Multicolored lighting method and apparatus

Information

  • Patent Grant
  • 7274160
  • Patent Number
    7,274,160
  • Date Filed
    Friday, March 26, 2004
    20 years ago
  • Date Issued
    Tuesday, September 25, 2007
    17 years ago
Abstract
Illumination methods and apparatus, in which a first number of first light sources are adapted to generate first radiation having a first spectrum, and a second number of second light sources are adapted to generate second radiation having a second spectrum different than the first spectrum. In one example, the first number of the first light sources and the second number of the second light sources are different. In another example, a first intensity of the first radiation and a second intensity of the second radiation are independently controlled so as to controllably vary at least an overall perceivable color of generated visible radiation. In yet another example, a first control signal controls all of the first light sources substantially identically, and a second control signal controls all of the second light sources substantially identically.
Description
BACKGROUND OF THE INVENTION

The present invention relates to providing light of a selectable color using LEDs. More particularly, the present invention is a method and apparatus for providing multicolored illumination. More particularly still, the present invention is an apparatus for providing a computer controlled multicolored illumination network capable of high performance and rapid color selection and change.


It is well known that combining the projected light of one color with the projected light of another color will result in the creation of a third color. It is also well known that the three most commonly used primary colors—red, blue and green—can be combined in different proportions to generate almost any color in the visible spectrum. The present invention takes advantage of these effects by combining the projected light from at least two light emitting diodes (LEDs) of different primary colors.


Computer lighting networks are not new. U.S. Pat. No. 5,420,482, issued to Phares, describes one such network that uses different colored LEDs to generate a selectable color. Phares is primarily for use as a display apparatus. However, the apparatus has several disadvantages and limitations. First, each of the three color LEDs in Phares is powered through a transistor biasing scheme in which the transistor base is coupled to a respective latch register through biasing resistors. The three latches are all simultaneously connected to the same data lines on the data bus. This means it is impossible in Phares to change all three LED transistor biases independently and simultaneously. Also, biasing of the transistors is inefficient because power delivered to the LEDs is smaller than that dissipated in the biasing network. This makes the device poorly suited for efficient illumination applications. The transistor biasing used by Phares also makes it difficult, if not impossible, to interchange groups of LEDs having different power ratings, and hence different intensity levels.


U.S. Pat. No. 4,845,481, issued to Havel, is directed to a multicolored display device. Havel addresses some, but not all of the switching problems associated with Phares. Havel uses a pulse width modulated signal to provide current to respective LEDs at a particular duty cycle. However, no provision is made for precise and rapid control over the colors emitted. As a stand alone unit, the apparatus in Havel suggests away from network lighting, and therefore lacks any teaching as to how to implement a pulse width modulated computer lighting network. Further, Havel does not appreciate the use of LEDs beyond mere displays, such as for illumination.


U.S. Pat. No. 5,184,114, issued to Brown, shows an LED display system. But Brown lacks any suggestion to use LEDs for illumination, or to use LEDs in a configurable computer network environment. U.S. Pat. No. 5,134,387, issued to Smith et al., directed to an LED matrix display, contains similar problems. Its rudimentary cur-rent control scheme severely limits the possible range of colors that can be displayed.


It is an object of the present invention to overcome the limitations of the prior art by providing a high performance computer controlled multicolored LED lighting network.


It is a further object of the present invention to provide a unique LED lighting network structure capable of both a linear chain of nodes and a binary tree configuration.


It is still another object of the present invention to provide a unique heat-dissipating housing to contain the lighting units of the lighting network.


It is yet another object of the present invention to provide a current regulated LED lighting apparatus, wherein the apparatus contains lighting modules each having its own maximum current rating and each conveniently interchangeable with one another.


It is a still further object of the present invention to provide a unique computer current-controlled LED lighting assembly for use as a general illumination device capable of emitting multiple colors in a continuously programmable 24-bit spectrum.


It is yet a still further object of the present invention to provide a unique flashlight, inclinometer, thermometer, general environmental indicator and lightbulb, all utilizing the general computer current-control principles of the present invention.


Other objects of the present invention will be apparent from the detailed description below.


SUMMARY OF THE INVENTION

In brief, the invention herein comprises a pulse width modulated current control for an LED lighting assembly, where each current-controlled unit is uniquely addressable and capable of receiving illumination color information on a computer lighting network. In a further embodiment, the invention includes a binary tree network configuration of lighting units (nodes). In another embodiment, the present invention comprises a heat dissipating housing, made out of a heat-conductive material, for housing the lighting assembly. The heat dissipating housing contains two stacked circuit boards holding respectively the power module and the light module. The light module is adapted to be conveniently interchanged with other light modules having programmable current, and hence maximum light intensity ratings. Other embodiments of the present invention involve novel applications for the general principles described herein.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a stylized electrical circuit schematic of the light module of the present invention.



FIG. 2 is a stylized electrical circuit schematic of the power module of the present invention.



FIG. 2A illustrates a network of addressable LED-based lighting units according to one embodiment of the invention.



FIG. 3 is an exploded view of the housing of one of the embodiments of the present invention.



FIG. 4 is a plan view of the LED-containing side of the light module of the present invention.



FIG. 5 is a plan view of the electrical connector side of the light module of the present invention.



FIG. 6 is a plan view of the power terminal side of the power module of the present invention.



FIG. 7 is a plan view of the electrical connector side of the power module of the present invention.



FIG. 8 is an exploded view of a flashlight assembly containing the LED lighting module of the present invention.



FIG. 9 is a control block diagram of the environmental indicator of the present invention.





DETAILED DESCRIPTION

The structure and operation of a preferred embodiment will now be described. It should be understood that many other ways of practicing the inventions herein are available, and the embodiments described herein are exemplary and not limiting. Turning to FIG. 1, shown is an electrical schematic representation of a light module 100 of the present invention. FIGS. 4 and 5 show the LED-containing side and the electrical connector side of light module 100. Light module 100 is self-contained, and is configured to be a standard item interchangeable with any similarly constructed light module. Light module 100 contains a ten-pin electrical connector 110 of the general type. In this embodiment, the connector 110 contains male pins adapted to fit into a complementary ten-pin connector female assembly, to be described below. Pin 180 is the power supply. A source of DC electrical potential enters module 100 on pin 180. Pin 180 is electrically connected to the anode end of light emitting diode (LED) sets 120, 140 and 160 to establish a uniform high potential on each anode end.


LED set 120 contains red LEDs, set 140 contains blue and set 160 contains green, each obtainable from the Nichia America Corporation. These LEDs are primary colors, in the sense that such colors when combined in preselected proportions can generate any color in the spectrum. While three primary colors is preferred, it will be understood that the present invention will function nearly as well with only two primary colors to generate any color in the spectrum. Likewise, while the different primary colors are arranged herein on sets of uniformly colored LEDs, it will be appreciated that the same effect may be achieved with single LEDs containing multiple color-emitting semiconductor dies. LED sets 120, 140 and 160 each preferably contains a serial/parallel array of LEDs in the manner described by Okuno in U.S. Pat. No. 4,298,869, incorporated herein by reference. In the present embodiment, LED set 120 contains three parallel connected rows of nine red LEDs (not shown), and LED sets 140 and 160 each contain five parallel connected rows of five blue and green LEDs, respectively (not shown). It is understood by those in the art that, in general, each red LED drops the potential in the line by a lower amount than each blue or green LED, about 2.1 V, compared to 4.0 V, respectively, which accounts for the different row lengths. This is because the number of LEDs in each row is determined by the amount of voltage drop desired between the anode end at the power supply voltage and the cathode end of the last LED in the row. Also, the parallel arrangement of rows is a fail-safe measure that ensures that the light module 100 will still function even if a single LED in a row fails, thus opening the electrical circuit in that row. The cathode ends of the three parallel rows of nine red LEDs in LED set 120 are then connected in common, and go to pin 128 on connector 110. Likewise, the cathode ends of the five parallel rows of five blue LEDs in LED set 140 are connected in common, and go to pin 148 on connector 110. The cathode ends of the five parallel rows of five green LEDs in LED set 160 are connected in common, and go to pin 168 on connector 110. Finally, on light module 100, each LED set is associated with a programming resistor that combines with other components, described below, to program the maximum current through each set of LEDs. Between pin 124 and 126 is resistor 122, 6.2. Between pin 144 and 146 is resistor 142, 4.7. Between pin 164 and 166 is resistor 162, 4.7. Resistor 122 programs maximum current through red LED set 120, resistor 142 programs maximum current through blue LED set 140, and resistor 162 programs maximum current through green LED set 160. The values these resistors should take are determined empirically, based on the desired maximum light intensity of each LED set. In the present embodiment, the resistances above program red, blue and green currents of 70, 50 and 50 A, respectively.


With the electrical structure of light module 100 described, attention will now be given to the electrical structure of power module 200, shown in FIG. 2. FIGS. 6 and 7 show the power terminal side and electrical connector side of an embodiment of power module 200. Like light module 100, power module 200 is self contained. Interconnection with male pin set 110 is achieved through complementary female pin set 210. Pin 280 connects with pin 180 for supplying power, delivered to pin 280 from supply 300. Supply 300 is shown as a functional block for simplicity. In actuality, supply 300 can take numerous forms for generating a DC voltage. In the present embodiment, supply 300 provides 24 Volts through a connection terminal (not shown), coupled to pin 280 through transient protection capacitors (not shown) of the general type. It will be appreciated that supply 300 may also supply a DC voltage after rectification and/or voltage transformation of an AC supply, as described more fully in U.S. Pat. No. 4,298,869.


