The invention relates to improvements in sutures and suturing techniques, and more particularly to materials and devices for making high-strength fused suture loops during surgical procedures.
In surgical procedures, a suture is typically used to stitch or secure the edges of tissue together to maintain them in proximity until healing is substantially completed. The suture is generally directed through the portions of the tissue to be joined and formed into a single loop or stitch, which is then knotted or otherwise secured in order to maintain the wound edges in the appropriate relationship to each other for healing to occur. In this manner a series of stitches of substantially uniform tension can be made in tissue. Because the stitches are individual and separate, the removal of one stitch does not require removal of them all or cause the remaining stitches to loosen. However, each individual stitch requires an individual knot or some other stitch-closing device for securing the stitch around the wound.
It is sometimes necessary or desirable to close a wound site with sutures without having to form knots or incorporate loop-closing devices in the sutures, such as, for example, in surgical repair of delicate organs or tissues, where the repair site is relatively small or restricted. A fused suture loop should provide the appropriate tension on the wound edges and the appropriate strength to maintain the wound edges in sufficient proximity for a sufficient time to allow healing to occur.
Polymer sutures are particularly amenable to various fusing or joining processes, such as, for example, welding, whereby sections of the sutures can be fused together upon application of sufficient heat to the sections to cause partial melting and fusion of the sections. Because the direct application of heat to sutures in situ may produce undesirable heating of the surrounding tissue, it is preferred to apply nonthermal energy to the suture material in situ to induce localized heating of the suture material in the areas or sections to be fused. In particular, ultrasonic energy may be effectively applied to sections of suture materials to induce frictional heating of the sections in order to fuse or weld them together.
While sutures typically fall under tensile loads applied along the principal axis of the suture, suture welds open fail in shear, i.e., in the plane of the fused region between the overlapped segments of suture material it is desirable to have the failure strength of the suture joint be at least as great as the failure strength, of the suture material away irons the joint.
U.S. Pat. No. 5,417,700 to Egan and U.S. Pat. No. 3,515,848 to Winston et al. disclose apparatus and methods for ultrasonic welding of sutures. The Winston et al. patent discloses, for example, the application of mechanical energy to a segment of material to be joined in either of two different directions. For joining plastic suture materials, mechanical energy is applied in a direction substantially parallel to the axis of the segments to be joined. For joining metallic suture materials, mechanical energy is applied in a direction substantially normal to this axis. The Winston et al. patent further discloses the use of a spherical welding tip for use in joining metallic suture materials.
Although ultrasonic welding of sutures is known, it has heretofore been difficult or impossible to control the suture welding process in order to produce suture welds of sufficient strength and reliability to replace, or enhance the strength of, suture knots or other loop closure devices.
It would be desirable, therefore, to overcome the disadvantages inherent in prior art suture loop joints and joining processes.
The present invention provides a fused loop of an elongated material, such as a surgical suture, and an apparatus for making the loop. The elongated material can include multiple component materials that are segregated into discrete volumes within the elongated material. The different materials may each have a different melting point. The elongated material can be composed, of a single filament or fiber. Alternatively, the elongated material can be composed of multiple filaments, can be homogenous in composition, i.e., made from single material, or can be heterogeneous, i.e., include multiple material. When, multiple filaments are present within the elongated material, the material composition of the filaments can vary from filament to filament. Multiple filaments can include a mixture of both single-material filaments and multi-material filaments.
According to one aspect of the invention, there is provided a fused loop of an elongated material comprising one or more segments of the material which extends along a principal axis. Portions of the segments are joined together to form a loop at a joint region winch extends between first and second ends. The joint region includes a first portion of elongated material extending from the first end, a second portion of elongated material extending from the second end, and a fused portion or layer between the first and second ends and joining the first and second portions at points between the first and second ends of the joint region. The fused portion can include a relatively thin layer and/or region of fused material from the first and second portions.
The term “fused”, as used herein, refers to material which has been heated to a plastic or fluid state, and subsequently allowed to cool, so that the relatively highly-oriented molecular structure of the parent material is transformed into a relatively randomly-oriented molecular structure characterizing the feed portion of the joint region. The term “shear area”, as used herein, refers to the area of the fused portion between and substantially parallel to the segments of material joined in the joint region. In contrast, the cross-sectional area of the segments or the fused portion refers to the area in a plane substantially transverse to the principal axis of the segments.
