4-vinylpyridine) (ISV) was synthesized by anionic polymerization as the starting material for the formation of the graded mesoporous films described herein.
The graded, mesoporous terpolymer films are formed using a combination of controlled solvent evaporation and non-solvent induced phase separation (NIPS). The solvent evaporation directs the self-assembly of the terpolymer in the selective layer and the subsequent NIPS process creates the underlying microporous structure. A vast parameter range was screened in order to find appropriate film formation conditions. The protocol for casting a film begins by dissolving the ISV in an appropriate solvent. This solvent must fulfill two requirements; it must result in the desired orientation of self-assembled morphology at the top surface of the film upon evaporation, and it must be miscible with the non-solvent for the NIPS process. After screening many options, a mixture of 1,4-dioxane/tetrahydrofuran (70/30 by weight) was found to fulfilled both these requirements. A 12 wt % polymer solution was drawn into a film on a glass substrate using a doctor's blade set at a gate height of 225 m. After the film was cast, the solvent was allowed to evaporate for a predetermined period of time, during which the concentration of polymer at the air/film interface increased, driving the self-assembly of the terpolymer. The film was subsequently plunged into a non-solvent (water) bath, causing the precipitation of the polymer. The selection of polymer concentration, substrate, and gate height all affect the ultimate micro- and meso-structure of the resulting film, and were carefully optimized. For example, low polymer concentrations (<10 wt %) resulted in low polymer connectivity upon plunging in the non-solvent, while a hydrophobic Teflon substrate caused the film to de-wet. A large gate height (>400 μm) yielded cracks in the film due to instabilities at the free surface.
Scanning electron microscopy (SEM) micrographs of the cross-section of ISV-77 films are shown at different magnifications in
The length of the solvent evaporation step is another process variable that significantly affects the final structure of the film. Specifically, the solvent evaporation step is critical to directing the self-assembly of the terpolymer. Solvent evaporation into the open atmosphere created fast evaporation conditions, which can be used to orient the cylindrical domains perpendicular to the thin dimension of the film.
Cross sections of the self-assembled surface structure are readily visualized by transmission and scanning electron microscopy (
The results above demonstrate the ability to fabricate large areas of mesoporous films containing a high density of nearly monodisperse pores. The unique kinetically-trapped structure of the films can be further studied by measuring transport properties, such as the permeability to liquids or gases and the ability to selectively reject dissolved solutes. These experiments not only provide more insight into the nanostructure of the film, but are also critical to examining the utility of the films in membrane filtration, drug delivery, and sensing applications.
Results of flow experiments conducted with acetate buffer solutions between pH 4 and 6 are shown in
The stimuli responsive permeability provides evidence that the mesopores are coated with a P4VP brush, consistent with the micrographs in
Solute rejection tests are a similarly valuable tool for exploring the structure of the mesoporous films, and critical to confirming an absence of defects. Single solute PEO samples dissolved in DI and ranging in molar mass from 4 to 203 kg/mol were used to challenge the films. Observed percent rejections were calculated by comparing the PEO concentration in the permeate and feed solutions. Results from these experiments are shown as open circles in
The solute rejection data can be used to estimate the pore size of the film. However, it is important to ensure the calculation of an intrinsic film property, and not an experimental artifact. Therefore, the observed rejections were converted to actual (or intrinsic) rejections to account for the local increase in the concentration of rejected solutes at the film interface due to concentration polarization. The mass transfer coefficient necessary for this calculation was determined using the correlation given by Zeman and Zydney. For all rejection experiments, the ratio of the volumetric flux to the mass transfer coefficient was between 0.7 and 1.6, indicating that the system was not highly polarized.
