Multidimensional personal behavioral tomography

Abstract
A method and computer program product for identifying attributes of customers and potential customers, allowing marketing to be directed at such consumers. Information is received regarding each of a number of consumers. This information can include demographic information, data regarding spending habits, and information as to how such attributes may have changed over time. Once attributes have been determined, and any changes over time to such attributes have been determined, a correlation of the attributes is performed. Such combined attributes are denoted as composite dimensions. Given the composite dimensions, as well as attributes that may not have been correlated with any other attributes, consumers are plotted in the resulting multi-dimensional space. Sets of consumers that appear to be grouped in this multi-dimensional space are then identified. Common attributes of this consumer group are identified. Unique attributes of a given consumer in such a group are also identified.
Description

BRIEF DESCRIPTION OF THE FIGURES

The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit of a reference number identifies the drawing in which the reference number first appears.



FIG. 1 illustrates how a single consumer might be plotted in a one dimensional space, i.e., where the consumer is situated with respect to a single attribute.



FIG. 2 illustrates how the consumer may be situated in a two dimensional space, wherein the consumer's position is plotted with respect to two different attributes.



FIG. 3 is a flow chart illustrating the processing of the invention, according to an embodiment thereof.



FIG. 4 illustrates the organization of attributes or dimensions into composite dimensions, according to an embodiment of the invention.



FIG. 5 illustrates how trends in consumer attributes can in themselves also be attributes which can be combined into a composite dimension.



FIG. 6 illustrates how consumers' demographic attributes can be combined into a composite dimension, according to an embodiment of the invention.



FIG. 7 illustrates how groups of consumers may be plotted in a multi-dimensional space, wherein some of the dimensions may in fact be composite dimensions, according to an embodiment of the invention.



FIG. 8 illustrates how a given consumer may have attributes that distinguish it from those of a consumers group, according to an embodiment of the invention.



FIG. 9 illustrates a computing platform on which a software or firmware embodiment of the invention can be implemented.





DETAILED DESCRIPTION OF THE INVENTION

A preferred embodiment of the present invention is now described with reference to the figures, where like reference numbers indicate identical or functionally similar elements. Also in the figures, the leftmost digit of each reference number corresponds to the figure in which the reference number is first used. While specific configurations and arrangements are discussed, it should be understood that this is done for illustrative purposes only. A person skilled in the relevant art will recognize that other configurations and arrangements can be used without departing from the spirit and scope of the invention. It will be apparent to a person skilled in the relevant art that this invention can also be employed in a variety of other systems and applications.


The invention described herein includes a system, method and computer program product for identifying characteristics of customers and potential customers, thereby allowing efficiently targeted marketing to be directed at such consumers. A body of information is first received regarding each of a number of consumers. This information can include, for example, demographic information, data regarding spending habits, and information as to how such attributes may have changed over time. Once such attributes have been determined, and any changes over time to such attributes have been determined, a correlation of the attributes is performed. This serves to reduce the overall number of attributes by consolidating those that are correlated with one another. As an example, a person who spends considerable amounts of money on recorded music and videos, may also spend considerable money on consumer electronics. In this example, those two attributes could be combined if they have a strong positive correlation. Such combined attributes are denoted herein as composite dimensions.


Given the set of composite dimensions, as well as attributes that may not have been correlated with any other attributes, individual consumers are plotted in the resulting multi-dimensional space. Sets of consumers that appear to be grouped in this multi-dimensional space are then identified. Given such a consumer group, the common attributes of this consumer group are identified. In addition, any unique attributes of a given consumer in such a consumer group are also identified. Hence, the invention may identify attributes that a consumer may have in common with a group of other consumers, and also may identify attributes that distinguish a consumer from others in a consumer group.


The present invention is now described in more detail herein. This is for convenience only and is not intended to limit the application of the present invention. After reading the following description, it will be apparent to one skilled in the relevant arts how to implement the following invention in alternative embodiments.


The terms “user,” “end user,” “consumer,” “customer,” “participant,” and/or the plural form of these terms are used interchangeably throughout herein to refer to those persons or entities capable of being affected by and/or benefiting from the present invention.


Furthermore, the terms “business” or “merchant” may be used interchangeably with each other and shall mean any person, entity, distributor system, software and/or hardware that is a provider, broker and/or any other entity in the distribution chain of goods or services. For example, a merchant may be a grocery store, a retail store, a travel agency, a service provider, an on-line merchant or the like.



