The disclosed subject matter relates to combinable toy building elements and toy construction sets including the building elements.
Children and adults enjoy interacting with and collecting toys. Toys that may be assembled, disassembled, reassembled, and reconfigured are historically popular and educational. These toys help develop hand-eye coordination, fine motor skills, and stimulate creativity while providing endless hours of enjoyment and entertainment for children and adults alike.
In particular, construction toys that include interlocking and connecting plastic building elements promote creative and imaginative play by end users. Typically, plastic building elements attach to each other or interlock using an array of small cylindrical bumps or “studs” on the surface of one building element that fit into an array of holes or recesses on the surface of another building element. In general, the size and spacing of the studs and holes are standardized to enable attachment among various types of building elements and accessories that can be included in one or more construction toy kits.
A construction toy kit can include a standard set of pieces that allow end users to design and create a variety of different constructs in addition to specialized pieces. A construction toy kit also may provide instructions for using certain pieces to build a particular construct. In some cases, construction toy kits can be associated with particular themes for assembling constructs representing historical, contemporary, futuristic, or fictional objects, structures, vehicles, and creatures.
In one general aspect, special multidimensional spacing of building elements in a toy construction system are provided for combinations of building elements in both standard and offset alignments. In addition, special building elements provide various multidimensional alignments between standard building elements.
In another general aspect, a building element of a toy construction system includes a first wall positioned in a first plane having an inner and outer surface; a perimeter wall extending orthogonally from the first wall; a cavity defined by the combination of the first wall and the perimeter wall; a plurality of male coupling elements of a coupling size extending from the outer surface of the first wall, the male coupling elements arranged in a 1 building unit (BU) grid on the outer surface; and a plurality of female coupling elements of the coupling size arranged in the cavity in a fractional BU grid, the fractional BU grid positioning a number of the plurality of female coupling elements to receive multiple male coupling elements of another building element in alignment with the 1 BU grid of the plurality of male coupling elements and positioning a number of the plurality of female coupling elements to receive multiple male coupling elements of another building element in a fractional alignment offset from the 1 BU grid of the plurality of male coupling elements in a single dimension of the first plane.
The fractional BU grid may position a number of the plurality of female coupling elements to receive multiple male coupling elements of another building element in a fractional alignment offset from the 1 BU grid of the plurality of male coupling elements in a single dimension of the first plane in either of a first dimension of the plane or a second dimension of the plane.
The fractional BU grid also may position a number of the plurality of female coupling elements to receive multiple male coupling elements of another building element in a fractional alignment offset from the 1 BU grid of the plurality of male coupling elements in a single dimension of the first plane in either of a first dimension of the plane or a second dimension of the plane and simultaneously in both the first and the second dimensions of the first plane.
The fractional BU grid may be a ½ BU grid.
The arrangement of the plurality of female coupling elements of the coupling size in the cavity in the fractional BU grid may include an arrangement of the female coupling elements in at least one row and a plurality of columns, the row and the columns ½ BU wide, and the row and the columns arranged corresponding to one of the first and the second dimensions of the plane.
The arrangement of the plurality of female coupling elements of the coupling size in the cavity in the fractional BU grid also may include an arrangement of the female coupling elements in a plurality of rows and a plurality of columns, the row and the columns ½ BU wide, the rows and the columns arranged corresponding to one of the first and the second dimensions of the plane.
The plurality of female coupling elements may include at least one grid element providing a point of clutch in the plurality of female coupling element. The grid elements may be arranged in the cavity according to an alignment grid in which the grid elements are positioned according to the intersections of the grid alignment lines defining the alignment grid. In one example, the lines of the grid alignment are ½ BU apart in both dimensions of the first plane.
The grid elements may include at least one of a rib element, a post, and an end portion of a wall.
The female coupling element may include a rib element formed on an interior side of the perimeter wall providing a point of clutch for a male coupling element received by the female coupling element.
At least one female coupling element of the plurality of female coupling elements may include a plurality of rib elements formed on at least two interior sides of the perimeter wall, each rib element providing a point of clutch for a male coupling element received by the corresponding at least on female coupling element.
At least one female coupling element of the plurality of female coupling elements also may include a post extending orthogonally from an interior side of the first wall into the cavity, the post providing a point of clutch for a male coupling element received by the corresponding at least on female coupling element.
At least one female coupling element of the plurality of female coupling elements also may include four posts extending orthogonally from an interior side of the first wall into the cavity, each post providing a point of clutch for a male coupling element received by the corresponding at least on female coupling element.
At least one female coupling element of the plurality of female coupling elements also may include an end portion of a wall providing a point of clutch for a male coupling element received by the corresponding at least on female coupling element.
The male coupling element may be a cylindrical stud.
The building element also may include another male coupling element of the coupling size extending from the outer surface of the first wall elements arranged according to a fractional BU grid on the outer surface, wherein the another male coupling element is fractionally offset in at least a single dimension of the first plane.