R=1−[(1−λ)2[2−(1−λ)2]exp(−0.7146λ2)]
This simplified expression, which gives results within 2% of more complicated expressions, is a function of λ, defined as the ratio of the solute size to the pore size. The hydrodynamic radius of PEO, RH, was taken as the characteristic solute size. RH can be calculated from either tracer diffusion or intrinsic viscosity data sets, both of which are available in the literature. Using dpore as an adjustable parameter, the residual squared was minimized. This method gave dpore values of 15.9 and 21.8 nm when tracer diffusion and intrinsic viscosity were used to determine 2RH, respectively, and are in good agreement with the SEM micrograph in
The ability to finely tune structural parameters by hybridization with other materials, thus tailoring, e.g., the transport properties of the terpolymer films is another exciting feature of these materials. For example, hybrid films fabricated by blending of a homopolymer that preferentially partitions into one domain of the block terpolymer can be utilized in the casting solution. These terpolymer-homopolymer blends selectively increase the size of the specified terpolymer domain, as demonstrated by the results shown in
A summary of the hydraulic permeabilities and estimated pore sizes for the parent and hybrid films is given as a table in
With the knowledge gained from the materials characterization and transport experiments, it is instructive to return to
Methods. The poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymer used in this study was synthesized using a sequential anionic polymerization technique. The molecular weight of the terpolymer was determined using gel permeation chromatography, which was performed using THF as a solvent on a Waters 510 GPC instrument equipped with a Waters 2410 differential refractive index (RI) detector. The volume fraction of each block was calculated using the 1H solution nuclear magnetic resonance (1H NMR) spectra obtained on a Varian INOVA 400 MHz spectrometer using CDCl3 (δ=7.27 ppm) signal as an internal standard.
Large sheets of mesoporous films were cast using the protocol described in the text. Circular samples 2.5 cm in diameter for solvent flow and solute rejection tests were punched out of larger sheets using a hole punch.
Solvent flow experiments were conducted in a stirred cell (Amicon 8010, Millipore Co.). Pressure to drive flow was applied using N2 gas and was monitored using a digital pressure gauge. Deionized water (DI) was obtained from a Milli-Q ultrapure water purification system. Acetate buffer solutions were prepared by mixing 0.1 M acetic acid and 0.1 M sodium acetate aqueous solutions in the proper proportions. The flow rate was determined by measuring the permeate mass every 5 minutes. No prewetting step was required for the solvent flow experiments.
Solute rejection tests were performed using single solute PEO solutions at a concentration of 1 g/L in DI. The experimental procedure followed was similar to that described in the literature. PEO concentration in the feed and permeate was determined using a Shimadzu total organic carbon analyzer. For all experiments, the solution was stirred at a rate of 800 rpm. Tests on the ISV-77 films were run at a constant pressure drop of 5 psi while tests on the swollen ISV-77 films were run at a pressure drop of 3 psi to maintain similar hydrodynamic conditions between the two samples.
For TEM, both the bulk polymer film and the membranes were sectioned at 50-70 nm using a Leica Ultracut UCT cryo-ultramicrotome at −60° C. Microtomed samples were selectively stained with either OSO4 (g) for 30 minutes or with I2 (g) for 2 hours. Bright field TEM (BF-TEM) images were obtained using a FEI Technai F12 Spirit electron microscope equipped with a SIS Megaview III CCD camera, operated at an acceleration voltage of 120 kV.
SEM micrographs were acquired using a Hitachi Ultra-High Resolution Analytical Field Emission Scanning Electron Microscope (FE-SEM) SU-70. Samples were coated with gold-platinum for 30 s prior to imaging using an Emitech SC7620 sputtering machine.
SAXS measurements on the bulk terpolymer were performed at the Cornell High Energy Synchrotron Source (CHESS). The sample to detector distance was approximately 3.3 m. The x-ray wavelength was 1.305 Å, and the scattering vector, q, is defined as
where θ is half of the scattering vector.
Mechanical tests were performed using a TA Instruments DMAQ800 instrument outfitted with film tension clamps. The films were fixed in the tension clamps with a torque of 0.6 in lb. and preloaded with a force of 0.01 N. Stress-strain curves were obtained using a ramp force of 0.50 N/min.