The elongated material in the first and second portions of the joint region is characterized by a relatively high degree of molecular orientation in the direction of the principal axis of the material, and thus relatively high strength in the direction of the principal axis. The fused material in the fused portion of the joint region is characterized by a relatively random molecular orientation, and thus relatively low strength in the direction of the principal axis of the material. The cross-sectional area of the first and second portions of the segment at the first and second ends of the joint region, yet outside of (i.e., not abutting) the feed portion, can be greater than the cross-sectional area of the first, and second portions of the joint region that abut the fused portion.
In one embodiment, the cross-sectional area of the first and second portions of the segment at the first and second ends of the joint region, yet outside of the fused portion, is approximately equal to the cross-sectional area of a segment of the elongated material outside of the joint region.
In a preferred embodiment, the total cross-sectional area of the first and second portions of the joint region that abut the fused portion is a minimum at approximately the midpoint of the fused portion. In a more preferred embodiment, the total cross-sectional area of the first and second portions of the segment at the midpoint of the fused portion is approximately half the total cross-sectional area of the first and second portions at the first and second ends of the joint region and outside of, or not abutting, the fused portion. In an especially preferred embodiment, the change in cross-sectional area of the first and second portions of the segment, per unit length of those portions, is substantially constant over the length, of the fused portion of the joint region.
The elongated material may comprise a single filament, or fiber, of suitable material, such, as, for example, a polymer. In a preferred embodiment, the elongated material is a thermoplastic polymer, such as a surgical suture material.
The segments of elongated material are preferably joined in a weld at the joint region. The weld can be effected with various types of energy, such as, for example, ultrasonic, laser, electrical arc discharge, and thermal energy.
The loop of elongated material can be made by joining portions of a single segment of the elongated material. Alternatively, the loop can be made by joining portions of multiple segments of the material, for example, as in braided suture material.
The elongated material itself can comprise a single strand of multiple fibers or it can include multiple strands. When multiple strands are included, these may be twisted together, braided or otherwise interlinked, such as in a sheath-and-core configuration.
Whatever the configuration of the elongated material, upon application of a tensile force to the joint region in the direction of the principal axis of the material, the first and second portions of the joint region are loaded substantially in tension, and the fused portion of the joint region is loaded substantially in shear. In a preferred embodiment, the following equation,
A
w τfw≧Au σfu, Eq. 1
is satisfied. In Eq. 1, Aw is the shear area of the fused portion, τfw is the shear stress to failure of the fused portion, Au is tire total cross-sectional area of the first and second portions near the first and second ends of the joint region and outside of (not abutting) the fused portion, and σfu is the tensile stress to failure of the first and second portions near the first and second ends and outside of (not abutting) the fused portion.
Other aspects of the present invention can provide an ultrasonic welding apparatus that includes a first member having a first suture-contacting surface, a second member having a second suture-contacting surface, and means for moving the first member relative to the second member to define a gap between the respective suture-contacting surfaces. The first member is capable of vibrating and delivering mechanical energy at ultrasonic frequencies and moves relative to the second member. A fixture element is adapted to receive and maintain two or more segments of a material to be welded, such as an elongated material of a surgical suture, in a predetermined alignment in the gap between the first and second surfaces of the first and second members during a welding operation. The contour of at least the first surface substantially may correspond to the contour of a segment of the material to be welded so as to establish substantially continuous contact between the first surface and the segment over the length of the first surface and promote the welding process. The welding apparatus may also include a temperature sensor for monitoring the welding process. The temperature sensor is operable to produce a temperature signal. The temperature signal may be used, e.g., by a control unit, to limit or control the application of energy to the two or more segments during the welding process.
In one embodiment, one of the first and second surfaces is substantially convex and the other of the surfaces is substantially concave. In another embodiment, one of the first and second surfaces is substantially convex or substantially concave, and the other of the surfaces is substantially flat. In yet another embodiment, both of the first and second surfaces are substantially convex. In still another embodiment, both of the surfaces are substantially flat.