In another general aspect, a toy building set includes a set of building elements, at least a plurality of the building elements including male coupling elements of a coupling size and female coupling elements of the coupling size, the male and female coupling elements arranged in a standard 1 building unit (BU) grid; and an adapter building element including: a plurality of male coupling elements of the coupling size extending from an outer surface of the adapter building element, the male coupling elements arranged in a 1 BU grid on a plane the outer surface; and a plurality of female coupling elements of the coupling size arranged in the building element in a fractional BU grid, the fractional BU grid positioning one or more of the plurality of female coupling elements to receive male coupling elements of another building element in alignment with the 1 BU grid of the plurality of male coupling elements and positioning one or more of the plurality of female coupling elements to receive male coupling elements of another building element in a fractional alignment offset from the 1 BU grid of the plurality of male coupling elements in a single dimension corresponding to the plane of the outer surface.
The adapter building element when coupled to one or more female coupling elements of a first one of the plurality of building elements and simultaneously coupled to one or male coupling of a second one of the plurality of building elements may offset the 1BU grid of the first one of the plurality of building elements from the 1BU grid of the second one of the plurality of building elements by a fraction of a BU in a single dimension corresponding to the plane of the outer surface of the adapter building element.
The 1BU grid may be an arrangement of the plurality of male coupling elements in one or more rows and columns parallel to the first and second dimensions of the first plane where the centers of any two adjacent male coupling elements of the arrangement in any one dimension are 1BU apart. In addition, 1BU may be the base distance between the centers of any two adjacent male coupling elements of the plurality of male coupling elements in a row or column.
In yet another general aspect, a toy building set comprising a plurality of toy building elements, wherein the plurality of toy building elements comprise an adapter building element comprising: a first wall positioned in a first plane having an inner and outer surface; a perimeter wall extending orthogonally from the first wall; a cavity defined by the combination of the first wall and the perimeter wall; a plurality of male coupling elements of a first coupling size extending from the outer surface of the first wall, the male coupling elements arranged in a 1 building unit (BU) grid on the outer surface; and a plurality of female coupling elements of the first coupling size arranged in the cavity in a fractional BU grid, the fractional BU grid positioning a number of the plurality of female coupling elements to receive multiple male coupling elements of another building element in alignment with the 1 BU grid of the plurality of male coupling elements and positioning a number of the plurality of female coupling elements to receive multiple male coupling elements of another building element in a fractional alignment offset from the 1 BU grid of the plurality of male coupling elements in a single dimension of the first plane.
Other features will be apparent from the description, the drawings, and the claims.
Toy construction sets include a number of building elements (for example, parts, pieces, and/or accessories), that may be assembled, disassembled, reassembled, and reconfigured countless times and in different configurations to provide hours of enjoyment, entertainment, and creative stimulation. Special multidimensional alignment for building elements of a toy construction system is described herein. Various coupling elements and configurations are described providing combinations of building elements in standard and offset alignments. In addition, special building elements provide various multidimensional alignments between standard building elements.
In general, toy construction sets, and their elements, are designed and manufactured to have dimensions that correspond to certain dimensions of one or more standard building elements, studs, coupling sizes, and/or accessories included in the toy construction kits or sets, (such as bricks, plates, and specialized build elements and accessories). For instance, a standard building element such as a 1×1 plate may have a length of 7.80 mm, a width of 7.80 mm, and a height of 3.20 mm (not including the stud), and a standard building element such as a 1×1 brick may have a length of 7.80 mm, a width of 7.80 mm, and a height of 9.60 mm (not including the stud). In this example, three 1×1 plates can be coupled together to have substantially the same dimensions as a 1×1 brick.
Building elements may include one or more coupling elements. Coupling elements of standard building elements include male coupling elements, for example, in the form of a coupling stud, and female coupling elements, for example, in the form of a coupling recess that is sized to receive the coupling stud. The male and female coupling elements can have a first coupling size. For example, the first coupling size of a standard coupling stud (that is on a surface of a building element, such as a plate or brick) is defined by an outside diameter of 4.88 mm and a height of 1.80 mm, and the coupling recesses are sized to have an interference fit with the coupling studs of the same size. There can be different types and configurations of female recesses that mate with the first coupling size. For example, in some configurations, the recesses may be circular, partially circular with flats on multiple sides, square, or pronged to name a few. The recesses may have varying depths; however, a minimum depth may be provided to ensure proper coupling with the male stud via an interference fit. Additional configurations for recesses that provide different alignment possibilities between building elements are described below in greater detail.
Coupling elements, for example, a male stud of a standard building element of the toy construction system, can be arranged in a uniform two-dimensional array structure, grid, or pattern (that is an x-z plane where x and z are perpendicular axes of a Cartesian coordinate system defining the plane, and x and z are the dimensions of the plane) on the surface of a building element which allow for easy coupling (and de-coupling) with the similarly arranged female recesses of another building element. Typically, the building elements are referred to by the array formed on the surface of the building element. Thus, a 3×4 building element has 12 male coupling elements, for example, studs, arranged in four columns by three rows. When male coupling elements are arranged in a two dimensional plane in a regular pattern (for example, rows and columns), the minimum base distance between the centers (for example, the point at which the center axis in the y-dimension of the cylindrical stud male coupling element intersects the x-z plane) of any two adjacent studs in any one column or row of the plane (for example, where the columns and rows are parallel to the x dimension or the z dimension of the x-z plane respectively) is one building unit or 1BU. The distances between centers of the male coupling elements taken along a direction that is parallel with either the x or the z dimension in the x-z plane are a standard unit, which is an integer multiple of the base unit or BU. For example, a 1×3 standard building element (brick or plate) has three studs A, B, and C whose centers are arranged parallel to one dimension of the element (e.g., the z dimension) where the center of stud A is 1BU from the center of stud B and 2BUs from the center of stud C. In the implementations described, the building unit or BU of such a toy construction system is 8 mm.