Poly(isoprene-b-styrene-b-4-vinylpyridine) synthesis. The poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymer used in this study was synthesized using a sequential anionic polymerization technique. The concentration of the polymer was kept under 10 wt % throughout the procedure. ˜500 mL of benzene was distilled into a 1 L reactor and the anionic initiator sec-BuLi was added to the reactor in the glove box via syringe. Distilled isoprene was added to the reactor and allowed to polymerize for a minimum of 8 hours before a 5 mL aliquot was terminated with methanol for GPC analysis. Distilled styrene was then added to the reactor in the glove box via syringe. The styrene polymerized onto the polyisoprene block for 36 h, after which a small aliquot was terminated with methanol for GPC and NMR analysis. The benzene was subsequently removed from the reactor and a 10× molar excess of DPE relative to the sec-BuLi was added. ˜500 mL of THF was distilled directly into the reactor, which was then cooled to −78° C. and distilled 4-vinylpyridine was added. The 4-vinylpyridine polymerized onto the poly(isoprene-b-styrene) for 1.5 h, after which the triblock terpolymer was terminated with degassed methanol. The final terpolymer was dissolved in chloroform and twice precipitated into methanol.
Examples of terpolymers used in the present invention. These terpolymers were prepared by the methods described in Example 1. Films were prepared using these terpolymers according to the methods described in Example 1.
Example of diblock copolymer films of present invention. Films were prepared as described in Example 1. The films were deposited using a single solvent. Data for the films is shown in
Example of a multiblock copolymer film with inorganic coating.
Inorganic membranes by backfilling. Terpolymer membranes were used as templates for backfilling with inorganic materials using an electroless plating method. The graded mesoporous membrane fabricated from triblock terpolymers (polyisoprene-b-styrene-b-4-vinylpyridine, 90.8 kg/mol (ISV6)) is shown in
After the metal deposition, the pores of the original polymeric film were filled or partially coated with metal. The organic template could be removed without affecting the metal structure using methods such as heat treatment, solvent reflux and plasma oxidation.
Example of multiblock copolymer film with metal nanoparticles.
Metal treated antimicrobial and antibiofouling block copolymer membranes. Block copolymer membranes with chemistries that are known to complex with metals were decorated with a variety of metal nanoparticles.
Gold decorated membranes were produced by immersion of triblock terpolymer membranes into a 25 mmol solution of hydrogen tetrachloroaurate(III) trihydrate in ethanol followed by reduction of the gold compound with sodium borohydride. Membranes decorated with silver nanoparticles, which are known to convey antimicrobial properties to a material, are displayed in
Silver decorated membranes were produced by immersing the block copolymer membranes into 50 mmol solutions of silver trifluoroacetate in ethanol followed by reduction by ascorbic acid or sodium borohydride. Preliminary antimicrobial tests on these membranes were performed by bringing a live culture of E. Coli cells into contact with the silver decorated membrane surface and tracking colony growth via optical density measurements. The silver on the membranes were shown to not leach into the cell media and the silver is expected to reduce microbial growth.
While the invention has been particularly shown and described with reference to specific embodiments (some of which are preferred embodiments), it should be understood by those having skill in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the present invention as disclosed herein.
This application is a continuation of U.S. non-provisional patent application Ser. No. 15/286,115 filed Oct. 5, 2016, which is a divisional of U.S. non-provisional patent application Ser. No. 14/115,218 filed Mar. 26, 2014, now U.S. Pat. No. 9,527,041, which is a National Stage Application of PCT/US2012/036514 filed May 4, 2012, which claims priority to U.S. provisional patent application No. 61/482,354, filed May 4, 2011; the disclosures of which are incorporated herein by reference in their entirety.