The radius of curvature of the convex suture-contacting surface is preferably not greater than the radius of curvature of the concave suture-contacting surface. In the case in which both the first and second members have convex suture-contacting surfaces, the respective radii of curvature of the convex surfaces can be different, or they can be substantially identical.
In another embodiment, the second member comprises a plurality of coupling portions which couple together to form the second surface during a welding process and separate after completion of the welding process to release the loop.
According to another aspect of the invention, an ultrasonic welding apparatus as described above includes first and second members with patterned first and second suture-contacting surfaces. The patterned surfaces can be complementary or non complementary, and the surface patterns on each member may vary in either a periodic or an aperiodic manner.
These and other features of the invention will be more fully appreciated with reference to the following detailed description which is to be read in conjunction with the attached drawings.
The invention is further described by the following description and figures, which are not necessarily to scale, emphasis instead being placed on illustration of principles of the invention. In the figures,
FIGS. 23A-2SC show respective cross sections of loop segments that include multiple filaments and multiple component materials according to preferred embodiments of the present invention.
Like elements in the respective figures have the same reference numbers.
The present invention provides a fused loop of an elongated material, such as a surgical suture. The loop has at least comparable strength to knotted loops or loops closed by other means by virtue of the properties of the fused portion of the joint region of the loop, as detailed more fully below.
As shown in
The fused loop of the present invention is preferably formed through a welding process, in which segments of the material to be joined are locally heated through the application of energy thereto until the segments fuse together. Various types of welded joints can be formed by the application of, for example, ultrasonic, thermal, laser, electrical are discharge, or thermal energy to the segments, which can be joined, for example, in an overlapped joint. In exemplary arrangements, welding of the segments is accomplished by the application of ultrasonic energy. For such arrangements, when the energy is applied to two or more juxtaposed and touching loop segments, the segments undergo vibratory motion and as a result move relative to each other. Because the segments are in contact with each other, the movement causes frictional heating of the to occur. When the heating effect increase the temperature to above the melting temperature of the segments (or one or more materials thereof), the segments melt and join together. Appropriate temperature sensors and control feedback may be used to limit the application of ultrasonic energy, as described in farther detail below.
The segments may already be knotted in preparation for fusion by welding, or they may simply be overlapped.
The elongated material can include multiple materials that are segregated into discrete volumes within the elongated material. The separate materials differ in their respective melting points. The materials may also differ from one another in one or more other material properties, such as density, elasticity, etc. The elongated material can be composed of a single filament or can be composed of multiple filaments. The filaments themselves can be homogenous in composition, i.e., made from single material, or can be heterogeneous in composition, i.e., made of multiple materials. When multiple filaments are present within the elongated material, the material composition of the filaments can vary from filament to filament, and the filaments can include a mixture of both single-material filaments and multiple-material filaments. Strands of multiple filaments may be used, and such strands may be twisted together as shown in
The joint region 14 extends between first and second ends 14A, 14B and includes a first portion 16 of elongated material extending from the first end 14A, and a second portion 18 extending from the second end 14B. The joint region 14 further includes a fused portion 20 which has a substantially uniform thickness and which is disposed between the first portion 16 and second portion 18 of the joint region. The fused portion 20 is made of material from the first and second portions 16, 18 which has been fused together. In a preferred embodiment, all of the fused material is disposed within, a fused layer or portion 20. However, some of the melted and fused material may be extruded outside of the fused portion 20 as a result of forces applied to the segments 16, 18 to compress them together during the welding process.
As mentioned previously, the elongated material of the type used in surgical sutures can be a single filament, or substantially monofilameutous, and preferably polymeric. Because the molecular structure of morsofilameatous materials is highly oriented along the principal axis of the material, the material exhibits relatively high strength in the direction of its principal axis. The elongated material in the loop segment outside the joint region 14, as well as in the first and second portions 16, 18 of the joint region, is characterised by a relatively high degree of molecular orientation in the direction of the principal axis X of the material. As a consequence of this highly oriented molecular structure, the strength of the elongated material outside the joint region, and in the first and second portions 16, 18 of the joint region, is also relatively great in the direction of the principal axis X.