FIG. 3 illustrates the general processing of the invention. The process begins at step 310. In step 320, data is collected with regard to customers and potential customers, collectively referred to herein as consumers. This information can include demographic data, such as age, martial status, number of children, income level, and home address. This data can also include information as to a consumer's spending habits, such as the amount of money spent on travel, the amount spent at restaurants, and the amount spent on clothing. Information as to the spending habits of a consumer is denoted herein as spend data. Spend data may be considered in aggregate with respect to a specific merchant industry, e.g., spending on air travel, and spending on consumer electronics. Spend data may also be considered in aggregate with respect to a time interval, e.g., spending on air travel in the past twelve months.


The attributes related to spending habits may also be divided more finely. The data may include, for example, the amounts spent on domestic travel versus the amount spent on overseas travel. These attributes may be further divided into other attributes such as the amounts spent on travel to Europe, or the amount spent on travel to Asia.


Overall, such data may be collected through any one of several mechanisms. Consumer surveys may be used, for example. In addition, characteristics such as spending habits may be determined on the basis of monitored credit card usage. In step 325, the data collected in step 320 is read to determine attribute information. In step 325, the attributes for each of a set of consumers is determined. Through step 325, it is determined whether a given consumer is of a certain age, marital status, etc., and whether the consumer has spent a given amount in European travel, for example. The step of getting attributes therefore represents the placing of each consumer on each of several dimensions.


Note that the attributes determined in step 325 all represent static information. This information therefore includes a consumer's current marital status, the consumer's current age, the consumer's current salary, how much money the consumer has spent eating at restaurants in the current year, etc. In step 330, the data collected in step 320 is mined for trends in these characteristics. Therefore, step 330 includes the determination of how the consumer has changed his spending habits over the last year, for example. Trends in the type and quantity of purchases made, and changes in income level, for example are noted in this step. These change attributes represent another set of dimensions, so that the extent of change in a consumer's salary is a dimension, as well as current salary itself. Likewise, the extent of change in the consumer's European travel is a dimension, as well as the current level of European travel. In step 330, these change attributes are used to place consumers on each of the corresponding dimensions.


In step 340, all dimensions, i.e., attributes and change attributes, are analyzed to determine any correlations that may exist between them. For example, significant expenditures for European travel may correlate with extensive expenditures in Italian restaurants in the U.S. A change in marital status, from single to married, may correlate with increased expenditures at stores specializing in home furnishings. Increased domestic travel to southern states may correlate with retirement. As a result of such correlation, the overall set of attributes and change attributes is effectively reduced in number. The attributes and/or change attributes that correlate with one another are combined into composite dimensions. Using the above examples, European travel and spending in Italian restaurants would be combined into a single composite dimension. Likewise, retirement and travel to southern states would be combined into another composite dimension. Moreover, there may be correlations between more than two dimensions. In general, the step of grouping attributes according to their correlations results in a reduced number of dimensions, thereby simplifying the subsequent analysis (described below).


In step 350, consumers are plotted in a multi-dimensional space, wherein the dimensions of this space include composite dimensions, plus those that remain uncombined with any others. Groups of consumers in this multi-dimensional space are then observed. There may be, for example, a cluster of consumers who are between the ages of 70 and 80, travel extensively in the U.S., and have a high credit rating. Note that such clustering may not be present with respect to all dimensions. A given group might be observed with respect to some number of dimensions, but might be distributed randomly over another dimension. This reflects the fact that a group of consumers might be alike in several ways, resulting in a grouping, but might be dissimilar in other ways.


In step 360, for each group determined in step 350, the common characteristics are determined. Despite the common characteristics of a given group, however, individuals within that group may have unique characteristics. Such attributes are determined in step 370. Therefore, steps 360 and 370 serve to identify the characteristics of an individual that are unique to that individual with respect to the group, as well as those characteristics that the consumer has in common with his group.


In step 380, marketing tactics may be directed to individuals based on the unique attributes determine in step 370, as well as the common attributes of the individual as determined in step 360. The process concludes at step 390.


The above step of grouping attributes, step 340, is illustrated in greater detail in FIGS. 4-6. In FIG. 4, attributes 401, 402, an 403 are found to be correlated with each other. These three attributes, and possibly others, are then combined to create composite dimension 410. Likewise, attributes 411, 412, and 413 are combined to create composite dimension 420. As a result of step 340, attributes 401-403 can be replaced by composite dimension 410, and attributes 411-413 can be replaced by composite dimension 420. This serves to reduce the number of attributes used in creating targeted marketing tactics. The result of step 340 is a set of composite dimensions, including composite dimensions 410 and 420. Note that not all attributes may necessarily be combined. Some attributes may be found not to correlate with any others, in which case such an attribute would remain as an uncombined dimension.



FIG. 5 illustrates how change attributes, or trends, may also be combined to form a composite dimension. In FIG. 5, trends 501, 502, and 503 are found to be correlated to one another. This correlation allows their combination into composite dimension 510.