This invention was made with government support under National Science Foundation Graduate Research Fellowship Grant No. DGE-0707428 awarded by the National Science Foundation. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3673272 | Dean | Jun 1972 | A |
4014798 | Rembaum | Mar 1977 | A |
4399035 | Nohmi | Aug 1983 | A |
4666991 | Matsui et al. | May 1987 | A |
4720343 | Walch et al. | Jan 1988 | A |
4880441 | Kesting et al. | Nov 1989 | A |
5114585 | Kraus et al. | May 1992 | A |
5130024 | Fujimoto et al. | Jul 1992 | A |
5158721 | Allegrezza, Jr. et al. | Oct 1992 | A |
5647989 | Hayashi et al. | Jul 1997 | A |
5700902 | Hancock et al. | Dec 1997 | A |
5700903 | Hancock et al. | Dec 1997 | A |
5792227 | Kahlbaugh et al. | Aug 1998 | A |
5805425 | Peterson | Sep 1998 | A |
5907017 | Ober et al. | May 1999 | A |
5928792 | Moya | Jul 1999 | A |
6033370 | Reinbold et al. | Mar 2000 | A |
6241886 | Kitagawa et al. | Jun 2001 | B1 |
6354443 | Moya | Mar 2002 | B1 |
6379796 | Uenishi et al. | Apr 2002 | B1 |
6503958 | Hughes et al. | Jan 2003 | B2 |
6565782 | Wang et al. | May 2003 | B1 |
6592764 | Stucky et al. | Jul 2003 | B1 |
6592991 | Wiesner et al. | Jul 2003 | B1 |
6663584 | Griesbach, III et al. | Dec 2003 | B2 |
7056455 | Matyjaszewski et al. | Jun 2006 | B2 |
7438193 | Yang et al. | Oct 2008 | B2 |
7927810 | Togawa et al. | Apr 2011 | B2 |
8025960 | Dubrow et al. | Sep 2011 | B2 |
8147685 | Pritchard | Apr 2012 | B2 |
8206601 | Bosworth et al. | Jun 2012 | B2 |
8294139 | Marsh et al. | Oct 2012 | B2 |
8939294 | Moore et al. | Jan 2015 | B2 |
9162189 | Aamer et al. | Oct 2015 | B1 |
9169361 | Aamer | Oct 2015 | B1 |
9193835 | Aamer | Nov 2015 | B1 |
9441078 | Aamer | Sep 2016 | B2 |
9469733 | Aamer et al. | Oct 2016 | B2 |
9527041 | Wiesner et al. | Dec 2016 | B2 |
10711111 | Wiesner et al. | Jul 2020 | B2 |
10912868 | Ushiro et al. | Feb 2021 | B2 |
20030073158 | Ma | Apr 2003 | A1 |
20030171560 | Peters | Sep 2003 | A1 |
20030226818 | Dunbar et al. | Dec 2003 | A1 |
20040065607 | Wang et al. | Apr 2004 | A1 |
20040122388 | McCormack et al. | Jun 2004 | A1 |
20040126778 | Lemmens et al. | Jul 2004 | A1 |
20040129678 | Crowley et al. | Jul 2004 | A1 |
20040138323 | Stenzel-Rosenbaum et al. | Jul 2004 | A1 |
20040242822 | Gawrisch et al. | Dec 2004 | A1 |
20060014902 | Mays et al. | Jan 2006 | A1 |
20060085062 | Lee et al. | Apr 2006 | A1 |
20060094598 | Simon | May 2006 | A1 |
20060151374 | Wu et al. | Jul 2006 | A1 |
20060283092 | Chinone | Dec 2006 | A1 |
20070029256 | Nakano et al. | Feb 2007 | A1 |
20070265174 | Schlenoff | Nov 2007 | A1 |
20070287241 | Takahashi et al. | Dec 2007 | A1 |
20080097271 | Lo et al. | Apr 2008 | A1 |
20080193818 | Mays | Aug 2008 | A1 |
20080261255 | Tolosa et al. | Oct 2008 | A1 |
20090173694 | Peinemann et al. | Jul 2009 | A1 |
20090181315 | Spatz et al. | Jul 2009 | A1 |
20090208726 | Yang et al. | Aug 2009 | A1 |
20090209726 | Matsumoto et al. | Aug 2009 | A1 |
20090239381 | Nishimi et al. | Sep 2009 | A1 |
20100051546 | Vuong et al. | Mar 2010 | A1 |
20100167271 | Ryan | Jul 2010 | A1 |
