The present invention relates to the provision of an improved electrical cable with enhanced resistance to ingress of water or gas. More specifically, the cable is suitable for use subsea to provide electric power and/or signal transmission and may be used in umbilical conduits such as are used in offshore drilling environments.
In subsea working, such as offshore drilling environments, it is necessary to supply electrical power, electrical signals, optical signals, hydraulic controls, and/or fluids to subsea devices such as a wellhead. An umbilical is a conduit that can contain a number of functional elements for subsea work. Typically an umbilical comprises a group of functional elements such as electric cables, optical fiber cables, thermoplastic hoses or steel tubes. Cables, hoses, and/or tubes carried within an umbilical are generally of multilayer reinforced structures, such as are known in the art, configured to contain appropriate pressure and have burst and compression resistance for the envisaged usage. The umbilical provides a convenient single conduit to carry the fluid, electrical and signaling requirements of the task in hand.
The figures supplied herein disclose various embodiments of the claimed invention.
Referring to
Referring more to
Insulating layer 36 is disposed about conductor core 32 and typically comprises a polymer, most typically a polyethylene polymer.
In a second contemplated embodiment, referring especially to
First non-conductive adhesive layer 34 is disposed about one or more conductor wire strands 33 to fill the interstices between conductor wire strands 33 and central wire strand 31. In certain embodiments, first non-conductive adhesive layer 34 is also disposed within interstices defined between conductor wire strands 33 and insulating layer 36. Insulating layer 36 is disposed about first adhesive nonconductive layers 34.
In either embodiment, the plurality of insulated electrical conductors 30 may be wound about common longitudinal axis 22 helically, oscillatorily, or the like, or a combination thereof.
In either embodiment, additional filler materials may be present. In certain embodiments, solid filler 26 (not shown in the figures) may be disposed within void 24 in the substantially tubular insulating outer layer 20. Further, one or more filler rods 27 may be disposed within substantially tubular outer layer 20 adjacent to the wound plurality of insulated electrical conductors 30. As illustrated in
Thus, in most configurations no conductive sealant is used to manufacture multicore electrical cable 10. Instead, a non-conductive adhesive, such as non-conductive Oppanol B Type adhesive, may be used between the conductor wires and also between the stranded conductor and the insulation. Moreover, in most embodiments conductor core 32, including central wire strand 31 and conductor wire strands 33, are not compacted.
Referring still to
In a second exemplary process, insulated electrical conductor 10 may be manufactured by forming a plurality of insulated electrical conductors 30 by coating a plurality of conductor wire strands 33 with non-conductive adhesive 34 and winding the plurality of coated conductor wire strands 33 about common central conductor strand 31. First non-conductive adhesive layer 34 is forced into interstices between the wound plurality of wire strands 33 and central conductor strand 31. In certain embodiments, first non-conductive adhesive layer 34 is also filled into the interstices between conductor strands 33 and insulating layer 36. A plurality of insulated electrical conductors 30 are then wound about common longitudinal axis 22 and the wound plurality of insulated electrical conductors 30 coated with a second non-conductive adhesive. As described above, second adhesive layer 42 may comprise an ethylene vinyl acetate (EVA) based hot melt adhesive. Substantially tubular insulating outer layer 20 may then be extruded onto the wound plurality of insulated electrical conductor 30, where substantially tubular insulating outer layer 20 comprises a polymer.
The foregoing disclosure and description of the inventions are illustrative and explanatory. Various changes in the size, shape, and materials, as well as in the details of the illustrative construction and/or an illustrative method may be made without departing from the spirit of the invention.