The present invention relates to systems for the transmission of digital data over a communication channel using a multicarrier modulation and, more particularly, to an improved OQAM transmultiplexer method for use in such systems.
A multicarrier transmission system, as opposed to a single carrier system, uses a set of different frequencies distributed in the transmission channel frequency band to carry the data. The main advantage is that the bit rate can be adjusted for each carrier, according to the noise and distortion power in the vicinity of this carrier. Thus, a better approximation of the theoretical information capacity limit can be expected and, particularly, poor quality channels can be exploited, like some wireless communication channels, power lines or the telephone subscriber lines at high or very high frequencies. A detailed description of existing multicarrier transmission systems and their merits compared to single carrier systems is given in the book by W. Y. Chen: <<DSL-Simulation Techniques and Standards Development for Digital Subscriber Line Systems>>, MacMillan Technical Publishing, Indianapolis, USA, 1998.
In order to efficiently perform multicarrier transmission, two basic approaches have been considered so far. The first one and most widely used is called OFDM (Orthogonal Frequency Division Multiplexing) or DMT (Digital Multi-Tone) and it is based on the FFT (Fast Fourier Transform). It has been a subject of intense research and development efforts. In that scheme, the data are arranged in blocks which are transmitted by orthogonal carriers, and separated by guard times, which have to be greater than the channel impulse response, to preserve the orthogonality of the carriers at the receiving side. In spite of the potential of the approach, OFDM/DMT suffers from a number of weaknesses, which, overall, make it perform hardly better than single carrier transmission: a complex time equalizer has to be introduced in front of the receiver to reduce the channel impulse response length, very precise time synchronization is necessary, a long initialization phase is required, and the carriers, and subchannels, are poorly separated, which reduces the capacity of the system in the presence of jammers. In fact, a good quality channel is necessary for that scheme to work properly. Ample documentation can be found in the literature and a good list of references is given in the book by W. Y. Chen.
A second approach aims at overcoming some of the OFDM/DMT limitations through the use of more sophisticated transforms than the FFT, namely, lapped transforms and wavelet transforms. The idea is to improve the separation between carriers, or subchannels. A lot of theoretical work has been done about this subject, see for example the paper by S. D. Sandberg and M. A. Tzannes: <<Overlapped Discrete Multitone Modulation for High Speed Copper Wire Communications>>, IEEE-JSAC, Vol. 13, No9, December 1995. Although they improve the subchannel separation, the lapped and wavelet approaches still retain some of the crucial OFDM/DMT limitations and particularly the time synchronization requirements.
In fact, the ideal approach for multicarrier transmission is one in which the subchannels are made independent and this is achieved by filter banks. This has been recognized a long time, and an efficient implementation of filter banks for transmission systems, based on the combination of an FFT processor with a polyphase network, has been presented in the paper by M. Bellanger and J. Daguet: <<TDM-FDM Transmultiplexer: Digital Polyphase and FFT>>, IEEE Transactions on Communications, Vol. COM-22, September 1974. Later on, a technique called OQAM (Orthogonal Quadrature Amplitude Modulation) has been proposed for multicarrier transmission with filter banks, see the paper by B. Hirosaki, <<An Orthogonally Multiplexed QAM System Using the Discrete Fourier Transform>>, IEEE Trans. on Communications, Vol. COM-29, July 1981. Its main feature is that the subchannel sampling rate is twice the Nyquist subchannel frequency, or subchannel spacing, and the data are transmitted alternatively on the real and the imaginary part of the complex signal in any subchannel, with, again, an alternation between two adjacent subchannels. With this technique, intersymbol interference is eliminated in a subchannel and between adjacent subchannels. The distortions introduced by the transmission channel can be eliminated by a multibranch equalizer in each subchannel. Recently, it has been shown that a single branch equalizer can be used, see the paper by L. Qin and M. Bellanger, <<Equalization issues in Multicarrier Transmission Using Filter Banks>>, Annals of Telecommunications, Vol. 52, No1–2, January 1997.