20100181288 | Tang et al. | Jul 2010 | A1 |
20100219383 | Eklund | Sep 2010 | A1 |
20100224555 | Hoek et al. | Sep 2010 | A1 |
20110130478 | Warren et al. | Jun 2011 | A1 |
20110240550 | Moore et al. | Oct 2011 | A1 |
20110275077 | James et al. | Nov 2011 | A1 |
20120318741 | Peinemann et al. | Dec 2012 | A1 |
20130053748 | Cotton | Feb 2013 | A1 |
20130129972 | Xu | May 2013 | A1 |
20130193075 | Liang et al. | Aug 2013 | A1 |
20130344375 | Brant et al. | Dec 2013 | A1 |
20140005364 | Gottschall et al. | Jan 2014 | A1 |
20140217012 | Wiesner et al. | Aug 2014 | A1 |
20140371698 | Chang et al. | Dec 2014 | A1 |
20150151256 | Abetz et al. | Jun 2015 | A1 |
20150343395 | Aamer et al. | Dec 2015 | A1 |
20150343398 | Aamer et al. | Dec 2015 | A1 |
20160023171 | Phillip et al. | Jan 2016 | A1 |
20160229969 | Wiesner et al. | Aug 2016 | A1 |
20160288062 | Ait-Haddou et al. | Oct 2016 | A1 |
20160319158 | Fleury et al. | Nov 2016 | A1 |
20160375409 | Stasiak et al. | Dec 2016 | A1 |
20170022337 | Wiesner et al. | Jan 2017 | A1 |
20170105877 | Buteux et al. | Apr 2017 | A1 |
20170327649 | Wiesner et al. | Nov 2017 | A1 |
20180043656 | Song et al. | Feb 2018 | A1 |
20200238227 | Dorin et al. | Jul 2020 | A1 |
20210040281 | Dorin et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
2886437 | May 2014 | CA |
3022510 | Nov 2017 | CA |
201211329 | Mar 2009 | CN |
101460203 | Jun 2009 | CN |
101516481 | Aug 2009 | CN |
101969902 | Feb 2011 | CN |
102224163 | Oct 2011 | CN |
102892486 | Jan 2013 | CN |
103797053 | May 2014 | CN |
104768506 | Jul 2015 | CN |
105273211 | Jan 2016 | CN |
102012207338 | Nov 2013 | DE |
102014213027 | Jan 2016 | DE |
2160946 | Mar 2010 | EP |
2703016 | Mar 2014 | EP |
2705077 | Mar 2014 | EP |
3056260 | Aug 2016 | EP |
3284529 | Feb 2018 | EP |
3541500 | Sep 2019 | EP |
3544720 | Oct 2019 | EP |
3658262 | Jun 2020 | EP |
3037071 | Dec 2016 | FR |
54145766 | Nov 1979 | JP |
04-022428 | Jan 1992 | JP |
09-048861 | Feb 1997 | JP |
2002-537422 | Nov 2002 | JP |
2005-500132 | Jan 2005 | JP |
2006-175207 | Jul 2006 | JP |
2011-117956 | Jun 2011 | JP |
2011 189229 | Sep 2011 | JP |
2012-246162 | Dec 2012 | JP |
2015-083299 | Apr 2015 | JP |
2015-167914 | Sep 2015 | JP |
2016-514049 | May 2016 | JP |
2016-526089 | Sep 2016 | JP |
2017-153616 | Sep 2017 | JP |
2018-500401 | Jan 2018 | JP |
2019-514687 | Jun 2019 | JP |
10-2012-0047269 | May 2012 | KR |
10-2012-0124412 | Nov 2012 | KR |
2012-0124412 | Nov 2012 | KR |
10-2016-0020404 | Feb 2016 | KR |
10201706492 | Mar 2018 | SG |
11201904425 | Jun 2019 | SG |
11202000664 | Feb 2020 | SG |
2005082501 | Sep 2005 | WO |
2005091755 | Oct 2005 | WO |
WO-2008034487 | Mar 2008 | WO |
WO-2010051150 | May 2010 | WO |
2011098851 | Aug 2011 | WO |
2011111679 | Sep 2011 | WO |
WO-2011123033 | Oct 2011 | WO |
2012151482 | Nov 2012 | WO |
2014164793 | Oct 2014 | WO |
2015048244 | Apr 2015 | WO |
2015168409 | Nov 2015 | WO |
2015188225 | Dec 2015 | WO |
2016023765 | Feb 2016 | WO |
2016031834 | Mar 2016 | WO |
2016066661 | May 2016 | WO |
2017189697 | Nov 2017 | WO |
2018043209 | Mar 2018 | WO |