Also connected to pin connector 210 are three current programming integrated circuits, ICR 220, ICB 240 and ICG 260. Each of these is a three terminal adjustable regulator, preferably part number LM317B, available from the National Semiconductor Corporation, Santa Clara, Calif. The teachings of the LM317 datasheet are incorporated herein by reference. Each regulator contains an input terminal, an output terminal and an adjustment terminal, labeled I, O and A, respectively. The regulators function to maintain a constant maximum current into the input terminal and out of the output terminal. This maximum current is pre-programmed by setting a resistance between the output and the adjustment terminals. This is because the regulator will cause the voltage at the input terminal to settle to whatever value is needed to cause 1.25 V to appear across the fixed current set resistor, thus causing constant current to flow. Since each functions identically, only ICR 220 will now be described. First, current enters the input terminal of ICR 220 from pin 228. Of course, pin 228 in the power module is coupled to pin 128 in the light module, and receives current directly from the cathode end of the red LED set 120. Since resistor 122 is ordinarily disposed between the output and adjustment terminals of ICR 220 through pins 224/124 and 226/126, resistor 122 programs the amount of current regulated by ICR 220. Eventually, the current output from the adjustment terminal of ICR 220 enters a Darlington driver. In this way, ICR 220 and associated resistor 122 program the maximum current through red LED set 120. Similar results are achieved with ICB 240 and resistor 142 for blue LED set 140, and with ICG 260 and resistor 162 for green LED set 160.


The red, blue and green LED currents enter another integrated circuit, IC1380, at respective nodes 324, 344 and 364. IC1380 is preferably a high current/voltage Darlington driver, part no. DS2003 available from the National Semiconductor Corporation, Santa Clara, Calif. IC1380 is used as a current sink, and functions to switch current between respective LED sets and ground 390. As described in the DS2003 datasheet, incorporated herein by reference, IC1 contains six sets of Darlington transistors with appropriate on-board biasing resistors. As shown, nodes 324, 344 and 364 couple the current from the respective LED sets to three pairs of these Darlington transistors, in the well known manner to take advantage of the fact that the current rating of IC1380 may be doubled by using pairs of Darlington transistors to sink respective currents. Each of the three on-board Darlington pairs is used in the following manner as a switch. The base of each Darlington pair is coupled to signal inputs 424, 444 and 464, respectively. Hence, input 424 is the signal input for switching current through node 324, and thus the red LED set 120. Input 444 is the signal input for switching current through node 344, and thus the blue LED set 140. Input 464 is the signal input for switching current through node 364, and thus the green LED set 160. Signal inputs 424, 444 and 464 are coupled to respective signal outputs 434, 454 and 474 on microcontroller IC2400, as described below. In essence, when a high frequency square wave is incident on a respective signal input, IC1380 switches current through a respective node with the identical frequency and duty cycle. Thus, in operation, the states of signal inputs 424, 444 and 464 directly correlate with the opening and closing of the power circuit through respective LED sets 120, 140 and 160.


The structure and operation of microcontroller IC2400 will now be described. Microcontroller IC2400 is preferably a MICROCHIP brand PIC16C63, although almost any properly programmed microcontroller or microprocessor can perform the software functions described herein. The main function of microcontroller IC2400 is to convert numerical data received on serial Rx pin 520 into three independent high frequency square waves of uniform frequency but independent duty cycles on signal output pins 434, 454 and 474. The FIG. 2 representation of microcontroller IC2400 is partially stylized, in that persons of skill in the art will appreciate that certain of the twenty-eight standard pins have been omitted or combined for greatest clarity.


Microcontroller IC2400 is powered through pin 450, which is coupled to a 5 Volt source of DC power 700. Source 700 is preferably driven from supply 300 through a coupling (not shown) that includes a voltage regulator (not shown). An exemplary voltage regulator is the LM340 3-terminal positive regulator, available from the National Semiconductor Corporation, Santa Clara, Califa. The teachings of the LM340 datasheet are hereby incorporated by reference. Those of skill in the art will appreciate that most microcontrollers, and many other independently powered digital integrated circuits, are rated for no more than a 5 Volt power source. The clock frequency of microcontroller IC2400 is set by crystal 480, coupled through appropriate pins. Pin 490 is the microcontroller IC2400 ground reference.


Switch 600 is a twelve position dip switch that may be alterably and mechanically set to uniquely identify the microcontroller IC2400. When individual ones is of the twelve mechanical switches within dip switch 600 are closed, a path is generated from corresponding pins 650 on microcontroller IC2400 to ground 690. Twelve switches create 212 possible settings, allowing any microcontroller IC2400 to take on one of 4096 different IDs, or addresses. In the preferred embodiment, only nine switches are actually used because the DMX-512 protocol, discussed below, is employed.


Once switch 600 is set, microcontroller IC2400 “knows” its unique address (“who am I”), and “listens” on serial line 520 for a data stream specifically addressed to it. A high speed network protocol, preferably a DMX protocol, is used to address network data to each individually addressed microcontroller IC2400 from a central network controller 1000, as shown for example in FIG. 2A. The DMX protocol is described in a United States Theatre Technology, Inc. publication entitled “DMX512/1990 Digital Data Transmission Standard for Dimmers and Controllers,” incorporated herein by reference. Basically, in the network protocol used herein, a central controller creates a stream of network data consisting of sequential data packets. Each packet first contains a header, which is checked for conformance to the standard and discarded, followed by a stream of sequential bytes representing data for sequentially addressed devices. For instance, if the data packet is intended for light number fifteen, then fourteen bytes from the data stream will be discarded, and the device will save byte number fifteen. If as in the preferred embodiment, more than one byte is needed, then the address is considered to be a starting address, and more than one byte is saved and utilized. Each byte corresponds to a decimal number 0 to 255, linearly representing the desired intensity from Off to Full. (For simplicity, details of the data packets such as headers and stop bits are omitted from this description, and will be well appreciated by those of skill in the art.) This way, each of the three LED colors is assigned a discrete intensity value between 0 and 255. These respective intensity values are stored in respective registers within the memory of microcontroller IC2400 (not shown). Once the central controller exhausts all data packets, it starts over in a continuous refresh cycle. The refresh cycle is defined by the standard to be a minimum of 1196 microseconds, and a maximum of 1 second.


Microcontroller IC2400 is programmed continually to “listen” for its data stream. When microcontroller IC2400 is “listening,” but before it detects a data packet intended is for it, it is running a routine designed to create the square wave signal outputs on pins 434, 454 and 474. The values in the color registers determine the duty cycle of the square wave. Since each register can take on a value from 0 to 255, these values create 256 possible different duty cycles in a linear range from 0% to 100%. Since the square wave frequency is uniform and determined by the program running in the microcontroller IC2400, these different discrete duty cycles represent variations in the width of the square wave pulses. This is known as pulse width modulation (PWM).


The PWM interrupt routine is implemented using a simple counter, incrementing from 0 to 255 in a cycle during each period of the square wave output on pins 434, 454 and 474. When the counter rolls over to zero, all three signals are set high. Once the counter equals the register value, signal output is changed to low. When microcontroller IC2400 receives new data, it freezes the counter, copies the new data to the working registers, compares the new register values with the current count and updates the output pins accordingly, and then restarts the counter exactly where it left off. Thus, intensity values may be updated in the middle of the PWM cycle. Freezing the counter and simultaneously updating the signal outputs has at least two advantages. First, it allows each lighting unit to quickly pulselstrobe as a strobe light does. Such strobing happens when the central controller sends network data having high intensity values alternately with network data having zero intensity values at a rapid rate. If one restarted the counter without first updating the signal outputs, then the human eye would be able to perceive the staggered deactivation of each individual color LED that is set at a different pulse width. This feature is not of concern in incandescent lights because of the integrating effect associated with the heating and cooling cycle of the illumination element element. LEDs, unlike incandescent elements, activate and deactivate essentially instantaneously in the present application. The second advantage is that one can “dim” the LEDs without the flickering that would otherwise occur if the counter were reset to zero. The central controller can send a continuous dimming signal when it creates a sequence of intensity values representing a uniform and proportional decrease in light intensity for each color LED. If one did not update the output signals before restarting the counter, there is a possibility that a single color LED will go through nearly two cycles without experiencing the zero current state of its duty cycle. For instance, assume the red register is set at 4 and the counter is set at 3 when it is frozen. Here, the counter is frozen just before the “off” part of the PWM cycle is to occur for the red LEDs. Now assume that the network data changes the value in the red register from 4 to 2 and the counter is restarted without deactivating the output signal. Even though the counter is greater than the intensity value in the red register, the output state is still “on”, meaning that maximum current is still flowing through the red LEDs. Meanwhile, the blue and green LEDs will probably turn off at their appropriate times in the PWM cycle. This would be perceived by the human eye as a red flicker in the course of dimming the color intensities. Freezing the counter and updating the output for the rest of the PWM cycle overcomes these disadvantages, ensuring the flicker does not occur.


The network interface for microcontroller IC2400 will now be described. Jacks 800 and 900 are standard RJ-8 network jacks. Jack 800 is used as an input jack, and is shown for simplicity as having only three inputs: signal inputs 860, 870 and ground 850. Network data enters jack 800 and passes through signal inputs 860 and 870. These signal inputs are then coupled to IC3500, which is an RS-485/RS422 differential bus repeater of the standard type, preferably a DS96177 from the National Semiconductor Corporation, Santa Clara, Calif. The teachings of the DS96177 datasheet are hereby incorporated by reference. The signal inputs 860, 870 enter IC3500 at pins 560, 570. The data signal is passed through from pin 510 to pin 520 on microcontroller IC2400. The same data signal is then returned from pin 540 on IC2400 to pin 530 on IC3500. Jack 900 is used as an output jack and is shown for simplicity as having only five outputs: signal outputs 960, 970, 980, 990 and ground 950. Outputs 960 and 970 are split directly from input lines 860 and 870, respectively. Outputs 980 and 990 come directly from IC3500 pins 580 and 590, respectively. It will be appreciated that the foregoing assembly enables two network nodes to be connected for receiving the network data. Thus, a network may be constructed as a daisy chain, if only single nodes are strung together, or as a binary tree, if two nodes are attached to the output of each single node.


