Claims
- 1. A method for producing a solution of desired daughter radionuclide that is substantially free of impurities comprising the steps of:
(a) contacting an aqueous parent-daughter solution containing a desired daughter radionuclide with a first separation medium having a high affinity for the desired daughter radionuclide and a low affinity for the parent and other daughter radionuclides, said desired daughter and parent radionuclides having different (i) ionic charges, (ii) charge densities or (iii) both as they are present in said solution, and maintaining that contact for a time period sufficient for said desired daughter radionuclide to be bound by the first separation medium to form desired daughter-laden separation medium and a desired daughter-depleted parent-daughter solution; (b) removing the desired daughter-depleted parent daughter solution from the separation medium; (c) stripping the desired daughter radionuclide from the desired daughter-laden separation medium to form a solution of desired daughter radionuclide; (e) contacting the solution of desired daughter radionuclide with a second separation medium having a high affinity for the parent radionuclide and a low affinity for said desired daughter radionuclide, and maintaining that contact for a time period sufficient for said parent radionuclide to be bound by the second separation medium to form a solution of substantially impurity-free desired daughter radionuclide.
- 2. The method according to claim 1 wherein said desired daughter and parent radionuclides have different ionic charges.
- 3. The method according to claim 1 wherein said desired daughter and parent radionuclides have different charge densities.
- 4. The method according to claim 1 wherein said desired daughter and parent radionuclides have both different ionic charges and charge densities.
- 5. The method according to claim 1 wherein the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said first separation medium under the conditions of contact is greater than or equal to 102.
- 6. The method according to claim 1 wherein the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said second separation medium under the conditions of contact is greater than or equal to 102.
- 7. A method for producing a solution of desired daughter radionuclide that is substantially free of impurities comprising the steps of:
(a) providing an aqueous parent-daughter radionuclide solution containing a desired daughter radionuclide; (b) contacting the parent-daughter solution with a first separation medium having a high affinity for the desired daughter radionuclide and a low affinity for the parent and other daughter radionuclides such that the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said first separation medium under the conditions of contact is greater than or equal to 102, said desired daughter and parent radionuclides having different (i) ionic charges, (ii) charge densities or (iii) both as they are present in said solution, and maintaining that contact for a time period sufficient for said desired daughter radionuclide to be bound by the first separation medium to form desired daughter-laden separation medium and a desired daughter-depleted parent-daughter solution; (c) removing the desired daughter-depleted parent daughter solution from the separation medium; (d) stripping the desired daughter radionuclide from the desired daughter-laden separation medium to form a solution of desired daughter radionuclide; (e) contacting the solution of desired daughter radionuclide with a second separation medium having a high affinity for the parent radionuclide and a low affinity for said desired daughter radionuclide such that the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said first separation medium under the conditions of contact is greater than or equal to 102, and maintaining that contact for a time period sufficient for said parent radionuclide to be bound by the second separation medium to form a solution of substantially impurity-free desired daughter radionuclide.
- 8. The method according to claim 7 wherein the combined decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities for both the first and second separation media is about 104 to about 1010.
- 9. The method according to claim 7 wherein said desired daughter and parent radionuclides have different ionic charges.
- 10. The method according to claim 7 wherein said desired daughter and parent radionuclides have different charge densities.
- 11. The method according to claim 7 wherein said desired daughter and parent radionuclides have both different ionic charges and charge densities.
- 12. The method according to claim 7 wherein said desired daughter radionuclide is selected from the group consisting of 90Y, 99mTc, 103Pd, 111In, 125I, 188Re, 201Tl, 47Sc, 212Bi, 231Bi, 211At, and 223Ra.
- 13. A method for producing a solution of desired daughter radionuclide that is substantially free of impurities comprising the steps of:
(a) providing an aqueous parent-daughter radionuclide solution containing a desired daughter radionuclide that is selected from the group consisting of 90Y, 99mTc, 103Pd, 111In, 125I, 188Re, 201Tl, 47Sc, 212Bi, 213Bi, 211At, and 223Ra; (b) contacting the parent-daughter solution with a first separation medium having a high affinity for the desired daughter radionuclide and a low affinity for the parent and other daughter radionuclides such that the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said first separation medium under the conditions of contact is greater than or equal to 102, said desired daughter and parent radionuclides having different ionic charges as they are present in said solution, and maintaining that contact for a time period sufficient for said desired daughter radionuclide to be bound by the first separation medium to form desired daughter-laden separation medium and a desired daughter-depleted parent-daughter solution; (c) removing the desired daughter-depleted parent daughter solution from the separation medium; (d) stripping the desired daughter radionuclide from the desired daughter-laden separation medium to form a solution of desired daughter radionuclide; (e) contacting the solution of desired daughter radionuclide with a second separation medium having a high affinity for the parent radionuclide and a low affinity for said desired daughter radionuclide such that the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said first separation medium under the conditions of contact is greater than or equal to 102, and maintaining that contact for a time period sufficient for said parent radionuclide to be bound by the second separation medium to form a solution of substantially impurity-free desired daughter radionuclide.