2018055801 | Mar 2018 | WO |
2018093714 | May 2018 | WO |
2018097988 | May 2018 | WO |
2019023135 | Jan 2019 | WO |
2019178045 | Sep 2019 | WO |
2019178077 | Sep 2019 | WO |
2019195396 | Oct 2019 | WO |
Entry |
---|
Albert, J., et al., “Sef-assembly of block copolymer thin films,” Materialstoday, Jun. 2010, vol. 13, No. 6, pp. 23-33. |
Behler, Ansgar (Edited by), “Poren,” Römpp Verlag, Römpp online 4.0, Aug. 2005, retrieved from Internet: URL:https://roempp.thieme.de/roempp4.0/do/data/RD-16-03734. |
Dai et al., “Fabrication of 2D ordered structure of self-assembled block copolymers containing gold nanoparticles,” Journal of Crystal Growth, vol. 288, No. 1, pp. 128-136, Feb. 2, 2006. |
European Search Report for EP 12 779 403.0, dated Sep. 29, 2017. |
Hanselmann, Blockcopolymere, ROMPP Online, Version 3.37, Dokumentkenung RD-02-02007, Jul. 1, 2009. |
Hoek et al., “Physical-chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration member,” Desalination, Elsevier, vol. 283, pp. 89-99, May 4, 2011. |
Jung et al., Structure Formation of Integral Asymmetric Composite Membranes of Polystyrene-block-Poly(2-vinylpuridine) on a Nonwoven, Macromolecular Materials and Engineering, vol. 297, No. 8, pp. 790-798, Feb. 9, 2012. |
Peinemann et al., “Asymmetric superstructure formed in a block copolymer via phase separation,” Nature Materials, V6, Dec. 2007 (Peinemann NPL). |
Phillip, W., et al., “Tuning Structure and Properties of Graded Triblock Terpolymer-Based Mesoporous and Hybrid Films,” Nano Letters, Jun. 7, 2011, Nov. 11, pp. 2892-2900. |
Tiraferri et al., “Binding Silver and Silica Nanoparticles to Polymeric Membrane Surfaces for Novel Anti-Biofouling Properties,” ACS Division Proceedings, Divisional of Polymer Chemistry, Meeting 242, Aug. 28-Sep. 1, 2011, Denver, CO, USA Sep. 1, 2011. |
Breiner et al, “Structural Characterization of the “Knitting Pattern” in Polystyrene-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) Triblock Copolymers”, Macromolecules 1998, 31, 135-141. |
Young et al., Robert J., Introduction to Polymers1 Third Edition, CRC Press 2011, pp. 6-9 and 456-457. |
“Poren,” Rompp Verlag, Rompp online 4.0, Aug. 2005, retrieved from Internet: URL:htt s://roem.thieme.de/roem 4.0/do/data/RD-16-03734. |
A Bruil et al., “The Mechanisms of Leukocyte Removal by Filtration.” Transfusion Medicine Reviews vol. IX No. 2, pp. 145-166, Apr. 1995. |
A. A. Shukla et al., “Recent Advances in Large-Scale Production of Monoclonal Antibodies and Related Proteins.” Trends in Biotechnology, vol. 28, No. 5, pp. 253-261, 2010. |
A.S. Devonshire et al., “Towards Standardisation of Cell-Free DNA Measurement in Plasma: Controls for Extraction Efficiency, Fragment Size Bias and Quantification.” Anal. Bioanal. Chern., vol. 406, pp. 6499-6512, 2014. |
Clodt et al., “Performance study of isoporous membranes with tailored pore sizes”, Journal of Membrane Science, vol. 495, Jul. 29, 2015, pp. 334-340. |
D. Keskin, et al., “Postmodification of PS-b-P4VP Diblock Copolymer Membranes by ARGET ATRP.” Langmuir, vol. 30, pp. 8907-8914, Jun. 19, 2014. |