Building elements can be combined using the coupling elements. Once combined the building elements can be held together with an interference fit. An interference fit is a friction fit in which the mechanical coupling or fastening between the coupling elements is achieved by friction after the coupling elements are pushed together, mated, seated, or otherwise mutually engaged. The interference fit also may involve a purposeful interference or deformation of one or more of the coupling elements when they are coupled, fastened, pushed together, or otherwise mutually engaged. Thus, the interference fit can be achieved by shaping the two coupling elements so that one or the other, or both, slightly deviate in size or form from their nominal dimension and one or more of the coupling elements slightly interferes with the space that the other is taking up.
In one example, the degree of an interference fit is sometimes referred to as “clutch.” The amount of clutch provides an indication of the forces needed to combine and/or separate the coupling elements to or from each other. The degree or amount of contact between the coupling elements when coupled directly correlates to the amount of clutch provided. In addition, the number of points of contact between the coupling elements can determine the amount of clutch. For example, there may be three, four, five or more points of contact between a male stud and female recess, wherein more points of contact provide more clutch. With regard to female coupling elements, the point of contact is referred to herein as a “point of clutch.” It is understood, that at “point of clutch” as used herein may refer to a point of contact, a line of contact, or an area of contact between two building elements.
A particular type of interference fit includes a snap-fit where the element-to-element attachment is accomplished with a locator component and a locking component that are homogenous with one or the other of the elements being joined. Joining requires the flexible locking component of one element to move or deform for complete engagement with a mating element, followed by return of the locking component toward its original position or form to accomplish the interference required to couple, lock, and join the components together. The locator component of the mating element typically is inflexible, minimally or non-deforming so to provide strength and stability to the attachment. In one example, two coupling elements are engaged in a snap fit to form a mechanical joint system wherein the build elements are able to be moved relative to each other or configured in different positions while the pieces remain mechanically joined or locked together.
A toy construction kit also can include other building elements that include one or more accessory coupling elements that have a second coupling size that is distinct from (for example, smaller than) the first coupling size so that the accessory coupling elements are not able to frictionally engage with the coupling elements of the standard building elements of the first size. For example, the second coupling size of standard accessories, such as rods, handles, and guns that are held by toy figures or placed within hollow cutout portions of standard sized studs are defined by an outside diameter of 3.18 mm.
The parts and pieces that form the toy construction kits, building elements, and any other accessories can be formed from plastic, such as, for example, acrylonitrile butadiene styrene (ABS) or any other suitable material. While not shown, the pieces that form the toy construction kits, building elements, and any other accessories may be an assortment of different colors and may be decorated in various ways, for example, with paint, decals, stickers, etchings, imprints, to represent a character or build associated with a particular theme, real or imaginary, for example, according to a particular product line.
The following description makes reference to special relations in addition to directional orientations, such as views with regard to the drawings. However, any terms such as up, down, left, right, top, bottom, front, back, above, below, underneath, upper, lower, and the like are used primarily to differentiate between the views and orientations relative to other building elements or pieces within any particular configuration, or series of views or illustrations, and to help describe the relationship between pieces to the reader. These terms are not intended to describe necessary real world orientations, unless otherwise noted or specified herein.
As shown in the
As shown in
For example, as shown in
As shown in
Nine cylindrical, male studs, 220 of the first coupling size (for example, having an external diameter of 4.88 mm and height of 1.8 mm) extend orthogonally away from the exterior surface 205 of the top of the plate. As shown in
A number of female recess grid elements are arranged in the cavity 214 to form a non-standard ½ BU offset coupling grid. The grid elements can be configured to form female recesses of the first coupling size. The grid elements can include rib elements, posts, and/or walls.
In one example, a rib element is a protrusion or ridge formed along a wall that provides a point of clutch of a female coupling element. The rib element has a base that generally runs along the wall the rib element is formed on. For example, the rib element can run the height of the wall. However, the rib element should be positioned on a portion of the wall that allows contact with a male coupling element and long enough to provide enough friction to act as a point of clutch for the female coupling element or recesses accepting the male coupling element. The rib element protrudes away from the wall at a right angle and tapers to a point. In one example, the height of the rib element (i.e., the point of greatest distance from the wall) is slightly greater than the width of its base.
A post is an element that extends orthogonally from the interior surface of a building element into the cavity of the building element. The post extends to a height or distance from the interior surface of the building element into the cavity that allows contact with a male coupling element inserted into the cavity and has sufficient surface area to provide enough friction to act as a point of clutch for the female coupling element or recesses accepting the male coupling element. A cross section of the post can be a symmetrical geometrical shape, such as a circle or square that provides points of clutch for up to four different female coupling elements.
As shown in
In addition, a number of posts 256 extend orthogonally from the bottom surface 207 of the top. The center axis of each post 256 is parallel to the y axis. The width and length of the post 256 can be substantially equal forming a square cross section in the x-z plane having four corners (for example, each corner having a 90° angle). For example, the width and the length (being equal in a square cross section) of the post may be 0.82 mm. In another example, the post can have a circular cross section. The height of the post 256 corresponds to building type of building element (brick or plate) in which the post is formed. In this example, for a plate 200, the height of the post 256 is 1.8 mm. The end portion of the post (i.e., closest to opening of the cavity 214) may be slightly rounded or tapered to aid in alignment an insertion of a male stud into the corresponding female recess formed by the post.