From the foregoing description, one can see that an addressable network of LED illumination or display units 2000 as shown in FIG. 2A can be constructed from a collection of power modules each connected to a respective light module. As long as at least two primary color LEDs are used, any illumination or display color may be generated simply by preselecting the light intensity that each color emits. Further, each color LED can emit light at any of 255 different intensities, depending on the duty cycle of PWM square wave, with a full intensity pulse generated by passing maximum current through the LED. Further still, the maximum intensity can be conveniently programmed simply by adjusting the ceiling for the maximum allowable current using programming resistances for the current regulators residing on the light module. Light modules of different maximum current ratings may thereby be conveniently interchanged.


The foregoing embodiment may reside in any number of different housings. A preferred housing for an illumination unit is described. Turning now to FIG. 3, there is shown an exploded view of an illumination unit of the present invention comprising a substantially cylindrical body section 10, a light module 20, a conductive sleeve 30, a power module 40, a second conductive sleeve 50 and an enclosure plate 60. It is to be assumed here that the light module 20 and the power module 40 contain the electrical structure and software of light module 100 and power module 200, described above. Screws 62, 64, 66, 68 allow the entire apparatus to be mechanically connected. Body section 10, conductive sleeves 30 and 50 and enclosure plate 60 are preferably made from a material that conducts heat, most preferably aluminum. Body section 10 has an open end 10, a reflective interior portion 12 and an illumination end 13, to which module 20 is mechanically affixed. Light module 20 is disk shaped and has two sides. The illumination side (not shown) comprises a plurality of LEDs of different primary colors. The connection side holds an electrical connector male pin assembly 22. Both the illumination side and the connection side are coated with aluminum surfaces to better allow the conduction of heat outward from the plurality of LEDs to the body section 10. Likewise, power module 40 is disk shaped and has every available surface covered with aluminum for the same reason. Power module 40 has a connection side holding an electrical connector female pin assembly 44 adapted to fit the pins from assembly 22. Power module 40 has a power terminal side holding a terminal 42 for connection to a source of DC power. Any standard AC or DC jack may be used, as appropriate.


Interposed between light module 20 and power module 40 is a conductive aluminum sleeve 30, which substantially encloses the space between modules 20 and 40. As shown, a disk-shaped enclosure plate 60 and screws 62, 64, 66 and 68 sad all of the components together, and conductive sleeve 50 is thus interposed between enclosure plate 60 and power module 40. Once sealed together as a unit, the illumination apparatus may be connected to a data network as described above and mounted in any convenient manner to illuminate an area. In operation, preferably a light diffusing means will be inserted in body section 10 to ensure that the LEDs on light module 20 appear to emit a single uniform frequency of light.


From the foregoing, it will be appreciated that PWM current control of LEDs to produce multiple colors may be incorporated into countless environments, with or without networks. For instance, FIG. 8 shows a hand-held flashlight can be made to shine any conceivable color using an LED assembly of the present invention. The flashlight contains an external adjustment means 5, that may be for instance a set of three potentiometers coupled to an appropriately programmed microcontroller 92 through respective A/D conversion means 15. Each potentiometer would control the current duty cycle, and thus the illumination intensity, of an individual color LED on LED board 25. With three settings each capable of generating a different byte from 0 to 255, a computer-controlled flashlight may generate twenty-four bit color. Of course, three individual potentiometers can be incorporated into a single device, such as a track ball or joystick, so as to be operable as a single adjuster. Further, it is not necessary that the adjustment means must be a potentiometer. For instance, a capacitive or resistive thumb plate may also be used to program the two or three registers necessary to set the color. A lens assembly 93 may be provided for reflecting the emitted light. A non-hand held embodiment of the present invention may be used as an underwater swimming pool light. Since the present invention can operate at relatively low voltages and low current, it is uniquely suited for safe underwater operation.


Similarly, the present invention may be used as a general indicator of any given environmental condition. FIG. 9 shows the general functional block diagram for such an apparatus. Shown within FIG. 9 is also an exemplary chart showing the duty cycles of the three color LEDs during an exemplary period. As one example of an environmental indicator 96, the power module can be coupled to an inclinometer. The inclinometer measures general angular orientation with respect to the earth's center of gravity. The inclinometer's angle signal can be converted through an A/D converter 94 and coupled to the data inputs of the micro controller 92 in the power module. The microcontroller 92 can then be programmed to assign each discrete angular orientation a different color through the use of a lookup table associating angles with LED color register values. A current switch 90, coupled to the microcontroller 92, may be used to control the current supply to LEDs 120, 140, and 160 of different colors. The microcontroller 92 may be coupled to a transceiver 95 for transmitting and receiving signals. The “color inclinometer” may be used for safety, such as in airplane cockpits, or for novelty, such as to illuminate the sails on a sailboat that sways in the water. Another indicator use is to provide an easily readable visual temperature indication. For example, a digital thermometer can be connected to provide the microcontroller a temperature reading. Each temperature will be associated with a particular set of register values, and hence a particular color output. A plurality of such “color thermometers” can be located over a large space, such as a storage freezer, to allow simple visual inspection of temperature over three dimensions.


Another use of the present invention is as a lightbulb. Using appropriate rectifier and voltage transformation means, the entire power and light modules may be placed in an Edison-mount (screw-type) lightbulb housing. Each bulb can be programmed with particular register values to deliver a particular color bulb, including white. The current regulator can be pre-programmed to give a desired current rating and thus preset light intensity. Naturally, the lightbulb will have a transparent or translucent section that allows the passage of light into the ambient.


While the foregoing has been a detailed description of the preferred embodiment of the invention, the claims which follow define more freely the scope of invention to which applicant is entitled. Modifications or improvements which may not come within the explicit language of the claims described in the preferred embodiments should be treated as within the scope of invention insofar as they are equivalent or otherwise consistent with the contribution over the prior art and such contribution is not to be limited to specific embodiments disclosed.