Doan Minh Y Nhi, “Investigation of the Effects of UV-Crosslinking on Isoporous Membrane Stability.” KTH Chemical Science and Engineering, pp. 1-46, 2011. |
E. Gifford et al., “Sensitivity Control of Optical Fiber Biosensors Utilizing Turnaround Point Long Period Gratings with Self-Assembled Polymer Coatings.” Proceedings of the SPIE, vol. 6659 pp. 66590D-1-66590D-9. Sep. 30, 2007. |
F. A. Carey, Omanic Chemistry, Fifth Edition, pp. 859-860, 2003. |
Fink, Johannes Karl. Handbook of Engineering and Specialty Thermoplastics. 2011. Vol. 2, Water Soluble Polymers. Chapter 7. pp. 189-192. (Year: 2011). |
H. Ahlbrecht et al., “Stereoselective synthesis.” Methods of Organic Chemistry. Houben-Weyl, vol. E 21 a, 4th Edition Supplement, 1995. |
H. Sai et al., “Hierarchical Porous Polymer Scaffolds from Block Copolymers.” Science, vol. 341, pp. 530-533, Aug. 2, 2013. |
Hilke et al., “Block copolymer/homopolymer dual-layer hollow fiber membranes”, Journal of Membrane Science, vol. 472, Aug. 23, 2014, pp. 39-44. |
Huang Yan et al.: “Highly Ordered Mesoporous Carbonaceous Frameworks from a Template of a Mixed Amphiphilic Triblock-Copolymer System of PEO-PPO-PEO and Reverse PPO-PEO-PPO”, Chemistry—An Asian Journal, vol. 2, No. 10, Oct. 1, 2007 (Oct. 1, 2007), pp. 1282-1289. |
J. I. Clodt et al., “Carbohydrates as Additives for the Formation of Isoporous PS-b-P4VP Diblock Copolymer Membranes” Macromolecular Rapid Communications, vol. 34, 190-194, 2013. |
J. Suzuki et al., “Morphology of ABC Triblock Copolymer/Homopolymer Blend Systems.” Journal of Polymer Science Part B: Polymer Physics vol. 40 pp. 1135-1141 Apr. 22, 2002. |
Kanegsberg, “Washing, Rinsing, and Drying: Items to Consider for the Optimization of Your Cleaning Process,” https://www.materialstoday.com/metal-finishing/features/washing-rinsing-and-drying-items-to-consider-for/, Sep. 1, 2005. p. 2, paragraph 6. |
Karunakaran et al. “IsoporousIPS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separatioln” Journal of Membrane Science, vol. 453 Issue 1 (Nov. 16, 2013): pp. 471-477. |
Khademi, M. Application of Tubular Crssflow Microfiltration in Harvesting Microalgae. LSU Master's Theses. 2014, pp. 39-43. |
Kharitonov et al., “Surface modification of polymers by direct fluorination: A convenient approach to improve commercial properties of polymeric articles,” Pure Appl. Chem., vol. 81, No. 3, pp. 451-471, 2009. |
Laboratory-Equipment.com, “Applications for Laboratory Ovens Across the Sciences.” https://www.laboratory-equipment.com/blog/all-laboratory-equipment-blogs/applications-for-laboratory-ovens-across-the-sciences/, Oct. 15, 2015, p. 1, section “Standard and Specialized Lab Oven Applications”. |
Lawrence E. Nielsen, “Cross-Linking-Effect on Physical Properties of Polymers.” Journal of Marcomolecular Science Part C, vol. 3(1), pp. 69-103, 2008. |
Li Yuk Mun Ei Al: “Asymmetric Membranes from Two Chemically Distinct Triblock Terpolymers Blended during Standard Membrane Fabrication”, Macromolecular Rapid Communications, vol. 37, No. 20, Oct. 1, 2016 (Oct. 1, 2016), pp. 1689-1693. |