One arrangement of grid elements according to a non-standard ½ BU offset coupling grid is shown in
The rib elements and/or posts are laid out according to the nonstandard ½ BU offset coupling grid with the rib elements 250 and posts 256 positioned between the rows and columns according to the grid. The grid elements can be positioned along grid element alignment lines 266 (shown with dashed lines) parallel with and located at the midpoint between adjacent rows 260 and adjacent columns 261. A rib element 250 is placed at each point where a grid element alignment line intersects the interior surface of the perimeter wall 210. Posts 256 can be placed at each point where the grid element lines intersect 267 (for example, the center point of the square formed between a pair of adjacent rows and columns of the ½ BU offset coupling grid). In one example, two opposite corners of the square cross section of the post 256 intersect one of the two grid alignment lines forming the intersection 267 where the post 256 is located.
The female recesses shown in
A first type of female recess is provided at each corner of the building element 200 and includes two interior sides of the perimeter wall 210, two rib elements 250, and one post 256 providing five points of clutch. One example of the first type of female recess is shown engaging with a cylindrical, male stud represented in
Another arrangement of grid elements according to the non-standard ½ BU offset coupling grid is shown in
In example shown in
Using female recess grid elements arranged according to a non-standard ½ BU offset coupling grid provides female recesses of the first coupling size that provide more coupling options when combining building elements allowing more flexibility of design choices to a builder. Using a non-standard ½ BU offset coupling grid allows male coupling elements of one building element to combine with the female recesses of: a standard 1BU coupling grid (where the male coupling elements of one building element align with the male building elements of a coupling building element in both the x and z dimensions); a z offset coupling grid (where the male coupling elements of one building element are offset with the male coupling elements of a coupling building element in the z dimension by ½ a BU); a x offset coupling grid (where the male coupling elements of one building element are offset with the male coupling elements of a coupling building element in the x dimension by ½ a BU); and a x-z offset coupling grid (where the male coupling elements of one building element are offset with the male coupling elements of a coupling building element in both the x and z dimensions by ½ a BU).
The 3×3 building element 200 shown in
As a result, using building elements with female recess grid elements arranged according to a non-standard ½ BU offset coupling grid gives a designer more flexibility when designing and creating constructions by allowing multiple male coupling elements to couple with a building element to offset the alignment of male coupling elements along one or dimensions in units less than 1BU.
In another example, a jumper plate is provided that is a specialty building element that allows various configurations, adaptations of, and alignments between standard building elements to allow additional flexibility and creativity in builder designs. In particular, various configurations of the jumper plate and other aspects of the elements described below, allow multiple male coupling elements of a building element to couple with a jumper plate in units less than 1BU of a standard coupling grid. Although the following description focuses on the jumper plate, certain design attributes and elements of the jumper plate are applicable to other toy construction building elements, as described in further detail below.
Five cylindrical, male studs, 414, 415, 416, 417, 418 of the first coupling size (for example, having a diameter of 4.88 mm and height of 1.80 mm) extend orthogonally from the exterior surface of the top wall 401. As shown in
The fifth stud 418 also extends from the exterior of the top surface and is centered in the tapered portion. In addition, the interior of the fifth stud 418 can be hollow creating a hole 419 that passes all the way through the jumper plate 400 that allows the stud 418 to receive a standard building element of the second coupling size (for example, a rod with diameter 3.18 mm). The interior side walls of the stud 418 forming the hole 419 may include a number of longitudinal flats 421 formed in the interior surfaces that define the hole 419 thereby offering at least four points of clutch for any building element of the second coupling size inserted therein. Moreover, the longitudinal flats 421 can be positioned and dimensioned based on the standard dimensions of structures to be received in the hole 419. For example, the distance between opposing flats may be 3.04 mm.
The underside 490 of the jumper plate 400 can have one of several different configurations. Different configurations of the underside 490 are shown in
Typically, standard building elements with multiple studs can only be coupled in a manner such that the studs of one building element directly align with the studs of another building element being coupled to it according to the standard 1BU coupling grid. This limits the way in which the building elements can be combined. However, the jumper plate provides the capability to allow building elements to be combined in a number of non-standard alignments allowing the jumper plate to jump from a standard alignment to an offset alignment. As a result, additional building elements may be coupled in the standard and offset alignments providing flexibility to designer when combining building elements to create a toy construct.
The tapered portion 501 includes an open area formed between the cutouts 424 in the non parallel side walls 406, 408, bounded by the interior surface 503 of the top wall, the interior side 504 of the front wall 402, and a first side 505 of an inner wall 506. As shown, the hole 419 extends through the male stud 418 and the top wall 401 of the plate 500. The height of the interior side 504 of the front wall and the inner wall 506 is slightly greater than 1.80 mm.