Claims
  • 1. An illumination apparatus, comprising: a first number of first light sources adapted to generate first radiation having a first spectrum; a second number of second light sources adapted to generate second radiation having a second spectrum different than the first spectrum, wherein the first number and the second number are different; at least one structure coupled to the first number of first light sources and the second number of second light sources so as to facilitate a mixing of the first radiation and the second radiation; and at least one controller coupled to the first number of first light sources and the second number of second light sources and configured to independently control at least a first intensity of the first radiation and a second intensity of the second radiation so as to controllably vary at least an overall perceivable color of the visible radiation generated by the illumination apparatus, wherein the apparatus is configured to provide ambient illumination including visible radiation in an environment to be occupied by an observer of the ambient illumination, the visible radiation including at least one of the first radiation and the second radiation, and wherein the at least one controller is configured as an addressable controller capable of receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 2. The apparatus of claim 1, wherein the at least one controller is configured to control the first light sources and the second light sources irrespective of any imaging of the ambient illumination.
  • 3. The illumination apparatus of claim 1, wherein the at least one controller is configured to generate a first control signal to control all of the first light sources substantially identically, and a second control signal to control all of the second light sources substantially identically.
  • 4. The illumination apparatus of claim 1, wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique.
  • 5. The illumination apparatus of claim 4, wherein the at least one controller is configured to generate a first PWM control signal to control all of the first light sources substantially identically, and a second PWM control signal to control all of the second light sources substantially identically.
  • 6. The illumination apparatus of claim 1, wherein each light source of the first and second light sources is an LED.
  • 7. The apparatus of claim 1, wherein the at least one controller is configured to control the first light sources and the second light sources irrespective of a motion of any object in the environment to be occupied by the observer.
  • 8. The illumination apparatus of claim 1, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the at least one controller is configured to process the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 9. The illumination apparatus of claim 1, wherein the at least one network signal is formatted using a DMX protocol, and wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 10. The illumination apparatus of claim 1, wherein each light source of the first and second light sources is an LED, and wherein the at least one controller is configured to control at least a first intensity of the first radiation and a second intensity of the second radiation such that an overall perceivable color of the visible radiation generated by the apparatus is white.
  • 11. The illumination apparatus of claim 10, further comprising at least one power connection coupled to the at least one controller, the at least one power connection configured to engage mechanically and electrically with a conventional light socket.
  • 12. The illumination apparatus of claim 11, wherein the at least one power connection includes an Edison screw-type power connection.
  • 13. The illumination apparatus of claim 11, wherein the at least one structure is configured to resemble at least one type of conventional light bulb.
  • 14. The illumination apparatus of claim 13, wherein the at least one structure is configured to resemble an Edison-mount light bulb housing.
  • 15. The illumination apparatus of claim 13, wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation so as to controllably vary the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 16. The illumination apparatus of claim 15, further comprising at least one user interface coupled to the at least one controller and configured to facilitate an adjustment of the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 17. The illumination apparatus of claim 15, further comprising at least one sensor coupled to the at least one controller and configured to generate at least one control signal in response to at least one detectable condition, wherein the at least one controller is configured to control the overall perceivable color of the visible radiation generated by the illumination apparatus in response to the at least one control signal.
  • 18. The illumination apparatus of claim 15, further comprising at least one of a receiver and a transmitter coupled to the at least one controller and configured to communicate at least one control signal to or from the illumination apparatus.
  • 19. The illumination apparatus of claim 15, wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique.
  • 20. The illumination apparatus of claim 15, wherein the at least one controller is configured as an addressable controller capable of receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 21. The illumination apparatus of claim 20, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the at least one controller is configured to process the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 22. The illumination apparatus of claim 20, wherein the at least one network signal is formatted using a DMX protocol, and wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 23. An illumination method, comprising acts of: A) generating first radiation having a first spectrum from a plurality of first light sources; B) generating second radiation having a second spectrum different than the first spectrum from a plurality of second light sources; C) mixing at least a portion of the first radiation and a portion of the second radiation to provide visible radiation having an overall perceivable color; D) receiving at least one addressed network signal including at least first lighting information relating to the overall perceivable color of the visible radiation; and E) independently controlling at least a first intensity of the first radiation and a second intensity of the second radiation based at least in part on the first lighting information so as to controllably vary at least the overall perceivable color of the visible radiation, wherein the act E) includes acts of: E1) controlling all of the first light sources substantially identically; and E2) controlling all of the second light sources substantially identically.
  • 24. An illumination apparatus, comprising: a first number of first LED light sources adapted to generate first radiation having a first spectrum; a second number of second LED light sources adapted to generate second radiation having a second spectrum different than the first spectrum, wherein the first number and the second number are different; at least one controller coupled to the first number of first light sources and the second number of second light sources and configured to control at least a first intensity of the first radiation and a second intensity of the second radiation such that an overall perceivable color of visible radiation generated by the apparatus is white; at least one power connection coupled to the at least one controller, the at least one power connection configured to engage mechanically and electrically with a conventional light socket; and at least one of a housing and a mounting for the first and second light sources and the at least one controller, wherein the at least one of the housing and the mounting is configured to resemble at least one type of conventional light bulb, wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation so as to controllably vary the overall perceivable color of the visible radiation generated by the illumination apparatus, and wherein the at least one controller is configured as an addressable controller capable of receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 25. An illumination method, comprising acts of: A) generating first radiation having a first spectrum from a first number of first LED light sources; B) generating second radiation having a second spectrum different than the first spectrum from a second number of second LED light sources, wherein the first number and the second number are different; C) mixing at least a portion of the first radiation and a portion of the second radiation to provide visible radiation having an overall perceivable color; D) controlling at least a first intensity of the first radiation and a second intensity of the second radiation such that the overall perceivable color of the visible radiation is white; and E) receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation, wherein the act D) includes an act of controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the first lighting information.
  • 26. An illumination method, comprising acts of: A) generating first radiation having a first spectrum from a plurality of first light sources; B) generating second radiation having a second spectrum different than the first spectrum from a plurality of second light sources; C) coupling the first light sources and second light sources via an essentially planar inflexible substrate so as to provide ambient illumination including visible radiation in an environment to be occupied by an observer of the ambient illumination, the visible radiation including at least one of the first radiation and the second radiation; D) mixing at least a portion of the first radiation and a portion of the second radiation to provide an overall perceivable color of the visible radiation; and E) independently controlling at least a first intensity of the first radiation and a second intensity of the second radiation so as to controllably vary at least the overall perceivable color of the visible radiation, wherein the act E) includes acts of: E1) controlling all of the first light sources substantially identically; and E2) controlling all of the second light sources substantially identically, the method further comprising an act of: receiving at least one addressed network signal including at least first lighting information relating to the overall perceivable color of the visible radiation, wherein the act E) further includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the first lighting information.
  • 27. The illumination method of claim 26, wherein respective numbers of the first light sources and the second light sources are different.
  • 28. The illumination method of claim 26, wherein the act E) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique.
  • 29. The illumination method of claim 26, wherein each light source of the first and second light sources is an LED.
  • 30. The method of claim 26, wherein each light source of the first and second light sources is an LED, and wherein the act E) comprises an act of: E3) controlling at least the first intensity of the first radiation and the second intensity of the second radiation such that the overall perceivable color of the visible radiation is white.
  • 31. The illumination method of claim 26, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the method further comprises an act of: processing the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 32. The illumination method of claim 26, wherein the at least one network signal is formatted using a DMX protocol, and wherein the act D) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 33. The method of claim 30, wherein the first and second light sources are arranged as a package including at least one of a housing and a mounting, and wherein the method further comprises an act of: engaging the package mechanically and electrically with a conventional light socket.
  • 34. The method of claim 30, further comprising an act of: adjusting the overall perceivable color of the visible radiation via at least one user interface.
  • 35. The method of claim 30, further comprising an act of: controlling the overall perceivable color of the visible radiation in response to at least one detectable condition.
  • 36. The method of claim 30, wherein the first and second light sources are arranged as a package including at least one of a housing and a mounting, and wherein the method further comprises an act of: communicating at least one control signal to or from the package.
  • 37. The method of claim 30, wherein the act E3) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique.
  • 38. The method of claim 30, further comprising an act of: receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation, wherein the act E3) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the first lighting information.
  • 39. The method of claim 38, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the method further includes an act of: processing the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 40. The method of claim 38, wherein the at least one network signal is formatted using a DMX protocol, and wherein the act E3) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 41. An illumination method, comprising acts of: A) generating first radiation having a first spectrum from a first number of first light sources; B) generating second radiation having a second spectrum different than the first spectrum from a second number of second light sources, wherein the first number and the second number are different; C) mixing at least a portion of the first radiation and a portion of the second radiation so as to provide ambient illumination including visible radiation in an environment to be occupied by an observer of the ambient illumination, the visible radiation including at least one of the first radiation and the second radiation; D) independently controlling at least a first intensity of the first radiation and a second intensity of the second radiation so as to controllably vary at least an overall perceivable color of the visible radiation; and receiving at least one addressed network signal including at least first lighting information relating to the overall perceivable color of the visible radiation, wherein the act D) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the first lighting information.
  • 42. The illumination method of claim 41, wherein the act D) includes acts of: D1) controlling all of the first light sources substantially identically; and D2) controlling all of the second light sources substantially identically.
  • 43. The illumination method of claim 42, wherein the act D) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique so as to controllably vary at least the overall perceivable color of the visible radiation.
  • 44. The illumination method of claim 42, wherein each light source of the first and second light sources is an LED.
  • 45. The illumination method of claim 41, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the method further comprises an act of: processing the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 46. The method of claim 41, wherein each light source of the first and second light sources is an LED, and wherein the method further comprises an act of: D) controlling at least the first intensity of the first radiation and the second intensity of the second radiation such that an overall perceivable color of the visible radiation is white.
  • 47. The method of claim 46, wherein the first and second light sources are arranged as a package including at least one of a housing and a mounting, and wherein the method further comprises an act of: E) engaging the package mechanically and electrically with a conventional light socket.
  • 48. The method of claim 46, wherein the act D) includes an act of: D1) independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation so as to controllably vary the overall perceivable color of the visible radiation.
  • 49. The method of claim 48, further comprising an act of: adjusting the overall perceivable color of the visible radiation via at least one user interface.
  • 50. The method of claim 48, further comprising an act of: controlling the overall perceivable color of the visible radiation in response to at least one detectable condition.
  • 51. The method of claim 48, wherein the first and second light sources are arranged as a package including at least one of a housing and a mounting, and wherein the method further comprises an act of: communicating at least one control signal to or from the package.
  • 52. The method of claim 48, wherein the act D1) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique.
  • 53. The method of claim 48, further comprising an act of: E) receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation, wherein the act D1) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the first lighting information.
  • 54. The method of claim 53, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the method further includes an act of: processing the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 55. The method of claim 54, wherein the at least one network signal is formatted using a DMX protocol, and wherein the act D1) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 56. The illumination method of claim 41, wherein the at least one network signal is formatted using a DMX protocol, and wherein the act D) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 57. The method of claim 41, further comprising wherein the act D) comprises an act of controlling the first LED light sources and the second LED light sources irrespective of a motion of any object in the environment to be occupied by the observer.
  • 58. The method of claim 41, further comprising wherein the act D) comprises an act of controlling the first LED light sources and the second LED light sources irrespective of any imaging of the ambient illumination