FIG. 6 shows that demographic attributes can also be combined. Moreover, note that demographic attributes, non-demographic attributes, and change attributes can also be combined. In the example of FIG. 6, demographic attribute 601, demographic attribute 602, attribute 603, and trend 604 are all found to be correlated with one another. As a result, these attributes are combined to form a single composite dimension 610.


The grouping of consumers, discussed above with respect to step 350, is illustrated in FIG. 7. Here, consumer groups as well as individual consumers are shown plotted in an n-dimensional space, where n=2. The two dimensions shown are composite dimensions 710 and 720. Three clusters of consumers are shown, groups 730, 740, and 750. Note that not every consumer will be associated with the group. Some consumers may be outliers that are not in the proximity of any particular group. Examples of such consumers include consumers 760 and 770.


While a given consumer will necessarily have much in common with other members of his group, the consumer may also have characteristics that do not match other members of the group. An example of this is shown in FIG. 8. This figure shows spending 810 for three categories: computer equipment, software, and music downloads. Spending for these three categories is illustrated by quantities 820, 830, and 840 respectively. If, for example, the consumer in question is a female who is between the ages of 75 and 80 and spends very little in restaurants, this consumer would be grouped with others that fit this description. This consumer, however, may spend money on other things such as computer equipment, software, and music downloads. This would set this consumer apart from others in her group.


Such unique attributes of the consumer, as well as the attributes that she has in common with other members of her group, could then be used to direct specific marketing tactics at this consumer.


The present invention (or any part(s) or function(s) thereof) may be implemented using hardware, software or a combination thereof and may be implemented in one or more computer systems or other processing systems. However, the manipulations performed by the present invention are often referred to in terms of atomic concepts such as adding or comparing, which are commonly associated with mental operations performed by a human operator. No such capability of a human operator is necessary, or desirable in most cases, in any of the operations described herein which form part of the present invention. Rather, the operations can be machine operations. Useful machines for performing the operation of the present invention include general purpose digital computers or similar devices. Such a computer, when programmed with such logic, can be viewed as a system embodying the invention described herein. Likewise, any hardware, firmware, or software embodiment of the invention, or any combination thereof used to embody the invention, can be viewed as a system embodying the invention described herein.


The logic of the above process can be implemented as software that executes on a such a computer, such as a programmable computer 900 shown in FIG. 9. The computer 900 can be any commercially available and well known computer capable of performing the functions described herein, such as computers available from International Business Machines, Apple, Silicon Graphics Inc., Sun, HP, Dell, Compaq, Digital, Cray, etc.


The computer 900 includes one or more processors (also called central processing units, or CPUs), such as a processor 904. The processor 904 is connected to a communication bus or other communication infrastructure 906. The computer 900 also includes a main or primary memory 905, such as random access memory (RAM). The primary memory 905 has stored therein control logic (computer software), and data.


The computer 900 also includes one or more secondary storage devices 910. The secondary storage devices 910 include, for example, a hard disk drive 912 and/or a removable storage device or drive 914. The removable storage drive 914 represents a floppy disk drive, a magnetic tape drive, a compact disk drive, etc.


The removable storage drive 914 interacts with a removable storage unit 915. The removable storage unit 915 includes a computer useable or readable storage medium having stored therein computer software (control logic) and/or data. Removable storage unit 915 represents a floppy disk, magnetic tape, compact disk, DVD, optical storage disk, or any other computer data storage device. The removable storage drive 914 reads from and/or writes to the removable storage unit 915 in a well known manner.


Secondary memory 910 may also include an interface 920 through which an additional removable storage unit 902 can be attached for communication with infrastructure 906. Removable storage unit 902 can be, for example, a flash memory device or an additional hard disk unit. The interface 920 can be a universal serial bus (USB) interface or a Firewire™ interface, for example. Removable storage unit 902 can be written to or read from in a well known manner.


The computer 900 also includes input/output/display devices, such as monitors, keyboards, pointing devices, etc. (not shown)


The computer 900 further includes a communication or network interface 924. The network interface 924 enables the computer 900 to communicate with remote devices. For example, the network interface 924 allows the computer 900 to communicate over communication networks or mediums 926 (representing a form of a computer useable or readable medium), such as LANs, WANs, the Internet, etc. The network interface 924 may interface with remote sites or networks via wired or wireless connections.


Control logic may be transmitted to and from the computer 900 via the communication medium 926. More particularly, the computer 900 may receive and transmit carrier waves (electromagnetic signals) 928 modulated with the control logic via the communication medium 926.


Any apparatus or manufacture comprising a computer useable or readable medium having control logic (software) stored therein is referred to herein as a computer program product or program storage device. This includes, but is not limited to, the computer 900, the main memory 905, the hard disk 912, and the removable storage unit 915. Such computer program products, having control logic stored therein that, when executed by one or more data processing devices, cause such data processing devices to operate as described herein, represent embodiments of the invention.