Arranged along the interior side 504 of the front wall and the first side 505 of the inner wall 506, at regularly spaced intervals, are a number of protrusions, teeth, or rib elements 510. Each rib element 510 provides a point of clutch in the female coupling element for receiving and holding a male coupling element of the same coupling size as the female coupling element. The rib element 510 has a base that runs the entire height of the wall the rib element is formed on (for example, the inner side 504 of wall 402 and the first side 505 of the inner wall 506). A rib element protrudes or extends away from the wall at a right angle and tapers to a point. In one example, the height of the rib element (i.e., the point the rib element that is the greatest distance from the wall) is slightly greater than the width of its base of the rib element, for example 1.80 mm. As shown in
The rib elements 510 are evenly spaced and positioned along a wall such that a grouping of three or more rib elements 510 provides a female coupling element of the first coupling size. As such, adjacent rib elements 510 formed on the same wall are evenly spaced, and a rib element 510 can be formed directly across from a rib element 510 on a wall opposite the rib element 510. The spacing or relative positioning of the rib elements 510 are described in further detail below with regard to
The square portion 502 of the bottom of the configuration 500 is a generally open area formed between the interior sides 520, 522 of the parallel side walls 406, 408 and the interior side 524 the back wall 404.
A circular wall 530 extends orthogonally from the bottom surface 503 of the top wall 402. The base of the circular wall 530 is centered around a center point of the square portion 502, for example, a point on the surface 503 that is 6.42 mm from the interior sides of the walls 406, 408, and back wall 404 (or 7.9 mm from the outside of the of the walls 406, 408, and back wall 404). The height of the circular wall 530 can be 1.80 mm. The inner diameter of the circle created by the wall 530 is of the first coupling size providing a female recess for a cylindrical male stud of the first coupling size. In addition, the interior walls of the circular wall 530 may include a number of longitudinal flats formed in the interior surfaces of the wall 530. Moreover, the longitudinal flats 531 can be positioned and dimensioned based on the standard dimensions of male studs of the first coupling size to be received in the recess formed by the circular wall. For example, the distance between opposing flats may be 4.84 mm. The outer diameter of the circular wall 530 is 6.50 mm.
Four indentations 540 into the bottom surface 503 of the top wall 401 are shown. Each indentation 540 corresponds to the inside of one of the cylindrical, male studs 414, 415, 416, and 417 arranged on the outer surface of the top wall 401 of the configuration 500. As can be seen from
Two walls 535, 537 extend at right angles from the second side 507 of the inner wall 506 from the tapered portion into the square portion. The extension walls 535, 537 are the same height as the inner wall 506, and can have a thickness of 1.25 mm. The end portion 539 of the extension walls 535, 537 are parallel to the inner wall 506 and are positioned to form an area of clutch for a female coupling recess of the first coupling size formed by the interior side of a wall (406 or 408), and the outer side of the circular wall 530, and the end portion 539 of an extension wall 535 or 537. This female coupling recess has three points of clutch. Two additional female coupling recesses of the first coupling size are formed between the interior sides 520 or 522 of the side walls 406 or 408, the outer side of the circular wall 530, and the interior side 524 the back wall 404.
The configuration 500 provides eight female coupling elements of the first coupling size. These coupling elements are highlighted in
A female coupling element for stud position 550 is provided by the recess formed by the circular wall 530. Two female coupling elements for stud positions 552, 554, are formed between the interior sides 520, 522 of the side walls 406, 408, the circular wall 530, and the end portion 539 of the extension walls 535, 537; two additional female coupling elements for stud positions 556, 558 are formed between the interior sides 520, 522 of the side walls 406, 408, the circular wall 530, and the interior side 524 of the back wall 404.
In addition, three female coupling elements for stud positions 547, 548, and 549 located in the tapered portion 501 are formed by three or more ribbed elements 510. The female coupling elements for stud positions 547 and 549 are formed by three rib elements 510, one rib element positioned on the interior side 504 of front wall 402 and two on the first side 505 of inner wall 506. The female coupling element for stud position 548 is formed by four rib elements 510, two rib elements 510 positioned on the interior side 504 of front wall 402 and two rib elements 510 positioned on the first side 505 of inner wall 506. The female coupling elements for stud positions 547 and 549 have five points of clutch and the female coupling element for stud position 548 has six points of clutch.
The rib elements 510 can be positioned according to a non-standard ½ BU offset coupling grid as shown in
According to the ½ BU offset coupling grid, a female recess of the first coupling size is centered at the intersection 565 of the first row and each column 561. The rib elements 510 are laid out according to the nonstandard ½ BU offset coupling grid with the rib elements 510 positioned in the first row and each column according to the grid. The rib elements 510 can be positioned using grid element alignment lines that are parallel with and located at the midpoint between adjacent columns 261. A rib element 510 is placed at each point where an element alignment line intersects the interior side 504 of the front wall 402 and the first side 505 of the inner wall 506.
As shown in
However, instead of circular wall 530, four walls 630, 631, 632, and 634 forming a cross or x-shape extend orthogonally from the bottom surface 503 of the top wall 402. One end of each of the four walls 630, 631, 632, and 634 is connected at a common point 635 to form the cross, where each wall is formed at a 90° angle (in the x-z plane) to the two adjacent walls. The intersection of the walls or common point 635 is centered within the square portion 602, for example, at a position that is 6.42 mm from the interior sides of the walls 406, 408, and back wall 404 (or 7.9 from the outside of the of the walls 406, 408, and back wall 404). The height of the walls 630, 631, 632, and 634 is 1.80 mm. The cross section of each wall 630, 631, 632, and 634 in the x-z plane is generally rectangular. Each a wall is 0.82 mm wide and 2.83 mm long. The other ends of each of the four walls 630, 631, 632, and 634 opposite the intersection at the common point 635 are positioned to form an area of clutch for female coupling recesses of the first coupling size. The other ends 630, 631, 632, and 634 of each wall have a rectangular cross-section in the x-z plane with three sides of the rectangular cross section arranged at right angles to each other (thereby forming one end of the rectangular cross section).