  • 59. An illumination apparatus, comprising: a plurality of first light sources adapted to generate first radiation having a first spectrum; a plurality of second light sources adapted to generate second radiation having a second spectrum different than the first spectrum; an essentially inflexible planar substrate on which all of the first light sources and all of the second light sources are mounted such that the apparatus is configured to provide ambient illumination including visible radiation in an environment to be occupied by an observer of the ambient illumination, the visible radiation including at least one of the first radiation and the second radiation; and at least one controller coupled to the plurality of first light sources and the plurality of second light sources and configured to independently control at least a first intensity of the first radiation and a second intensity of the second radiation so as to controllably vary at least an overall perceivable color of the visible radiation generated by the illumination apparatus, wherein the at least one controller is configured to generate a first control signal to control all of the first light sources substantially identically, and a second control signal to control all of the second light sources substantially identically, and wherein the at least one controller is configured as an addressable controller capable of receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 60. The illumination apparatus of claim 59, wherein: each light source of the first and second light sources is an LED; and the at least one controller is configured to control at least the first intensity of the first radiation and the second intensity of the second radiation such that the overall perceivable color of the visible radiation is white.
  • 61. The illumination apparatus of claim 60, further comprising at least one power connection coupled to the at least one controller, the at least one power connection configured to engage mechanically and electrically with a conventional light socket.
  • 62. The illumination apparatus of claim 61, further comprising at least one sensor coupled to the at least one controller and configured to generate at least one control signal in response to at least one detectable condition, wherein the at least one controller is configured to control the overall perceivable color of the visible radiation generated by the illumination apparatus in response to the at least one control signal.
  • 63. The illumination apparatus of claim 61, further comprising at least one of a receiver and a transmitter coupled to the at least one controller and configured to communicate at least one control signal to or from the illumination apparatus.
  • 64. The illumination apparatus of claim 61, wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique.
  • 65. The illumination apparatus of claim 60, wherein the at least one controller is configured as an addressable controller capable of receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 66. The illumination apparatus of claim 65, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the at least one controller is configured to process the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 67. The illumination apparatus of claim 65, wherein the at least one network signal is formatted using a DMX protocol, and wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 68. The illumination apparatus of claim 61, wherein the at least one power connection includes an Edison screw-type power connection.
  • 69. The illumination apparatus of claim 61, wherein the apparatus is configured to resemble at least one type of conventional light bulb.
  • 70. The illumination apparatus of claim 69, further comprising a housing configured to resemble an Edison-mount light bulb housing.
  • 71. The illumination apparatus of claim 61, further comprising at least one user interface coupled to the at least one controller and configured to facilitate an adjustment of the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 72. The illumination apparatus of claim 59, wherein respective numbers of the first light sources and the second light sources are different.
  • 73. The illumination apparatus of claim 59, wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique.
  • 74. The illumination apparatus of claim 59, wherein each light source of the first and second light sources is an LED.
  • 75. The illumination apparatus of claim 59, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the at least one controller is configured to process the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 76. The illumination apparatus of claim 59, wherein the at least one network signal is formatted using a DMX protocol, and wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 77. An illumination apparatus, comprising: a plurality of first LEDs adapted to generate first radiation having a first spectrum; a plurality of second LEDs adapted to generate second radiation having a second spectrum different than the first spectrum; an essentially inflexible planar substrate on which all of the first LEDs and all of the second LEDs are mounted; and at least one controller coupled to the plurality of first LEDs and the plurality of second LEDs and configured to independently control at least a first intensity of the first radiation and a second intensity of the second radiation such that an overall perceivable color of visible radiation generated by the illumination apparatus is white, wherein at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation so as to controllably vary the overall perceivable color of the visible radiation generated by the illumination apparatus, and wherein the at least one controller is configured as an addressable controller capable of receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 78. The illumination apparatus of claim 77, wherein the at least one controller is configured to generate a first control signal to control all of the first LEDs substantially identically, and a second control signal to control all of the second LEDs substantially identically.
  • 79. The illumination apparatus of claim 77, wherein respective numbers of the first LEDs and the second LEDs are different.
  • 80. The illumination apparatus of claim 77, further comprising at least one power connection coupled to the at least one controller, the at least one power connection configured to engage mechanically and electrically with a conventional light socket.
  • 81. The illumination apparatus of claim 80, wherein the at least one power connection includes an Edison screw-type power connection.
  • 82. The illumination apparatus of claim 80, further comprising a housing for the respective pluralities of first and second LEDs and the at least one controller, wherein the housing is configured to resemble at least one type of conventional light bulb.
  • 83. The illumination apparatus of claim 82, wherein the housing is configured to resemble an Edison-mount light bulb housing.
  • 84. The illumination apparatus of claim 77, wherein the at least one network signal is formatted using a DMX protocol, and wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 85. The illumination apparatus of claim 77, further comprising at least one user interface coupled to the at least one controller and configured to facilitate an adjustment of the overall perceivable color of the visible radiation generated by the illumination apparatus.
  • 86. The illumination apparatus of claim 77, further comprising at least one sensor coupled to the at least one controller and configured to generate at least one control signal in response to at least one detectable condition, wherein the at least one controller is configured to control the overall perceivable color of the visible radiation generated by the illumination apparatus in response to the at least one control signal.
  • 87. The illumination apparatus of claim 77, further comprising at least one of a receiver and a transmitter coupled to the at least one controller and configured to communicate at least one control signal to or from the illumination apparatus.
  • 88. The illumination apparatus of claim 77, wherein the at least one controller is configured to independently control at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique.
  • 89. The illumination apparatus of claim 88, wherein the at least one controller is configured to generate a first PWM control signal to control all of the first LEDs substantially identically, and a second PWM control signal to control all of the second LEDs substantially identically.
  • 90. The illumination apparatus of claim 77, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the at least one controller is configured to process the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 91. An illumination apparatus, comprising: a plurality of first LED light sources adapted to generate first radiation having a first spectrum; a plurality of second LED light sources adapted to generate second radiation having a second spectrum different than the first spectrum; at least one controller coupled to the plurality of first light sources and the plurality of second light sources and configured as an addressable controller capable of receiving at least one network signal including at least first lighting information relating to an overall perceivable color of visible radiation generated by the illumination apparatus, the at least one controller configured to control at least a first intensity of the first radiation and a second intensity of the second radiation based at least in part on the first lighting information, wherein: the at least one controller is configured to generate a first control signal to control all of the first light sources substantially identically and a second control signal to control all of the second light sources substantially identically; and the at least one controller is configured to control at least the first intensity of the first radiation and the second intensity of the second radiation such that the overall perceivable color of the visible radiation is white; and at least one power connection coupled to the at least one controller, the at least one power connection configured to engage mechanically and electrically with a conventional light socket.
  • 92. An illumination method, comprising acts of: A) generating first radiation having a first spectrum from a plurality of first LED light sources; B) generating second radiation having a second spectrum different than the first spectrum from a plurality of second LED light sources; C) mixing at least a portion of the first radiation and a portion of the second radiation to provide an overall perceivable color of the visible radiation; D) receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation; and E) controlling at least a first intensity of the first radiation and a second intensity of the second radiation based at least in part on the first lighting information, wherein the act E) includes acts of: controlling all of the first light sources substantially identically; controlling all of the second light sources substantially identically; and controlling at least the first intensity of the first radiation and the second intensity of the second radiation such that the overall perceivable color of the visible radiation is white.
  • 93. An illumination method, comprising acts of: A) generating first radiation having a first spectrum from a plurality of first LEDs; B) generating second radiation having a second spectrum different than the first spectrum from a plurality of second LEDs; C) mixing at least a portion of the first radiation and a portion of the second radiation to provide visible radiation having an overall perceivable color; D) independently controlling at least a first intensity of the first radiation and a second intensity of the second radiation such that the overall perceivable color of the visible radiation is white; and E) coupling the first light sources and second light sources via an essentially planar inflexible substrate, wherein the act D) includes an act of: D1) independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation so as to controllably vary the overall perceivable color of the visible radiation, the method further comprising an act of: F) receiving at least one network signal including at least first lighting information relating to the overall perceivable color of the visible radiation, wherein the act D1) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the first lighting information.
  • 94. The method of claim 93, wherein the act D) includes acts of: controlling all of the first LEDs substantially identically; and controlling all of the second LEDs substantially identically.
  • 95. The method of claim 93, wherein respective numbers of the first LEDs and the second LEDs are different.
  • 96. The method of claim 93, wherein the respective pluralities of first and second LEDs are arranged as a package including at least one of a housing and the substrate, and wherein the method further comprises an act of: engaging the package mechanically and electrically with a conventional light socket.
  • 97. The method of claim 93, wherein the at least one network signal is formatted using a DMX protocol, and wherein the act D1) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation based at least in part on the DMX protocol.
  • 98. The method of claim 93, further comprising an act of: adjusting the overall perceivable color of the visible radiation via at least one user interface.
  • 99. The method of claim 93, further comprising an act of: controlling the overall perceivable color of the visible radiation in response to at least one detectable condition.
  • 100. The method of claim 93, wherein the respective pluralities of first and second LEDs are arranged as a package including at least one of a housing and the substrate, and wherein the method further comprises an act of: communicating at least one control signal to or from the package.
  • 101. The method of claim 93, wherein the act D1) includes an act of: independently controlling at least the first intensity of the first radiation and the second intensity of the second radiation using a pulse width modulation (PWM) technique.
  • 102. The method of claim 93, wherein the at least one network signal includes address information and lighting information for a plurality of illumination apparatus, and wherein the method further includes an act of: processing the at least one network signal based on at least the address information in the at least one network signal to recover the first lighting information.
  • 103. An illumination method, comprising acts of: A) generating first radiation having a first spectrum from a first number of first light sources; B) generating second radiation having a second spectrum different than the first spectrum from a second number of second light sources, wherein the first number and the second number are different; C) mixing at least a portion of the first radiation and a portion of the second radiation to provide visible radiation having an overall perceivable color; D) receiving at least one addressed network signal including at least first lighting information relating to the overall perceivable color of the visible radiation; and E) independently controlling at least a first intensity of the first radiation and a second intensity of the second radiation based at least in part on the first lighting information so as to controllably vary at least the overall perceivable color of the visible radiation.
  • 104. An illumination apparatus, comprising: a plurality of first light sources adapted to generate first radiation having a first spectrum; a plurality of second light sources adapted to generate second radiation having a second spectrum different than the first spectrum; and at least one controller coupled to the plurality of first light sources and the plurality of second light sources and configured to independently control at least a first intensity of the first radiation and a second intensity of the second radiation so as to controllably vary at least an overall perceivable color of visible radiation generated by the illumination apparatus, wherein the at least one controller is configured to generate a first control signal to control all of the first light sources substantially identically, and a second control signal to control all of the second light sources substantially identically, and wherein the at least one controller is configured as an addressable controller capable of receiving at least one network signal including at least first lighting information relating to the overall perceivable color of visible radiation generated by the mnination apparatus.
  • 105. An illumination apparatus, comprising: a plurality of first LEDs adapted to generate first radiation having a first spectrum; a plurality of second LEDs adapted to generate second radiation having a second spectrum different than the first spectrum; at least one addressable controller coupled to the plurality of first LEDs and the plurality of second LEDs, the at least one addressable controller configured to be associated with an alterable address, the at least one addressable controller further configured to independently control at least a first intensity of the first radiation and a second intensity of the second radiation so as to controllably vary an overall perceivable color of visible radiation generated by the illumination apparatus; and an address selection device configured to facilitate a selection of the alterable address associated with the at least one addressable controller.
  • 106. An illumination apparatus, comprising: a first number of first light sources adapted to generate first radiation having a first spectrum; and a second number of second light sources adapted to generate second radiation having a second spectrum different than the first spectrum, wherein the first number and the second number are different; and at least one controller coupled to the first number of first light sources and the second number of second light sources and configured to independently control at least a first intensity of the first radiation and a second intensity of the second radiation so as to controllably vary at least an overall perceivable color of visible radiation generated by the illumination apparatus, wherein the at least one controller is configured as an addressable controller capable of receiving at least one network signal including at least first lighting information relating to the overall perceivable color of visible radiation generated by the illumination apparatus.
CROSS REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 09/971,367, filed on Oct. 4, 2001 now U.S. Pat. No. 6,788,011, which is a continuation of U.S. application Ser. No. 09/669,121, filed on Sep. 25, 2000 now U.S. Pat. No. 6,806,659, which is a continuation of U.S. application Ser. No. 09/425,770, filed Oct. 22, 1999, now U.S. Pat. No. 6,150,774, which is a continuation of U.S. application Ser. No. 08/920,156, filed Aug. 26, 1997, now U.S. Pat. No. 6,016,038.