In spite of its potential theoretical advantages, the OQAM multicarrier approach is seldom considered for implementation in practical systems. A key reason is that the real/imaginary alternation principle raises problems, which have not been adequately solved thus far, for the equalization algorithms, the carrier synchronization and the system timing organization.
It is a primary object of the present invention, to achieve a highly robust and efficient multicarrier transmission system, using the transmultiplexer concept of filter banks in combination with OQAM modulation.
The above and other objects are achieved in accordance with the present invention wherein a signal containing synchronization patterns which define a timing structure consisting of frames, superframes and hyperframes is fed, in the emitter, to the input of one or several subchannels reserved for synchronization, the relevant information being carried by the magnitude or envelop of the complex OQAM signal. The same signal also contains service data giving the number of bits allocated to each subchannel. In the other subchannels, a short fixed pattern is introduced periodically to serve as a reference signal for the subchannel equalizers in the receiver.
At the output of the analysis filter bank in the receiver, the signal corresponding to the synchronization subchannel(s) is coupled to a first cascade containing an amplitude equalizer, an envelop detector and a filter that delivers the control signal for the phase lock loop associated with the receiver clock generator and to a second cascade containing an amplitude and phase equalizer, a data detector and a block for the identification of the superframe and hyperframe synchronization patterns and the service data extraction. The other outputs of the analysis filter bank are coupled to cascade subchannel equalizers consisting of three elements each, namely an amplitude equalizer, a phase equalizer and a fine equalizer. Every subchannel equalizer is followed by a data extractor and both use the information provided by the synchronization subchannel to complete their functions. The output error signals are used to determine the number of bits assigned to each subchannel and the information is transmitted to the distant terminal via the synchronization subchannel(s) every hyperframe.
With the system of the invention, no initialization specific sequence is necessary at the beginning of a transmission session or after an interruption, and the bit rate distribution among the subchannels can be adjusted continuously in time during the transmission.
These and other features, objects and advantages will be understood or apparent to those of ordinary skill in the art from the following detailed description of the preferred embodiment as illustrated in the various drawing figures.
The invention will be more fully appreciated from the following detailed description when the same is considered in connection with the accompanying drawings, in which:
The block diagram of a multicarrier transmission system is shown in
The present invention is concerned with the multicarrier emitter block 100 and receiver block 200 shown in greater details in
Turning to
The filter banks, SFB 130 and AFB 210 consist of an FFT processor, coupled to a polyphase network as described in the paper by M. Bellanger and J. Daguet. Denoting by fs the sampling frequency of the multicarrier signal and by N the size of the FFT, which is twice the number of real subchannels, the subchannel frequency spacing is fs/N and the SFB and AFB operate at the rate 2(fs/N). For example, in subscriber line transmission, the following values may be selected: fs=2048 kHz; N=512; 2(fs/N)=8 kHz.
The specificity of the filter banks, SFB 130 and AFB 210 resides in the values of their coefficients, that are the same for both, or very close. The filter bank coefficients are computed from a prototype filter frequency response H(f) that is half-Nyquist in the pass-band and provides the maximum attenuation in the stop-band. Therefore, the cascade of the filter banks SFB and AFB exhibits a frequency response H2(f) that satisfies the first Nyquist criterion. It is advantageous to have H2(f) satisfy also the second Nyquist criterion, because intermediate signal samples take on well defined values. For example, if the data samples fed to the real or imaginary part of a subchannel are ±1, the intermediate signal samples at the output of the SFB-AFB cascade are {+1; 0; −1}.
A possible choice for the prototype filter frequency response is an approximation of the following function
Ht(f)=cos(πN f/2fs); 0≦|f|≦fs/N (1)
Ht(f)=0; fs/N≦|f|≦fs/2
using the Fourier series expansion. Accordingly, a prototype filter with M=2P+1 coefficients has the following coefficient values, in the above example.