In addition, two walls 641 and 642 extend orthogonally from the bottom surface 503 of the top wall 402. One end of wall 641 is connected to wall 535 forming 45° and 135° angles with the wall 535, and one end of wall 642 is connected to wall 537 forming 45° and 135° angles with the wall 537. The other ends opposite the connected ends of the walls 641 and 642 are generally oriented towards the center of the square portion 602 and each other. The cross section of each wall 641 and 642 in the x-z plane is generally rectangular, where the other ends of each wall 641 and 642 within the rectangular cross-section have three sides arranged at right angles to each other to form two adjacent corners of one end of the rectangular cross section and are positioned to form an area of clutch for female coupling recesses of the first coupling size.
Two rib elements 510 also are formed on the interior side of the back wall 404 in the same fashion as described above for the first portion 501 in
The configuration 600 includes eleven female coupling elements of the first coupling size. The female coupling elements can be formed using a number of grid elements including one or more of rib elements, walls, and end portions of walls to provide points of clutch for the female recess elements. The female coupling elements are highlighted in
Two female coupling recesses for stud positions 650, 651 are formed between the interior sides 520, 522 of the side walls 406, 408, the end portions of walls 630, 631, the end portions of walls 641, 642, and the end portions 539 of the extension walls 535, 537. Two female coupling recesses for stud positions 652, 653 are formed between the interior sides 520, 522 of the side walls 406, 408, and the end portions of walls 630 and 632. Two female coupling recesses for stud positions 654, 654 are formed between the interior sides 520, 522 of the side walls 406, 408, and the end portions of walls 632 and 633, the interior side 524 of the back wall 404, and the rib elements 510. A female coupling recess for stud position 656 is formed between the end portions of walls 632 and 633, rib elements 510, and the interior side 524 of the back wall 404. A female coupling recess for stud position 657 is formed between the end portions of walls 630 and 631, rib elements 510, the end portions of walls 641, 642 and the end portion 539 of the extension walls 535, 537.
The arrangement of the grid elements (for example, end portions of walls 630, 631, 632, 633, 641, 642, and rib elements 510) can be positioned according to a non-standard ½ BU offset coupling grid as shown in
A rib element 510 is formed at each point in the tapered portion 601 where an element alignment line intersects the interior side 504 of the front wall 402 and the first side 505 of the inner wall 506. In addition, a rib element 510 is formed in the square portion at each point where an element alignment line intersects the interior side 524 of the back wall 404 within the cavity. The end portions of walls 630, 631, 632, 633, 641, and 642 are positioned at the intersections of the grid element alignment lines within the square portion 602 where one of the two grid element alignment lines forming the intersection crosses through one of the two corners of the rectangular cross section and the other of the two grid element alignment lines forming the intersection crosses through the other corner of the rectangular cross section. A blow up view of an example illustrating the intersection of two gridlines and the orientation of an end portion of one of the walls 630, 631, 632, 633, 641, and 642 is shown in
As shown in
The general configuration of the square portion 702 of the bottom of the configuration 700 is similar to the square portion 602 described above for configuration 600. As described above, a generally open area or cavity is formed between the interior sides 520, 522 of the parallel side walls 406, 408 and the interior side 524 the back wall 404. In addition, four indentations 540 in the bottom surface 503 of the top wall 401 are shown and positioned as described above. Similarly, two walls 535, 537 extend 2.16 mm at right angles from the second side 507 of the inner wall 506 from the tapered portion 701 into the square portion 702.
However, instead of a cross or x-shape, in this example four posts 730, 731, 732, and 734 extend orthogonally from the bottom surface 503 of the top wall 402. The center axis corresponding to the height of the posts are the parallel to the y axis. The width and length of the post can be substantially equal forming a square cross section in the x-z plane. For example, the width and the length (being equal in a square cross section) of the posts may be 0.82 mm. The height of the posts can be 1.8 mm. The end portion of the post (i.e., closest to opening of the cavity) may be slightly rounded or tapered to aid in alignment an insertion of a male stud into the corresponding female recess formed by the post. The posts 730, 731, 732, and 734 are positioned to form points of clutch for female coupling recesses of the first coupling size.