US Referenced Citations (463)
Number Name Date Kind
1324008 D'Humy Dec 1919 A
1603055 Williams Oct 1926 A
2591650 Williams Apr 1952 A
2642553 Williams Jun 1953 A
2644912 Williams Jul 1953 A
2651743 Williams Sep 1953 A
2657338 Williams Oct 1953 A
2673923 Williams Mar 1954 A
2686866 Williams Aug 1954 A
2725461 Amour Nov 1955 A
2909097 Alden et al. Oct 1959 A
3037110 Williams May 1962 A
3111057 Cramer Nov 1963 A
3163077 Shank Dec 1964 A
3201576 Scott Aug 1965 A
3205755 Sklar Sep 1965 A
3215022 Orgo Nov 1965 A
3240099 Irons Mar 1966 A
3241419 Gracey Mar 1966 A
3307443 Shallenberger Mar 1967 A
3318185 Kott May 1967 A
3540343 Rifkin Nov 1970 A
3550497 Marsh Dec 1970 A
3561719 Grindle Feb 1971 A
3586936 McLeroy Jun 1971 A
3601621 Ritchie Aug 1971 A
3643088 Osteen et al. Feb 1972 A
3644785 Jarmar Feb 1972 A
3696263 Wacher Oct 1972 A
3706914 Van Buren Dec 1972 A
3740570 Kaelin et al. Jun 1973 A
3746918 Drucker et al. Jul 1973 A
3760174 Boenning et al. Sep 1973 A
3787752 Delay Jan 1974 A
3818216 Larraburu Jun 1974 A
3832503 Crane Aug 1974 A
3845468 Smith Oct 1974 A
3858086 Anderson et al. Dec 1974 A
3875456 Kano et al. Apr 1975 A
3909670 Wakamatsu et al. Sep 1975 A
3924120 Cox, III Dec 1975 A
3942065 Russ Mar 1976 A
3958885 Stockinger et al. May 1976 A
3974637 Bergey et al. Aug 1976 A
4001571 Martin Jan 1977 A
4045664 Vrenken et al. Aug 1977 A
4054814 Fegley et al. Oct 1977 A
4070568 Gala Jan 1978 A
4074318 Kapes, Jr. Feb 1978 A
4074319 Goldschmidt et al. Feb 1978 A
4082395 Donato et al. Apr 1978 A
4095139 Symonds et al. Jun 1978 A
4096349 Donato Jun 1978 A
4151547 Rhoades et al. Apr 1979 A
4176581 Stuyvenberg Dec 1979 A
4241295 Williams, Jr. Dec 1980 A
4267559 Johnson et al. May 1981 A
4271408 Teshima et al. Jun 1981 A
4272689 Crosby et al. Jun 1981 A
4273999 Pierpoint Jun 1981 A
4298869 Okuno Nov 1981 A
4317071 Murad Feb 1982 A
4329625 Nishizawa et al. May 1982 A
4339788 White et al. Jul 1982 A
4342906 Hyatt Aug 1982 A
4342947 Bloyd Aug 1982 A
4367464 Kurahashi et al. Jan 1983 A
4388567 Yamazaki et al. Jun 1983 A
4388589 Molldrem, Jr. Jun 1983 A
4392187 Bornhorst Jul 1983 A
4420711 Takahashi et al. Dec 1983 A
4455562 Dolan et al. Jun 1984 A
4470044 Bell Sep 1984 A
4500796 Quin Feb 1985 A
4597033 Meggs et al. Jun 1986 A
4622881 Rand Nov 1986 A
4625152 Nakai Nov 1986 A
4635052 Aoike et al. Jan 1987 A
4641227 Kusuhara Feb 1987 A
4647217 Havel Mar 1987 A
4654629 Bezos et al. Mar 1987 A
4654754 Daszkowski Mar 1987 A
4656398 Michael et al. Apr 1987 A
4668895 Schneiter May 1987 A
4675575 Smith et al. Jun 1987 A
4677533 McDermott et al. Jun 1987 A
4682079 Sanders et al. Jul 1987 A
4686425 Havel Aug 1987 A
4687340 Havel Aug 1987 A
4688154 Nilssen Aug 1987 A
4688869 Kelly Aug 1987 A
4695769 Schweickardt Sep 1987 A
4701669 Head et al. Oct 1987 A
4705406 Havel Nov 1987 A
4707141 Havel Nov 1987 A
4727289 Uchida Feb 1988 A
4729076 Masami et al. Mar 1988 A
4740882 Miller Apr 1988 A
4753148 Johnson Jun 1988 A
4768086 Paist Aug 1988 A
4771274 Havel Sep 1988 A
4780621 Bartleucci et al. Oct 1988 A
4794383 Havel Dec 1988 A
4818072 Mohebban Apr 1989 A
4824269 Havel Apr 1989 A
4833542 Hara et al. May 1989 A
4837565 White Jun 1989 A
4843627 Stebbins Jun 1989 A
4845481 Havel Jul 1989 A
4845745 Havel Jul 1989 A
4857801 Farrell Aug 1989 A
4863223 Weissenbach et al. Sep 1989 A
4870325 Kazar Sep 1989 A
4874320 Freed et al. Oct 1989 A
4887074 Simon et al. Dec 1989 A
4922154 Cacoub May 1990 A
4929866 Murata et al. May 1990 A
4934852 Havel Jun 1990 A
4935665 Murata Jun 1990 A
4947291 McDermott Aug 1990 A
4957291 Miffitt et al. Sep 1990 A
4962687 Belliveau et al. Oct 1990 A
4963798 McDermott Oct 1990 A
4965561 Havel Oct 1990 A
4973835 Kurosu et al. Nov 1990 A
4974119 Martin Nov 1990 A
4979081 Leach et al. Dec 1990 A
4980806 Taylor et al. Dec 1990 A
4992704 Stinson Feb 1991 A
5003227 Nilssen Mar 1991 A
5008595 Kazar Apr 1991 A
5008788 Palinkas Apr 1991 A
5010459 Taylor et al. Apr 1991 A
5027262 Freed Jun 1991 A
5034807 Von Kohorn Jul 1991 A
5036248 McEwan et al. Jul 1991 A
5038255 Nishihashi et al. Aug 1991 A
5060118 Penrod Oct 1991 A
5072216 Grange Dec 1991 A
5078039 Tulk et al. Jan 1992 A
5083063 Brooks Jan 1992 A
5089748 Ihms Feb 1992 A
5122733 Havel Jun 1992 A
5126634 Johnson Jun 1992 A
5128595 Hara Jul 1992 A
5130909 Gross Jul 1992 A
5134387 Smith et al. Jul 1992 A
5136483 Schöniger et al. Aug 1992 A
5142199 Elwell Aug 1992 A
5143442 Ishikawa et al. Sep 1992 A
5154641 McLaughlin Oct 1992 A
5161879 McDermott Nov 1992 A
5164715 Kashiwabara et al. Nov 1992 A
5165778 Matthias et al. Nov 1992 A
5173839 Metz, Jr. Dec 1992 A
5184114 Brown Feb 1993 A
5194854 Havel Mar 1993 A
5209560 Taylor et al. May 1993 A
5217285 Sopori Jun 1993 A
5225765 Callahan et al. Jul 1993 A
5226723 Chen Jul 1993 A
5235347 Lee Aug 1993 A
5235416 Stanhope Aug 1993 A
5254910 Yang Oct 1993 A
5256948 Boldin et al. Oct 1993 A
5262658 Jankowski Nov 1993 A
5268828 Miura Dec 1993 A
5278542 Smith et al. Jan 1994 A
5282121 Bornhorst et al. Jan 1994 A
5283517 Havel Feb 1994 A
5287352 Jackson et al. Feb 1994 A
5294865 Haraden Mar 1994 A
5298871 Shimohara Mar 1994 A
5301090 Hed Apr 1994 A
5307295 Taylor et al. Apr 1994 A
5329431 Taylor et al. Jul 1994 A
5350977 Hamamoto et al. Sep 1994 A
5352957 Werner Oct 1994 A
5357170 Luchaco et al. Oct 1994 A
5365084 Cochran et al. Nov 1994 A
5371618 Tai et al. Dec 1994 A
5374876 Horibata et al. Dec 1994 A
5375043 Tokunaga Dec 1994 A
5381074 Rudzewicz et al. Jan 1995 A
5384519 Gotoh Jan 1995 A
5386351 Tabor Jan 1995 A
5388357 Malita Feb 1995 A
5400228 Kao Mar 1995 A
5402702 Hata Apr 1995 A
5404282 Klinke et al. Apr 1995 A
5406176 Sugden Apr 1995 A
5410328 Yoksza et al. Apr 1995 A
5412284 Moore et al. May 1995 A
5412552 Fernandes May 1995 A
5418697 Chiou May 1995 A
5420482 Phares May 1995 A
5421059 Leffers, Jr. Jun 1995 A
5432408 Matsuda et al. Jul 1995 A
5436535 Yang Jul 1995 A