Polak et al., “Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes,” Applied Surface Science, vol. 254, pp. 173-176, 2007. |
Mu X. et al., Nano-porous Nitrocellulose Liquid Bandage Modulates Cell and Cytokine Response and Accelerates Cutaneous Wound Healing in a Mouse Model. Carbohydr Polym., Sep. 25, 2015, vol. 136, pp. 618-629. |
N. Lefevre et al., “Self-Assembly in Thin Films of Mixtures of Block Copolymers and Homopolymers Interacting by Hydrogen Bonds.” Macromolecules, vol. 43, No. 18, pp. 7734-7743 Aug. 17, 2010. |
Parul Jain et.al., “Protein purification with polymeric affinity membranes containing functionalized poly (acid) brushes”, Biomacromolecules, 2010, vol. 11, No. 4, 1019-1026. |
Qiu et al. “Selective Separation of Similarly Sized Proteins with Tunable Nanoporous Block Copolymer Membranes.” ACS Nano. Vol. 7, No. 1,2013. pp. 768-776 (Year: 2013). |
R. van Reis et al., “High Performance Tangential Flow Filtration.” Biotechnology and Bioengineering, vol. 56, No. 1, pp. 71-82, Oct. 5, 1997. |
Radjabian, Polymer, 55 (2014), 2986-2997 (Year: 2014). |
Ren et al., J. Am. Chem. Soc, 1998, 120, 6830-6831 (Year: 1998). |
Roland Hilke et al., “Supplementary Information Block Copolymer/Homopolymer Dual-Layer Hollow Fiber Membranes Imaging and Characterization Lab and c Water Desalination”, Aug. 23, 2014, pp. 1-3. |
S. Breitbach et al., “Direct Quantification of Cell-Free, Circulating DNA from Unpurified Plasma.” PLOS One, vol. 9, Issue 3, e87838. pp. 1-11. |
S. P. Nunes et al., “From Micelle Supramolecular Assemblies in Selective Solvents to Isoporous Membranes.” Langmuir, DOI 10.1021/la201439P, Jun. 28, 2011. |
S. Rangou et al., “Self-Organized Isoporous Membranes with Tailored Pore Sizes.” Journal of Membrane Science, vol. 451, pp. 266-275, 2014. |
Shahkaramipour et al., “Membranes with Surface-Enhanced Antifouling Properties for Water Purification,” Membranes, vol. 7, pp. 13, 2017. |
Volker Abetz “Isoporous Block Copolmer membranes”, Macromolecular Rapid Communications, vol. 36, No. 1, Nov. 29, 2014 (Nov. 29, 2014), pp. 10-22. |
Wang Zhaogen et al: “Isoporous membranes with gradient porosity by selective swelling of UV-crosslinked block copolymers”, Journal of Membrane Science, vol. 476, Feb. 1, 2015 (Feb. 1, 2015), pp. 449-456. |
Y Nhi et al., “Investigation of the Effect of UV-Crosslin King On Isoporous Membrane Stability”, Chemical Science and Engineering, vol. 46, Dec. 12, 2011. |
Yizhou Zhang ey al: “Nanoporous membranes generated from self-assembled block polymer precursors: Quo Vadis?”, Journal of Applied Polymer Science, vol. 132, No. 21, Jun. 5, 2015. |
Yizhou Zhang, et al., “Microfiltration and Ultrafiltration Membrane Science and Technology”. Journal of Applied Polymer Science, app. 41683, on. 1-17, 2015. |
Number | Date | Country | |
---|---|---|---|
20200339770 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
61482354 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14115218 | US | |
Child | 15286115 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15286115 | Oct 2016 | US |
Child | 16924446 | US |