In addition, two walls 641 and 642 extend orthogonally from the bottom surface 503 of the top wall 402 and two rib elements 510 on the interior side of the back wall 404 are formed as described above with regard to
The configuration 700 includes twelve female coupling elements of the first coupling size. The female coupling elements can be formed using a number of grid elements including one or more of rib elements, posts, and walls to provide points of clutch for the female recess elements. The female coupling elements are highlighted in
Two female coupling recesses for stud positions 750, 751 are formed between the interior sides 520, 522 of the side walls 406, 408, the posts 730, 731, the end portions of walls 641, 642, and the end portions 539 of the extension walls 535, 537. Two female coupling recesses for stud positions 752, 753 are formed between the interior sides 520, 522 of the side walls 406, 408, and the posts 730 and 732. Two female coupling recesses for stud positions 754, 754 are formed between the interior sides 520, 522 of the side walls 406, 408, and the posts 732 and 733, the interior side 524 of the back wall 404, and the rib elements 510. A female coupling recess for stud position 756 is formed between the posts 732 and 733, rib elements 510, and the interior side 524 of the back wall 404. A female coupling recess for stud position 757 is formed between the posts 730 and 731, the end portions of walls 641, 642 and the end portion 539 of the extension walls 535, 537. A female coupling recess for stud position 758 is formed between the posts 730, 731, 732, and 734.
The arrangement of the grid elements (for example, posts 730, 731, 732, and 734, the end portions of walls 641, 642, and rib elements 510) can be positioned according to a non-standard ½ BU offset coupling grid as shown in
A rib element 510 is formed at each point in the tapered portion 701 where an element alignment line intersects the interior side 504 of the front wall 402 and the first side 505 of the inner wall 506. In addition, a rib element 510 is formed in the square portion at each point where an element alignment line intersects the interior side 524 of the back wall 404 within the cavity. The posts 730, 731, 732, and 734 are positioned at the intersections of the grid element alignment lines within the square portion 702 where (for example, the center point of the square formed between a pair of adjacent rows and columns of the ½ BU offset coupling grid). In one example, two opposite corners of the square cross section of the posts 730, 731, 732, and 734 intersect one of the two grid alignment lines forming the intersection where the post is located. A blow up view of an example illustrating the intersection of two gridlines and the orientation of posts 731, 732, 733, 734 is shown in
As shown in
The general configuration of the square portion 802 of the underside 490 of the jumper plate 400 in the configuration 800 is similar to the square portion 702 described above for configuration 700. The configuration 800 provides all the grid elements in square portion 802 described above for the square portion 702 of configuration 700; therefore, their description is not repeated here for brevity. In addition, two additional rib elements 510 are formed on the interior sides 520, 522 of the parallel side walls 406, 408.
The configuration 800 includes twelve female coupling elements of the first coupling size. The female coupling elements can be formed using a number of grid elements including one or more of rib elements, posts, and walls to provide points of clutch for the female recess elements. The female coupling elements are highlighted in
Two female coupling recesses for stud positions 850, 851 are formed between the interior sides 520, 522 of the side walls 406, 408, rib elements 510, the posts 730, 731, the end portions of walls 641, 642, and the end portions 539 of the extension walls 535, 537. Two female coupling recesses for stud positions 852, 853 are formed between the interior sides 520, 522 of respective side walls 406, 408, rib elements 510, and the posts 730 and 732. Two female coupling recesses for stud positions 854, 854 are formed between the interior sides 520, 522 of respective side walls 406, 408, and the posts 732 and 733, the interior side 524 of the back wall 404, and the rib elements 510. A female coupling recess for stud position 756 is formed between the posts 832 and 833, rib elements 510, and the interior side 524 of the back wall 404. A female coupling recess for stud position 857 is formed between the posts 730 and 731, rib elements 510, the end portions of walls 641, 642 and the end portion 539 of the extension walls 535, 537. A female coupling recess for stud position 858 is formed between the posts 730, 731, 732, and 734.
The arrangement of the grid elements (for example, posts 730, 731, 732, and 734, the end portions of walls 641, 642, and rib elements 510) can be positioned according to a non-standard ½ BU offset coupling grid as shown in
In addition, four additional rib elements are provided by forming rib elements 510 at each point in the square portion 802 where an element alignment line intersects the interior sides of the walls in square portion (for example, 520, 522, 524 of the walls 404, 406, and 408).
As shown in
The general configuration of the square portion 902 of the underside 490 of jumper plate 400 in the configuration 900 is similar to the square portion 602 described above for configuration 600. As described above, a generally open area or cavity is formed between the interior sides 520, 522 of the parallel side walls 406, 408 and the interior side 524 the back wall 404. In addition, four indentations 540 in the bottom surface 503 of the top wall 401 are shown and positioned as described above. Similarly, two walls 535, 537 extend at right angles from the second side 539 of the inner wall 506 from the tapered portion 901 into the square portion 902.
However, instead of a cross or x-shape, in this example two partial circular walls 928, 929 extend orthogonally from the bottom surface 503 of the top wall 402. The partial circular walls 928, 929 are positioned as the circular wall 530 where two opposite portions of the circular wall 530 are omitted or cut out to provide points of clutch for a female recess, with the remainder of the circular wall 530 forming partial circular walls 928, 929 having an outer diameter of 6.62 mm. The partial circular walls 928, 929 each have two end portions 930, 932 and 931, 934. The end portions have a rectangular cross-section in the x-z plane with three sides of the cross section arranged at right angles to each other forming an end of the rectangle.