5436853 Shimohara Jul 1995 A
5450301 Waltz et al. Sep 1995 A
5461188 Drago et al. Oct 1995 A
5463280 Johnson Oct 1995 A
5465144 Parker et al. Nov 1995 A
5471052 Ryczek Nov 1995 A
5475300 Havel Dec 1995 A
5475368 Collins Dec 1995 A
5489827 Xia Feb 1996 A
5491402 Small Feb 1996 A
5493183 Kimball Feb 1996 A
5504395 Johnson et al. Apr 1996 A
5515136 Nishio May 1996 A
5519496 Borgert et al. May 1996 A
5521708 Beretta May 1996 A
5528474 Roney et al. Jun 1996 A
5530322 Ference et al. Jun 1996 A
5532848 Beretta Jul 1996 A
5535230 Abe Jul 1996 A
5541817 Hung Jul 1996 A
5544037 Luger Aug 1996 A
5545950 Cho Aug 1996 A
5559681 Duarte Sep 1996 A
5561346 Byrne Oct 1996 A
5575459 Anderson Nov 1996 A
5575554 Guritz Nov 1996 A
5577832 Lodhie Nov 1996 A
5583349 Norman et al. Dec 1996 A
5583350 Norman et al. Dec 1996 A
5592051 Korkala Jan 1997 A
5607227 Yasumoto et al. Mar 1997 A
5614788 Mullins et al. Mar 1997 A
5621282 Haskell Apr 1997 A
5621603 Adamec et al. Apr 1997 A
5633629 Hockstein May 1997 A
5634711 Kennedy et al. Jun 1997 A
5636303 Che et al. Jun 1997 A
5640061 Bornhorst et al. Jun 1997 A
5642129 Zavracky et al. Jun 1997 A
5642933 Hitora Jul 1997 A
5653529 Spocharski Aug 1997 A
5655830 Ruskouski Aug 1997 A
5656935 Havel Aug 1997 A
5668537 Chansky et al. Sep 1997 A
5671996 Bos et al. Sep 1997 A
5673059 Zavracky et al. Sep 1997 A
5684309 McIntosh et al. Nov 1997 A
5688042 Madadi et al. Nov 1997 A
5701058 Roth Dec 1997 A
5707139 Haitz Jan 1998 A
5712650 Barlow Jan 1998 A
5721471 Begemann et al. Feb 1998 A
5726535 Yan Mar 1998 A
5730013 Huang Mar 1998 A
5734590 Tebbe Mar 1998 A
5749646 Brittell May 1998 A
5751118 Mortimer May 1998 A
5752766 Bailey et al. May 1998 A
5769527 Taylor et al. Jun 1998 A
5782555 Hochstein Jul 1998 A
5784006 Hockstein Jul 1998 A
5790329 Klaus et al. Aug 1998 A
5803579 Turnbull et al. Sep 1998 A
5806965 Deese Sep 1998 A
5808592 Mizutani et al. Sep 1998 A
5808689 Small Sep 1998 A
5812105 Van de Ven Sep 1998 A
5821695 Vilanilam et al. Oct 1998 A
5828178 York et al. Oct 1998 A
5831686 Beretta Nov 1998 A
5836676 Ando et al. Nov 1998 A
5838247 Bladowski Nov 1998 A
5848837 Gustafson Dec 1998 A
5850126 Kanbar Dec 1998 A
5851063 Doughty et al. Dec 1998 A
5852658 Knight et al. Dec 1998 A
5854542 Forbes Dec 1998 A
RE36030 Nadeau Jan 1999 E
5857767 Hochstein Jan 1999 A
5859508 Ge et al. Jan 1999 A
5893631 Padden Apr 1999 A
5894196 McDermott Apr 1999 A
5895986 Walters et al. Apr 1999 A
5896010 Mikolajczak et al. Apr 1999 A
5902166 Robb May 1999 A
5907742 Johnson et al. May 1999 A
5912653 Fitch Jun 1999 A
5924784 Chliwnyj et al. Jul 1999 A
5927845 Gustafson et al. Jul 1999 A
5938321 Bos et al. Aug 1999 A
5946209 Eckel et al. Aug 1999 A
5949581 Kurtenbach et al. Sep 1999 A
5952680 Strite Sep 1999 A
5959316 Lowery Sep 1999 A
5959547 Tubel et al. Sep 1999 A
5961201 Gismondi Oct 1999 A
5963185 Havel Oct 1999 A
5974553 Gandar Oct 1999 A
5980064 Metroyanis Nov 1999 A
5982957 DeCaro Nov 1999 A
5982969 Sugiyama et al. Nov 1999 A
5998925 Shimizu et al. Dec 1999 A
6008783 Kitagawa et al. Dec 1999 A
6016038 Mueller et al. Jan 2000 A
6018237 Havel Jan 2000 A
6020825 Chansky et al. Feb 2000 A
6023255 Bell Feb 2000 A
6025550 Kato Feb 2000 A
6028694 Schmidt Feb 2000 A
6031343 Recknagel et al. Feb 2000 A
6056420 Wilson et al. May 2000 A
6066861 Höhn et al. May 2000 A
6068383 Robertson et al. May 2000 A
6069597 Hansen May 2000 A
6072280 Allen Jun 2000 A
6092915 Rensch Jul 2000 A
6095661 Lebens et al. Aug 2000 A
6097352 Zavracky et al. Aug 2000 A
6127783 Pashley et al. Oct 2000 A
6132072 Turnbull et al. Oct 2000 A
6135604 Lin Oct 2000 A
6139172 Bos et al. Oct 2000 A
6149283 Conway et al. Nov 2000 A
6150771 Perry Nov 2000 A
6150774 Mueller et al. Nov 2000 A
6158882 Bischoff, Jr. Dec 2000 A
6161941 Tait Dec 2000 A
6166496 Lys et al. Dec 2000 A
6175201 Sid Jan 2001 B1
6175342 Nicholson et al. Jan 2001 B1
6181126 Havel Jan 2001 B1
6183086 Heubert Feb 2001 B1
6183104 Ferrara Feb 2001 B1
6184628 Ruthenberg Feb 2001 B1
6188181 Sinha et al. Feb 2001 B1
6190018 Parsons et al. Feb 2001 B1
6196471 Ruthenberg Mar 2001 B1
6211626 Lys et al. Apr 2001 B1
6212213 Weber et al. Apr 2001 B1
6215409 Blach Apr 2001 B1
6220722 Begemann Apr 2001 B1
6234645 Borner et al. May 2001 B1
6234648 Börner et al. May 2001 B1
6235648 Mizuhara et al. May 2001 B1
6245259 Höhn et al. Jun 2001 B1
6250774 Begemann et al. Jun 2001 B1
6252254 Soules et al. Jun 2001 B1
6252358 Xydis et al. Jun 2001 B1
6255670 Srivastava et al. Jul 2001 B1
6259430 Riddle et al. Jul 2001 B1
6273338 White Aug 2001 B1
6273589 Weber et al. Aug 2001 B1
6277301 Höhn et al. Aug 2001 B1
6283612 Hunter Sep 2001 B1
6292901 Lys et al. Sep 2001 B1
6294800 Duggal et al. Sep 2001 B1
6299329 Mui et al. Oct 2001 B1
6299338 Levinson et al. Oct 2001 B1
6310590 Havel Oct 2001 B1
6323832 Nishizawa et al. Nov 2001 B1
6329764 van de Ven Dec 2001 B1
6330111 Myers Dec 2001 B1
6331915 Myers Dec 2001 B1
6335548 Roberts Jan 2002 B1
6340868 Lys et al. Jan 2002 B1
6357889 Duggal et al. Mar 2002 B1
6357893 Belliveau Mar 2002 B1
6361198 Reed Mar 2002 B1
6369525 Chang et al. Apr 2002 B1
6379022 Amerson et al. Apr 2002 B1
6386720 Mochizuki May 2002 B1
6411046 Muthu Jun 2002 B1
6441558 Muthu et al. Aug 2002 B1
6441943 Roberts Aug 2002 B1
6445139 Marshall et al. Sep 2002 B1
6448550 Nishimura Sep 2002 B1
6459919 Lys et al. Oct 2002 B1
6469322 Srivastava et al. Oct 2002 B1
6474837 Belliveau Nov 2002 B1
6495964 Muthu et al. Dec 2002 B1
6498355 Harrah et al. Dec 2002 B1
6504301 Lowery Jan 2003 B1
6507159 Muthu Jan 2003 B2
6508564 Kuwabara et al. Jan 2003 B1
6510995 Muthu et al. Jan 2003 B2
6513949 Marshall et al. Feb 2003 B1
6528954 Lys et al. Mar 2003 B1
6548967 Dowling et al. Apr 2003 B1
6550952 Hulse et al. Apr 2003 B1
6551282 Exline et al. Apr 2003 B1
6552495 Chang Apr 2003 B1
6568834 Scianna May 2003 B1
6576930 Reeh et al. Jun 2003 B2