The input signal xi to the SFB block 130 that corresponds to subchannel i, is supplied by the OQAM modulator 120, a device that associates the input data di to quantized signal samples xi according to predetermined rules, as is well known in data transmission and described for example in the book by W. Y. Chen. The specificity here is that the signal samples take on real and imaginary values alternatively to obey the OQAM principle and the number of levels is determined by an external control signal denoted <<scdatar>> in
The serial-to-parallel converter 110 splits the input bit stream d(n) into as many substreams as used subchannels and, for each substream, constitutes groups of bits di, under the control of the external signal scdatar, to feed the OQAM modulator 120. An additional external signal, denoted <<timing 1/64>> in
In the system, at least one subchannel is used to carry a synchronization signal described hereafter and service data. The corresponding signal xis is generated by the <<synchro+data>> unit 150, the service data, denoted <<scdatae>> in
The timing of the system is organized in 3 levels which will be referred to as follows.
Turning to synchronization, at least one subchannel is used to transmit a specific signal. For example, it can be subchannel 69, whose central frequency is 4 kHz×69=276 kHz. The specific synchronization signal is designed to provide an efficient and robust control of the sampling times in the receiver and perform frame, superframe and hyperframe alignment. It contains the following superframe synchronization pattern.
SFP={1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1}
With the real and imaginary alternation required by the OQAM technique, and the filtering operation performed by the filter banks, such a pattern produces, at the receiving end and in the absence of amplitude distortion in the transmission channel and no signal present in the neighboring subchannels, a complex signal whose squared magnitude v(n) is a fs/2N frequency sinewave of amplitude 0.5, added to a zero-frequency component of amplitude 1.5, as shown in
P0=±{1 −1 −1 1} for a <<zero>>; P1=±{1 1 1 1} for a <<one>>
Two consecutive data are separated by a period of the 2 kHz sinewave, as shown in
The signal used to control the phase lock loop associated with the oscillator that delivers the received signal sampling frequency, or receiver clock generator, is obtained by filtering the 2 kHz component in v(n). This function is advantageously realized in two steps, as follows. A signal c(4n), with sampling frequency 2 kHz, is obtained by
c(4n)=v(4n)−v(4n−1)−[v(4n−2)−v(4n−3)] (3)
Then, an averaging operation is performed to attenuate the noise and the interferences from the neighboring subchannels
ca(4n)=(1−e)ca[4(n−1)]+εc(4n) (4)
where ε is a small constant, for example ε=10−3. The signal ca(4n) is used to control the phase lock loop of the clock generator.
The sign ± in P0 and P1 is used as shown in
The hyperframe synchronization pattern HFP occurs every 64 superframes and it consists of a superframe in which the pattern SFP is repeated 4 times: HFP={SFP,SFP,SFP,SFP}.
In view of equalization in the receiver, an additional feature of the OQAM modulation block 120 in the emitter, is that it imposes fixed values to the first two samples of the superframe in each subchannel, for example: ±[1; 1]. A specific sign may be attributed to each subchannel, in order to avoid producing a large peak in the emitted multicarrier signal Se(n) at the beginning of each superframe.
In the receiver, the multicarrier received signal Sr(n) is processed by a cascade of 4 blocks, namely the analysis filter bank 210, a subchannel equalizer 220, a data extraction module 230 and a parallel-to-serial converter 240. The subchannel equalizer 220, which consists of a cascade of 3 distinct equalizers, is shown in more details in
Turning to
sgrn(n+1)=(1−ε)sgm(n)+ε|xir(n+1)| (5)
where |x| stands for the modulus of x and ε is a small real number, for example ε=10−3.
g1(n+1)=ra/sgm(n+1) (6)
Next, the phase equalizer 222 multiplies its complex input signal yi(n)=yir(n)+j yii(n) by a complex gain g2=a+j b to produce the output ui(n).
The gain is updated at the beginning of the superframe, using the first two samples, denoted yi(n) and yi (n+1). In fact, the following matrix system is solved in the least squares sense.