On the other hand, the material which makes up the fused portion 20 of the joint region 14 is characterized by a relatively random molecular orientation, by virtue of its having been heated locally to a plastic state by the application of energy, such as ultrasonic energy, to the segment portions 16, 18 which make up the joint region 14. As a consequence of this relatively random molecular orientation, the strength of the material in the fused portion 20 of the joint region may be relatively low in the direction of the principal axis.
The fused portion 20 may be characterized by a shear area that is approximately equal to the product of the length L and the width W of the fused portion 20, as shown in
The change in cross-sectional area of the overlapping segments 16, 18 in the joint region is preferably uniform and gradual over the length, of the fused portion 20.
The lap welded joint shown in
Other geometries of the first and second portions 16, 18 in the joint region 14 that provide a uniform change in cross-sectional area of the joined segments in the joint region are also considered to be within the scope of the invention.
In a preferred embodiment of the invention, the shear area of the fused portion 20 of the joint region is sufficiently large to ensure that the joint will not fail prematurely, i.e., before the parent elongated material fails. The joint preferably has a failure strength at least as great as the strength of the parent material. Most preferably, the joint has a failure strength in shear which is greater than or equal to the failure strength in tension of the parent material.
Upon application of a tensile force to the joint region 14 in the direction of the principal axis X of the material, the first and second portions 16, 18 of the joint region are loaded substantially in tension and the fused portion 20 of the joint region is loaded substantially in shear. In this situation,
A
w τfw≧Au σfu, Eq. 1
is substantially satisfied, where Aw is the shear area of the fused portion 20 (i.e., the area of the layer of the fused portion which is between the first and second portions 16, 18, not the cross-sectional area of this layer), τfw is the shear stress to failure of the fused portion. Au is the total cross-sectional area of the first and second portions 16, 18 near the first and second ends of the joint region 14, outside of and not abutting the fused portion, and σfu is the tensile stress to failure of the first and second portions near the first and second ends, outside of and not-abutting the fused portion.
If Eq. 1 is not satisfied, the strength of the fused portion 20 may only be approximately equal to, and possibly less than, the strength of the parent material. It is of coarse preferred that the fused portion 20 be at least as strong as the unfused parent material. If it is stronger, when the joint is loaded intension, as indicated by force arrows F in
The first and second members 30, 32 each have respective suture-contacting surfaces 30A, 32A which are contoured to promote acoustic coupling between the first member 30 and the segment 16 of material to be joined, and to provide substantially continuous contact between at least the first suture-contacting surface 30A and at least one of the segments to be welded. The size of the shear area of the fused portion 20, and thus the strength of the joint region, is determined by the length and width of the suture-contacting surfaces 30A, 32A, the extent of contact between these surfaces and the segments-16, 18, and particularly between the first, surface 30A and the segment 16 closest to the first surface, and the pressure exerted on the segments by the first member 30 in the direction of arrow 35 during welding.
A temperature sensor 40 may be used to measure temperature during welding, and may be used as part of a closed-loop control process. Such a control process may be used to ensure the melting, or temperature-induced change to a plastic state, of one or more desired materials but not others within the elongated material. The temperature sensor 40 may be connected to a suitable control unit used for controlling the application of energy during the welding process. For example, a suitable temperature sensor, e.g., a thermocouple, may be connected to the first member of the welding apparatus, and may produce a temperature signal 42 that indicates the temperature of the welding process. When the applied energy during welding has raised the local temperature enough to melt a particular component, e.g., nylon 66 (Tm˜220 C.), the temperature signal 42 can indicate that the welding process should be stopped. In this way, the components) within the elongated material that have a higher melting temperature, e.g., polyester (Tm˜250 C), are prevented from melting. Consequently, integrity of the elongated material within the fused or welded can be maintained.