Moreover, the data upon which the invention operates, i.e., the data collected in step 320 of FIG. 3, can be provided to computer 900 through network interface 924 or removable storage drive 914.


The invention can work with software, hardware, and/or operating system implementations other than those described herein. Any software, hardware, and operating system implementations suitable for performing the functions described herein can be used. The invention can, for example, be implemented primarily in hardware using, for example, hardware components such as application specific integrated circuits (ASICs). Implementation of the hardware state machine so as to perform the functions described herein will be apparent to persons skilled in the relevant art(s).


In yet another embodiment, the invention is implemented using a combination of both hardware and software.


While some embodiments of the present invention have been described above, it should be understood that it has been presented by way of examples only and not meant to limit the invention. It will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. Thus, the breadth and scope of the present invention should not be limited by the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.


In addition, it should be understood that the figures that highlight the functionality and advantages of the present invention, are presented for example purposes only. The architecture of the present invention is sufficiently flexible and configurable, such that it may be utilized (and navigated) in ways other than that shown in the accompanying figures.


Further, the purpose of the foregoing Abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The Abstract is not intended to be limiting as to the scope of the present invention in any way.

Claims
  • 1. A method of identifying consumer attributes, comprising: (a) receiving consumer data;(b) determining consumer attributes based on said data;(c) determining change attributes based on said data;(d) organizing said consumer attributes and said change attributes according to correlations of said consumer attributes and change attributes, to create a set of composite dimensions;(e) grouping consumers according to location in said composite dimensions, to create one or more consumer groups;(f) identifying common attributes of a consumer group; and(g) identifying unique attributes of a consumer in said consumer group.
  • 2. The method of claim 1, further comprising: (h) directing marketing tactics at the consumer on the basis of one or more common attributes of the consumer group associated with the consumer.
  • 3. The method of claim 1, further comprising: (i) directing the marketing tactics at the consumer on the additional bases of one or more unique attributes of the consumer.
  • 4. The method of claim 3, wherein said marketing tactics comprise targeted spending incentives.
  • 5. The method of claim 3, wherein said marketing tactics comprised targeted advertising.
  • 6. The method of claim 1, wherein the consumer data comprises spend data of the consumer.
  • 7. The method claim 6, wherein the spend data is aggregated by time interval.
  • 8. The method of claim 6, wherein the spend data is aggregated by merchant industry.
  • 9. The method of claim 1, wherein the consumer data comprises demographic data of the consumer.
  • 10. The method of claim 1, wherein the change attributes comprise extent and rates of change of consumer attributes.
  • 11. A computer program product comprising a computer useable medium having control logic stored therein for causing a computer to identify consumer attributes, the computer control logic comprising: first computer readable program code means for causing the computer to receive consumer data;second computer readable program code means for causing the computer to determine consumer attributes based on said data;third computer readable program code means for causing the computer to determine change attributes based on said data;fourth computer readable program code means for causing the computer to organize said consumer attributes and said change attributes according to correlations of said consumer attributes and change attributes, to create a set of composite dimensions;fifth computer readable program code means for causing the computer to group consumers according to location in said composite dimensions, to create one or more consumer groups;sixth computer readable program code means for causing the computer to identify common attributes of a consumer group; andseventh computer readable program code means for causing the computer to identify unique attributes of a consumer in said consumer group.
  • 12. The computer program product of claim 11, wherein the consumer data comprises spend data of the consumer.
  • 13. The computer program product of claim 12, wherein the spend data is aggregated by time interval.
  • 14. The computer program product of claim 12, wherein the spend data is aggregated by merchant industry.
  • 15. The computer program product of claim 11, wherein the consumer data comprises demographic data of the consumer.
  • 16. The computer program product of claim 11, wherein the change attributes comprise extent and rates of change of consumer attributes.
  • 17. A system for identifying consumer attributes, comprising: a processor; anda memory in communication with said processor, said memory for storing a plurality of processing instructions for directing said processor to: receive consumer data;determine consumer attributes based on said data;determine change attributes based on said data;organize said consumer attributes and said change attributes according to correlations of said consumer attributes and change attributes, to create a set of composite dimensions;group consumers according to location in said composite dimensions, to create one or more consumer groups;identify common attributes of a consumer group; andidentify unique attributes of a consumer in said consumer group.
  • 18. The system of claim 17, wherein said consumer data comprises spend data of said consumer.
  • 19. The system of claim 17, wherein said consumer data comprises demographic data of said consumer.
  • 20. The system of claim 17, wherein said change attributes comprise extent and rates of change of consumer attributes.