6577080 Lys et al. Jun 2003 B2
6577287 Havel Jun 2003 B2
6592238 Cleaver et al. Jul 2003 B2
6592780 Höhn et al. Jul 2003 B2
6596977 Muthu et al. Jul 2003 B2
6600175 Baretz et al. Jul 2003 B1
6608453 Morgan et al. Aug 2003 B2
6618031 Bohn Sep 2003 B1
6624597 Dowling et al. Sep 2003 B2
6630691 Mueller-Mach et al. Oct 2003 B1
6630801 Schuurmans Oct 2003 B2
6636003 Rahm et al. Oct 2003 B2
6676284 Wynne Willson Jan 2004 B1
6692136 Marshall et al. Feb 2004 B2
6717376 Lys et al. Apr 2004 B2
6720745 Mueller et al. Apr 2004 B2
6726350 Herold Apr 2004 B1
6744223 LaFlamme Jun 2004 B2
6774584 Morgan et al. Aug 2004 B2
6787999 Stimac et al. Sep 2004 B2
6812500 Reeh et al. Nov 2004 B2
20010033488 Chliwnyj et al. Oct 2001 A1
20020038157 Dowling et al. Mar 2002 A1
20020044066 Dowling et al. Apr 2002 A1
20020047569 Dowling et al. Apr 2002 A1
20020047624 Stam et al. Apr 2002 A1
20020048169 Dowling et al. Apr 2002 A1
20020057061 Mueller et al. May 2002 A1
20020060526 Timmermans et al. May 2002 A1
20020070688 Dowling et al. Jun 2002 A1
20020074559 Dowling et al. Jun 2002 A1
20020078221 Blackwell et al. Jun 2002 A1
20020101197 Lys et al. Aug 2002 A1
20020130627 Dowling et al. Sep 2002 A1
20020145394 Morgan et al. Oct 2002 A1
20020145869 Dowling Oct 2002 A1
20020152045 Dowling et al. Oct 2002 A1
20020153851 Dowling et al. Oct 2002 A1
20020158583 Lys et al. Oct 2002 A1
20020163316 Dowling et al. Nov 2002 A1
20020171365 Morgan et al. Nov 2002 A1
20020171377 Mueller et al. Nov 2002 A1
20020171378 Morgan et al. Nov 2002 A1
20020176259 Ducharme Nov 2002 A1
20020195975 Dowling et al. Dec 2002 A1
20030011538 Lys et al. Jan 2003 A1
20030028260 Blackwell Feb 2003 A1
20030057884 Dowling et al. Mar 2003 A1
20030057886 Lys et al. Mar 2003 A1
20030057887 Dowling et al. Mar 2003 A1
20030057890 Lys et al. Mar 2003 A1
20030076281 Morgan et al. Apr 2003 A1
20030100837 Lys et al. May 2003 A1
20030107887 Eberl Jun 2003 A1
20030133292 Mueller et al. Jul 2003 A1
20030137258 Piepgras et al. Jul 2003 A1
20030189412 Cunningham Oct 2003 A1
20030198061 Chambers et al. Oct 2003 A1
20030222587 Dowling et al. Dec 2003 A1
20040032226 Lys Feb 2004 A1
20040036006 Dowling Feb 2004 A1
20040052076 Mueller et al. Mar 2004 A1
20040066652 Hong Apr 2004 A1
20040090787 Dowling et al. May 2004 A1
20040105261 Ducharme et al. Jun 2004 A1
20040130909 Mueller et al. Jul 2004 A1
20040218387 Gerlach Nov 2004 A1
20050122064 Chevalier et al. Jun 2005 A1
20050122292 Schmitz et al. Jun 2005 A1
20050122718 Kazar et al. Jun 2005 A1
20050128743 Chuey et al. Jun 2005 A1
Foreign Referenced Citations (143)
Number Date Country
6 267 9 Dec 1996 AU
2 134 848 Dec 1996 CA
2 178 432 Dec 1996 CA
253968 Dec 1948 CH
01950581 Oct 1969 DE
02243245 Sep 1972 DE
02315709 Oct 1974 DE
0205307 Dec 1983 DE
03526590 Jul 1985 DE
3526590 Jan 1986 DE
03438154 Apr 1986 DE
3837313 May 1989 DE
3805998 Sep 1989 DE
3925767 Apr 1990 DE
8902905 May 1990 DE
3917101 Nov 1990 DE
3916875 Dec 1990 DE
4041338 Jul 1992 DE
4130576 Mar 1993 DE
9414688 Feb 1995 DE
9414689 Feb 1995 DE
4419006 Dec 1995 DE
19624087 Jun 1996 DE
29607270 Aug 1996 DE
19638667 Sep 1996 DE
19525987 Oct 1996 DE
29620583 Feb 1997 DE
29620583 Mar 1997 DE
19651140 Jun 1997 DE
19602891 Jul 1997 DE
19624087 Dec 1997 DE
19829270 Jul 1998 DE
19829270 Jan 1999 DE
20007134 Apr 2000 DE
20007134 Sep 2000 DE
0 029 474 Mar 1985 EP
390479 Mar 1990 EP
507366 Mar 1992 EP
0482680 Apr 1992 EP
0490329 Jun 1992 EP
0495305 Jul 1992 EP
0567280 Oct 1993 EP
629508 Jun 1994 EP
0639938 Feb 1995 EP
0689373 Dec 1995 EP
0534710 Jan 1996 EP
0701390 Mar 1996 EP
0734082 Sep 1996 EP
0752632 Jan 1997 EP
0752632 Aug 1997 EP
0823812 Feb 1998 EP
0 838 866 Apr 1998 EP
876085 Apr 1998 EP
0935234 Aug 1999 EP
0942631 Sep 1999 EP
0971421 Jan 2000 EP
1020352 Jul 2000 EP
1 160 883 May 2001 EP
1113215 Jul 2001 EP
1162400 Dec 2001 EP
2586844 Mar 1987 FR
2 640 791 Jun 1990 FR
88 17359 Dec 1998 FR
238327 Aug 1925 GB
238997 Sep 1925 GB
271212 May 1927 GB
296884 Sep 1928 GB
296885 Sep 1928 GB
325218 Feb 1930 GB
368113 Mar 1932 GB
376744 Jul 1932 GB
411868 Jun 1934 GB
412217 Jun 1934 GB
438884 Nov 1935 GB
441461 Jan 1936 GB
480126 Feb 1938 GB
481167 Mar 1938 GB
640693 Sep 1950 GB
646642 Nov 1950 GB
661083 Nov 1951 GB
685209 Dec 1952 GB
686746 Jan 1953 GB
712050 Jul 1954 GB
718535 Nov 1954 GB
942630 Nov 1963 GB
2045098 Oct 1980 GB
2131589 Nov 1982 GB
2135536 Aug 1984 GB
2176042 Dec 1986 GB
2210720 Jun 1989 GB
2239306 Jun 1991 GB
01031240 Feb 1989 JP
2247688 Oct 1990 JP
2-269939 Nov 1990 JP
03045166 Feb 1991 JP
04-015685 Jan 1992 JP
4-39235 Jun 1992 JP
1993073807 Oct 1993 JP
06043830 Feb 1994 JP
6334223 Dec 1994 JP
07020711 Jan 1995 JP
7-39120 Jul 1995 JP
7275200 Oct 1995 JP
07335942 Dec 1995 JP
8-106264 Apr 1996 JP
08248901 Sep 1996 JP
08293391 Nov 1996 JP
08-007611 Dec 1996 JP
09007774 Jan 1997 JP
9139289 May 1997 JP
9152840 Jun 1997 JP
09167861 Jun 1997 JP
9269746 Oct 1997 JP
10-071951 Mar 1998 JP
10242513 Sep 1998 JP
10302514 Nov 1998 JP
11039917 Feb 1999 JP
11087770 Mar 1999 JP
11087774 Mar 1999 JP
11133891 May 1999 JP
11202330 Jul 1999 JP
02000057488 Feb 2000 JP
2001-153690 Jun 2001 JP
1019910009812 Nov 1991 KR
WO 8100637 Mar 1981 WO
WO 8101602 Jun 1981 WO
WO 8605409 Sep 1986 WO
WO 8905086 Jun 1989 WO
WO 9418809 Aug 1994 WO
WO 9513498 May 1995 WO
9611499 Apr 1996 WO
WO 9641098 Dec 1996 WO
WO 9748138 Dec 1997 WO
WO 9906759 Feb 1999 WO
WO 9930537 Jun 1999 WO
WO 0014705 Mar 2000 WO
WO 0019141 Apr 2000 WO
WO 0033390 Jun 2000 WO
WO 0124229 Apr 2001 WO
WO 0173818 Oct 2001 WO
WO 0201921 Jan 2002 WO
WO 02061328 Aug 2002 WO
WO 03053108 Jun 2003 WO
Related Publications (1)
Number Date Country
20040178751 A1 Sep 2004 US
Continuations (4)
Number Date Country
Parent 09971367 Oct 2001 US
Child 10810481 US
Parent 09669121 Sep 2000 US
Child 09971367 US
Parent 09425770 Oct 1999 US
Child 09669121 US
Parent 08920156 Aug 1997 US
Child 09425770 US