In addition to the geometries of the suture-contacting surfaces of the first and second members, the geometry of the material to be joined must be considered. Fused portions having the largest shear areas and the greatest joint strengths can be obtained by configuring the suture contacting surfaces 30A, 32A of the first and second members to have contours which correspond to the contours of the segments to be joined so as to ensure maximum contact with the segment portions 16, 18. For example, if the material is a filament having a substantially circular cross-section, at least one of the suture-contacting surfaces should preferably have a rounded contour to match the contour of the filament in contact with it. If the material is a substantially flat ribbon, at least one of the suture-contacting surfaces should preferably be substantially flat to ensure maximum contact with the segment. If the material has a polygonal or elliptical cross-section, the contour of at least one of the surfaces should preferably be grooved or channeled or otherwise shaped to correspond as closely as possible to the particular contour of the material.
It is generally preferred to configure the ultrasonic, welding tip members 30, 32 so that their respective suture-contacting surfaces 30A, 32A engage the suture segment portions 16, 18 so as to provide a maximum shear area for the fused portion 20. Various geometries for the suture-contacting surfaces 30A, 32A are illustrated in
As shown in
An advantage of incorporating a convex curvature to the second suture-contacting surface 32A is that the length of the joint region 14 in the direction of the principal axis of the material can be reduced, thereby decreasing the diameter of the resulting fused loop of suture material.
As shown in
The suture-contacting surfaces 30A, 32A of the embodiment illustrated in
As shown in
As in the above embodiments, the coupling portions of the second member 32 can be separated after the welding process to release the joined loop.
The surface patterns on the horn and anvil can be essentially complementary, as shown in
As shown, in
In general, fused suture loops in accordance with the invention are loops in which two ends of a suture have portions of their lateral surfaces fused together. Again, in general, the suture material is composed of a first material M1 characterised by a relatively low melting point, at least partly on a lateral surface of the material, and a second material M2 characterised by a relatively high melting point. Portions of the suture material are fused together to form a loop by application of ultrasonic energy. The ultrasonic energy effects relative movement between the portions to be joined, and the resultant frictional heating raises the adjacent portions of the material to a temperature between the meting points of M1 and M2. During the fusion process, since the frictionally caused elevated temperature is between the melting points of M1 and M2, the M2 material provides stability to the “loop” 10 as the M1 material melts and flows around M2 material. Upon the occurrence of that melting, the application of ultrasonic energy is stopped so that the melted material cools to form a “weld.” Preferably, the material of the melted, or fused, region has the relatively low degree of molecular orientation in the direction of the principal axis of the elongated member, while the portion of the suture material outside the fused region is characterized by a relatively high degree of molecular orientation in the direction of the principal axis of the elongated member. In materials such as liquid crystal polymers, the method or fused region of a suture maintains a relatively high degree of orientation along its principal axis. By way of example, suitable liquid crystal polymer suture materials are manufactured under the marks SPECTRA by Honeywell and DYNEEMA by DSM.
Accordingly, various aspects and embodiments of the present inventions provide advantages over the prior art. For example, by using elongated materials that include multiple materials that are segregated into discrete volumes within the elongated material, the characteristics of the fused region and Joint strength may be optimized. The integrity of the elongated material can be maintained or optimised in arrangements with one or more multi-materials fibers in which each material has a different melting temperature. For example, multi-material fibers having an outer cladding surrounding a core with a relatively higher melting temperature may be used. By controlling the application of ultrasonic energy and preventing the components) with a higher melting temperature from melting, portions of the elongated material can remain intact during and after the welding process. Furthermore, by using multiple fibers for the elongated material, strength and durability may be improved. Some embodiments may include a sheath, which may provide increased resistance to nicks, such as those that may occur daring surgical procedures, e.g., through contact with a scalpel or bone fragment.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of the equivalency of the claims are therefore intended to be embraced therein.
This application is a continuation of U.S. patent application Ser. No. 12/094,703, which is a U.S. national stage entry of Patent Cooperation Treaty Application No. PCT/US07/09465, filed on Apr. 18, 2007, which is a continuation of U.S. patent application Ser. No. 11/405,754, filed on Apr. 18, 2006, the contents of each of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 12094703 | Mar 2009 | US |
Child | 13620242 | US | |
Parent | 11405754 | Apr 2006 | US |
Child | 12094703 | US |