A preferred approximate implementation of the least squares algorithm is as follows
a=A/C; b=B/C (8)
where the quantities A, B and C are updated every superframe by
A(p+1)=(1−ε)A(p)+ε[yir(n+1)+yii(n)] (9)
B(p+1)=(1−ε)B(p)+ε[yir(n)−yii(n+1)]
C(p+1)=(1−ε)C(p)+ε[yir(n)yir(n+1)+yii(n)yii(n+1)]
The parameter ε is a small constant, for example ε=10−2, p is the superframe index. The initial values can be A(0)=10−3, B(0)=0 and C(p) is kept no smaller than 10−2.
Once the complex gain elements have been calculated, a real error signal is derived as follows.
eip(n)=1−[a yir(n)−b yii(n)] (10)
eip(n+1)=1−[b yir(n+1)+a yii(n+1)]
The error signal is used for noise level estimation as described below.
The fine equalizer 223 computes the following output
to be delivered to the data extraction module 230. The function of the fine equalizer is to complete the task of the two previous modules, in particular to remove the residual distortion. Its coefficients hk(n) generally take very small values and they can be updated at the superframe rate, using the same reference signal as the phase equalizer 222. In addition, they can be updated during regular transmission, according to the data directed equalizer principle, using the error signal ei(n) provided by the data extractor 230 and the least mean squares (LIMS) algorithm
hk(n+1)=hk(n)+δei(n+1)ui(n−k) (12)
where δ, the adaptation step size, is a small value, for example δ=10−3.
Turning back to
E1(p)=(1−ε1)E1(p−1)+ε1[eip2(n)+eip2(n+1)]/2 (13)
E2(n)=(1−ε2)E2(n−1)+ε2[ei2(n)] (14)
where the parameters ε1 and ε2 are small values like 10−2 and 10−3 respectively for example.
The quantity E1(p) is computed every superframe and it is representative of the total distortion plus noise power present in the subchannel, before fine equalization. The quantity E2(n) is computed at the rate 8 kHz and it is representative of the noise power in the subchannel. In normal operation, with the above equations (13) and (14), E2(n) is smaller than E1(p) and the difference depends on the improvement brought by the fine equalizer.
Based on the results of these calculations, a decision is made at the beginning of each hyperframe to keep or modify the number of bits assigned to each subchannel. Then, the corresponding information data, denoted <<scdatae>>, are fed to the <<synchro+data>> block 150 of the emitter 100, for transmission to the distant terminal during the current hyperframe and to the data extraction block 230 in the receiver 200, for use during the next hyperframe. The determination of the number of bits Nb assigned to the subchannel is a two-step process. First, Nb is calculated, for example through successive comparisons to thresholds, as
Nb=Int[½Log2(1/E1(p))−1]; E1(p)<0.25 (15)
where Int[x] stands for the integer part x. Then, E2(n) is used to confirm the decision or improve it. For example, if E2(n) is smaller than E1(p)/4, the number of bits may be increased by one.
The number of bits assigned to the subchannels is limited by the service data capacity. As pointed out earlier and shown in
The data extraction module 230 receives the signal vi(n) from the subchannel equalizer 220 and performs a quantization operation on the real and imaginary parts alternatively, using the quantization scale associated with the number of bits assigned to the subchannel. The binary representation of the quantized value dir is fed to the parallel/serial converter 240 and the quantization error ei(n) is sent back to the subchannel equalizer 220 to be used as per equation (12). The parallel/serial converter 240 produces the output data stream d′(n).
The <<synchro processing>> block 270 is shown in more details in
The subchannel signal xisr is also fed to an amplitude/phase equalizer 274 that produces a signal uis(n), from which the binary data at the rate 8 kHz are recovered, with the help of a data detector 275. In fact, the data detector just takes the sign of the real and imaginary parts of uis(n) alternatively. The binary sequence bs (n) so obtained is fed to the <<synchronization pattern and data extraction>> block 276, that recognizes the superframe and hyperframe synchronization patterns and delivers the corresponding timing information denoted <<timing 1/64>> in the figures. The block also separates the bit assignment data, denoted <<scdatar>> and delivered to the OQAM modulator 120 of each subchannel and to the serial/parallel converter 110 in the emitter of the system.