- 14. The method according to claim 13 wherein the combined decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities for both the first and second separation media is about 104 to about 1010.
- 15. A method for producing a solution of desired daughter radionuclide that is substantially free of impurities comprising the steps of:
(a) providing an aqueous parent-daughter radionuclide solution containing a desired daughter radionuclide that is selected from the group consisting of 90Y, 99mTc, 103Pd, 111In, 125I, 188Re, 201Tl, 47Sc, 212Bi, 213Bi, 211At, and 223Ra; (b) contacting the parent-daughter solution with a first separation medium having a high affinity for the desired daughter radionuclide and a low affinity for the parent and other daughter radionuclides such that the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said first separation medium under the conditions of contact is greater than or equal to 102, said desired daughter and parent radionuclides having different charge densities as they are present in said solution, and maintaining that contact for a time period sufficient for said desired daughter radionuclide to be bound by the first separation medium to form desired daughter-laden separation medium and a desired daughter-depleted parent-daughter solution; (c) removing the desired daughter-depleted parent daughter solution from the separation medium; (d) stripping the desired daughter radionuclide from the desired daughter-laden separation medium to form a solution of desired daughter radionuclide; (e) contacting the solution of desired daughter radionuclide with a second separation medium having a high affinity for the parent radionuclide and a low affinity for said desired daughter radionuclide such that the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said first separation medium under the conditions of contact is greater than or equal to 102, and maintaining that contact for a time period sufficient for said parent radionuclide to be bound by the second separation medium to form a solution of substantially impurity-free desired daughter radionuclide.
- 16. The method according to claim 15 wherein the combined decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities for both the first and second separation media is about 104 to about 1010.
- 17. The method according to claim 15 wherein the desired daughter radionuclide is 212Bi(III).
- 18. The method according to claim 17 wherein one parent radionuclide is 224Ra(II).
- 19. A method for producing a solution of desired daughter radionuclide that is substantially free of impurities comprising the steps of:
(a) providing an aqueous parent-daughter radionuclide solution containing a desired daughter radionuclide that is selected from the group consisting of 90Y, 99mTc, 103Pd, 111In, 125I, 188Re, 201Tl, 47Sc, 212Bi, 231Bi, 211At, and 223Ra; (b) contacting the parent-daughter solution with a first separation medium having a high affinity for the desired daughter radionuclide and a low affinity for the parent and other daughter radionuclides such that the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said first separation medium under the conditions of contact is greater than or equal to 102, said desired daughter and parent radionuclides having both different ionic charges and charge densities as they are present in said solution, and maintaining that contact for a time period sufficient for said desired daughter radionuclide to be bound by the first separation medium to form desired daughter-laden separation medium and a desired daughter-depleted parent-daughter solution; (c) removing the desired daughter-depleted parent daughter solution from the separation medium; (d) stripping the desired daughter radionuclide from the desired daughter-laden separation medium to form a solution of desired daughter radionuclide; (e) contacting the solution of desired daughter radionuclide with a second separation medium having a high affinity for the parent radionuclide and a low affinity for said desired daughter radionuclide such that the decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities of said first separation medium under the conditions of contact is greater than or equal to 102, and maintaining that contact for a time period sufficient for said parent radionuclide to be bound by the second separation medium to form a solution of substantially impurity-free desired daughter radionuclide.
- 20. The method according to claim 17 wherein the combined decontamination factor of the desired daughter radionuclide from the parent radionuclide impurities for both the first and second separation media is about 104 to about 1010.
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority to provisional application Ser. No. 60/372,327, filed on Apr. 12, 2002 and to applications Ser. No. 10/159,003, filed May 31, 2002, Serial No. 10/261,031 filed, Sep. 30, 2002 and application Serial No. 10/351,717, filed Jan. 27, 2003.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60372327 |
Apr 2002 |
US |