In addition, two walls 641 and 642 extend orthogonally from the bottom surface 503 of the top wall 402 and are formed as described above with regard to
The configuration 900 includes ten female coupling elements of the first coupling size. The female coupling elements can be formed using a number of grid elements including one or more of rib elements, end portions, and walls to provide points of clutch for the female recess elements. The female coupling elements are highlighted in
Two female coupling recesses for stud positions 950, 951 are formed between the interior sides 520, 522 of the side walls 406, 408, the end portions 930, 931, the end portions of walls 641, 642, and the end portions 539 of the extension walls 535, 537. Two female coupling recesses for stud positions 952, 953 are formed between the interior sides 520, 522 of respective side walls 406, 408, and the end portions 932 and 933, the interior side 524 of the back wall 404, and the rib elements 510. A female coupling recess for stud position 954 is formed between the end portions 932 and 933, rib elements 510, and the interior side 524 of the back wall 404. A female coupling recess for stud position 955 is formed between the end portions 930 and 931, the end portions of walls 641, 642 and the end portion 539 of the extension walls 535, 537. A female coupling recess for stud position 956 is formed between the two partial walls 928, 929.
The arrangement of the grid elements (for example, end portions 930, 931, 932, and 934, end portions of walls 641, 642, and rib elements 510) can be positioned according to a non-standard ½ BU offset coupling grid as shown in
The rib elements 510 in the tapered portion 901 and square portion 902 are formed as described above as are the end portions of walls 641, 642. The end portions of the circular walls 930, 931, 932, and 934 are positioned at the intersections of the grid element alignment lines within the square portion 902 where (for example, the center point of the square formed between a pair of adjacent rows and columns of the ½ BU offset coupling grid). In one example, the partial circular walls 928 and 929 are terminated at the end portions 930, 931, 932, and 934 as determined by the intersections of the grid element lines with circular walls 928 and 929 where one of the two grid element alignment lines forming the intersection crosses through one of the two corners of the rectangular cross section and the other of the two grid element alignment lines forming the intersection crosses through the other of the two corners of the rectangular cross section. As a result, the terminated end portions 930, 931, 932, and 934 form points of clutch for a female recess.
Toy construction sets include a number of building elements of various types, for example, parts, pieces, and/or accessories, that may be assembled, disassembled, reassembled, and reconfigured countless times and in different configurations to provide hours of enjoyment, entertainment, and creative stimulation. The following description illustrates how the special building elements described above may be used in combination with other building elements in both standard and non-standard, fractional offset coupling alignments thereby providing additional options, designs, and creativity for builders.
As shown in
A number of exemplary implementations have been described. Nevertheless, it will be understood that various modifications may be made. Suitable results may be achieved if the steps of described techniques are performed in a different order and/or if components in a described components, architecture, or devices are combined in a different manner and/or replaced or supplemented by other components. Accordingly, other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3005282 | Christiansen | Oct 1961 | A |
3716939 | Pibet | Feb 1973 | A |
4919635 | Bertrand | Apr 1990 | A |
5661941 | Vataker | Sep 1997 | A |
D394465 | Schmidt | May 1998 | S |
5795210 | Kushner | Aug 1998 | A |
5848927 | Frederiksen | Dec 1998 | A |
6102766 | Leadbetter et al. | Aug 2000 | A |
6554676 | Bach | Apr 2003 | B1 |
6645033 | Thomsen | Nov 2003 | B1 |
7347028 | Bin-Nun et al. | Mar 2008 | B1 |
D672406 | Sas | Dec 2012 | S |
D688328 | Holm | Aug 2013 | S |
D688753 | Holm | Aug 2013 | S |
D696360 | Holm | Dec 2013 | S |
8771032 | Chang et al. | Jul 2014 | B2 |
8905812 | Pai-Chen | Dec 2014 | B2 |
Number | Date | Country |
---|---|---|
001400857-0006 | Jan 2014 | EM |
Entry |
---|
“Slope Brick Curved 6×1,” Lego Part No. 42022, photograph available at http://media.peeron.com/ldraw/images/47/3x/42022.png, downloaded on Jul. 29, 2014, 1 page. |
Sets that have ‘Slope Brick Curved 6×1’ (42022), showing commercial availability of the 42022 part in various Lego (TM) sets in years 2002-2010, available at http://www.peeron.com/inv/parts/42022, downloaded on Jul. 29, 2014. |
Brickset, Your Lego (TM) Set Guide, 4218749: Palisade Brick 1×2, showing production and commercial availability in at toy sets during years 2003-2014, available at http://brickset.com/parts/4218749, downloaded on Jul. 29, 2014, 3 pages. |
Brickset, Your Lego (TM) Set Guide, 4523148: Palisade Brick 1×4, available at http://brickset.com/parts/4523148, downloaded on Jul. 29, 2014. |
Brickset, Your Lego (TM) Set Guide, 4129996: Roof Tile 1×2×3/73 (degrees), showing production and commercial availability in toy sets during years 2000-2008, available at http://brickset.com/parts/4129996, downloaded on Jul. 29, 2014, 3 pages. |
Brickset, Your Lego (TM) Set Guide, 4159279: Roof Tile 1×2×2, showing production in years 2001-2014, available at http://brickset.com/parts/4159279, downloaded on Jul. 29, 2014, 2 pages. |
Kre-O Create It: CityVille Invasion, Part K101320 in Capture Cruiser Set A4910, Feb. 22, 2013, downloaded from http://www2.hasbro.com/common/documents/6d0a17b55056900b100f781b9c2c69e3/AB02BBD750569047F57D6BF49EBD31D6.pdf, downloaded on Oct. 18, 2015, 1 page. |