An important feature of the system of the invention is that poor quality sections of the transmission channel frequency band can be exploited, through the combination of several subchannels. In each superframe, the synchronization subchannel signal carries the bit assignment data for a group of 4 subchannels. If, for these 4 subchannels, the noise power estimations Elj(p) with j=1, 2, 3 and 4, are all greater than 0.0625, which means Nb=0, and if the following condition is satisfied
then, the same one-bit data signal is fed to these subchannels in the emitter and the corresponding phase equalizer outputs ui+j (n) in the receiver are summed as follows
and the input data are retrieved as the sign of the variable sum(n). With that technique, a one-bit data sequence is transmitted by 4 subchannels. Clearly, this is an example and similar combinations can be elaborated for other numbers of subchannels, like 2, 3, 8 or 16. The output vi(n) of the subchannel equalizer 220 may also be used.
Although the present invention has been described in terms of the presently preferred embodiment, it is to be understood that such disclosure is purely illustrative and is not to be interpreted as limiting. Consequently, without departing from the spirit and scope of the invention, various alterations, modifications, and/or alternative applications of the invention will, no doubt, be suggested to those skilled in the art after having read the preceding disclosure. Accordingly, it is intended that the following claims be interpreted as encompassing all alterations, modifications, or alternative applications as fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
99/14036 | Nov 1999 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US00/42048 | 11/9/2000 | WO | 00 | 4/25/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/35561 | 5/17/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3674937 | Bellanger et al. | Jul 1972 | A |
3801913 | Daguet et al. | Apr 1974 | A |
3891803 | Daguet et al. | Jun 1975 | A |
3904963 | Bellanger et al. | Sep 1975 | A |
3928755 | Bellanger et al. | Dec 1975 | A |
3930147 | Bellanger et al. | Dec 1975 | A |
3971922 | Bellanger et al. | Jul 1976 | A |
4020288 | Bellanger et al. | Apr 1977 | A |
4101738 | Bellanger et al. | Jul 1978 | A |
4312062 | Bellanger et al. | Jan 1982 | A |
4320362 | Bellanger et al. | Mar 1982 | A |
4485272 | Duong et al. | Nov 1984 | A |
4575682 | Aoyagi | Mar 1986 | A |
4621355 | Hirosaki | Nov 1986 | A |
4853802 | Kukson et al. | Aug 1989 | A |
5132988 | Fisher et al. | Jul 1992 | A |
5148765 | Hung et al. | Sep 1992 | A |
5220570 | Lou et al. | Jun 1993 | A |
5285474 | Chow et al. | Feb 1994 | A |
5317596 | Ho et al. | May 1994 | A |
5400322 | Hunt et al. | Mar 1995 | A |
5430661 | Fisher et al. | Jul 1995 | A |
5479447 | Chow et al. | Dec 1995 | A |
5495507 | Bellanger et al. | Feb 1996 | A |
5497398 | Tzannes et al. | Mar 1996 | A |
5519731 | Cioffi | May 1996 | A |
5557612 | Bingham | Sep 1996 | A |
5565868 | Azrouf et al. | Oct 1996 | A |
5596604 | Cioffi et al. | Jan 1997 | A |
5604690 | Bellanger | Feb 1997 | A |
5623513 | Chow et al. | Apr 1997 | A |
5625651 | Cioffi | Apr 1997 | A |
5627863 | Aslanis et al. | May 1997 | A |
5631610 | Sandberg et al. | May 1997 | A |
5633979 | Bellanger | May 1997 | A |
5636246 | Tzannes et al. | Jun 1997 | A |
5640423 | Archer | Jun 1997 | A |
5644573 | Bingham et al. | Jul 1997 | A |
5644596 | Sih | Jul 1997 | A |
5673290 | Cioffi | Sep 1997 | A |
5680394 | Bingham et al. | Oct 1997 | A |
5694349 | Pal | Dec 1997 | A |
5715280 | Sandberg et al. | Feb 1998 | A |
6047025 | Johnson et al. | Apr 2000 | A |
Number | Date | Country |
---|---|---|
0 793 369 | Sep 1997 | EP |
WO 9821861 | May 1998 | WO |