This application is the national phase entry of International Application No. PCT/TR2019/050077, filed on Feb. 7, 2019, which is based upon and claims priority to Turkish Patent Application No. 2018/01822, filed on Feb. 9, 2018, the entire contents of which are incorporated herein by reference.
The invention subject matter of the application is related to a multidirectional adaptive re-centering torsion isolator that is used for isolating buildings, tanks and bridges from earthquakes.
In the known state of the art, torsion isolators only functions as dampers. The plurality of rail systems in the isolators make the isolators very heavy. The isolators are positioned to a single location of the structure they are supposed to damp. Thus, efficient damping cannot be provided.
The present invention solves the abovementioned problems. The isolator is lightweight since there are 4 rail systems in the present invention. The energy dissipaters in the multidirectional adaptive re-centering torsion isolators are located on the columns. The present invention has both damping and load bearing properties. The distinctive feature in the power change of the multidirectional adaptive re-centering torsion isolator in response to energy dissipater units is the geometrical stiffening behavior.
The invention subject matter of the application is related to a multidirectional adaptive re-centering torsion isolator that is used for isolating buildings, tanks and bridges from earthquakes. The multidirectional adaptive re-centering torsion isolator consists of a flat and/or articulated slider (13) and four or more cylindrical energy dissipaters. The flat and/or articulated slider (13) positioned on top of the column provides vertical load transmission, low friction and horizontal displacement capacity. The cylindrical energy dissipaters provide displacement, re-centering and damping in any of the horizontal directions.
The multidirectional adaptive re-centering torsion isolator is an integrated system with hysteretic energy dissipater units and a flat and/or articulated slider (13) that operates as an earthquake isolator. The flat bearings of the multidirectional adaptive re-centering torsion isolator support the vertical loads. The hysteretic energy dissipater units provide damping and re-centering. The hysteretic energy dissipater units (hysteretic dampers) of the multidirectional adaptive re-centering torsion isolator are the cylindrical energy dissipaters.
In order to achieve the abovementioned objective that will be apparent from the detailed description provided below, the present invention is characterized by comprising a flat and/or articulated slider (13) that provides vertical load transmission, low friction and horizontal displacement capacity and that is positioned on top of the column and at least two or more cylindrical energy dissipaters that provide displacement, re-centering and horizontal damping in any of the horizontal directions.
In a preferred embodiment of the invention, each energy dissipater unit comprises an energy dissipater that is mounted to the column through the diaphragm plate and that is in a cylindrical form with enlarged ends which are retained in the diaphragm plate by the lubricated cylindrical sliding bearings 2, the arm connected to the energy dissipater, the sliding block that is connected to the ends of the arms by using an installation shaft, a cylindrical sliding bearing 1 installed between the installation shaft and the sliding block, the base plate that is mounted on the bottom part of the energy dissipater and the rail that is clamped to the superstructures such as buildings and tanks through clamping bolts.
Another preferred embodiment of the invention comprises rail, a channel shaped rail and three plates that are welded to form the stainless-steel plates bolted to the inner parts of the rails on which the sliding blocks slide on the rails.
In another preferred embodiment of the invention, the energy dissipaters are connected to the arms and the base plate by a seamless plug type connection.
Another preferred embodiment of the invention comprises four or more energy dissipaters.
Another preferred embodiment of the invention comprises the connection plate 1 that is connected to the column on the diaphragm plate level and the connection plate 2 that is connected to the column on the base plate level.
Another preferred embodiment of the invention comprises the process steps of;
The figures that are prepared to provide a better understanding of the multidirectional adaptive re-centering torsion isolator developed by this invention that is used for seismic isolation of the buildings, tanks and bridges are described below.
The components present in the figures to provide a better understanding of the multidirectional adaptive re-centering torsion isolator developed by this invention that is used for seismic isolation of the buildings, tanks and bridges are given individual reference numbers and each reference number refers to;
The invention subject matter of the application is related to the multidirectional adaptive re-centering torsion isolator that is used for isolating the buildings, tanks and bridges from the earthquakes.
In this detailed description, the novelty of the invention is described by the non-limiting examples for providing a better understanding of the subject. The multidirectional adaptive re-centering torsion isolator in accordance with this is described.
Referring to
The diaphragm plate (6) and the base plate (8) are mounted to the concrete column (12) (substructure) through the connection plate 1 (9) and the connection plate 2 (10) on which they are welded. The connection plate 1 (9) is connected to the column at the diaphragm plate (6) level and the connection plate 2 (10) is connected to the column at the base plate (8) level. The rail (11) is formed by a channel shaped rail and three plates that are welded to form the stainless-steel plates bolted to the inner parts of the rails on which the sliding blocks (3) slide on the rails. The multidirectional adaptive re-centering torsion isolator is designed to dissipate the energy of the earthquake by flexing of the energy dissipaters (1) during torsion and here the torsion occurs in the single type component of the energy dissipater (1). Each energy dissipater (1) is connected to a torsion arm (2) and twists with the rotation of the arm (2). In order to convert the rotational earthquake motion of the structure (displacement between the superstructure and the substructure) to the twisting of the energy dissipaters (1), the arm (2) is connected to a rail (11) and said rail (11) guides the motion of the arm (2) through the low friction sliding block (3) installed to the end of the arm (2). In this way, the arms (2) are controlled to move along the path pre-defined by the rails (11) regardless of the direction of the displacement exerted on the rail (11) and thus a guided follow-up reel connection is provided.
The rail (11) is clamped to the superstructure (building, tank etc.) by the clamping bolts. Thus, the energy dissipaters (1) are installed to the column (12) (substructure) through the inside of the diaphragm plate (6) as shown in
The distinctive property of the multidirectional adaptive re-centering torsion isolator in force change against the energy dissipater (1) units is the geometrical stiffening behavior. The displacements originating from the earthquake are reduced as the result of the geometric stiffening. Said property is the result of conversion of the twisting motion to rotation. When referred to
This situation is described as following by referring to
The same mechanism also enables controlling the desired stiffening level in response to the force-displacement by adjusting the length of the arm (2). This is schematically shown in
Here, Fmax and FY are the maximum force capacity (the force at Dmax) and the effective efficiency force of the multidirectional adaptive re-centering torsion isolator.
Number | Date | Country | Kind |
---|---|---|---|
2018/01822 | Feb 2018 | TR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/TR2019/050077 | 2/7/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/203766 | 10/24/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20010029711 | Kim | Oct 2001 | A1 |
20120066986 | Dicleli | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
101812879 | Aug 2010 | CN |
205152781 | Apr 2016 | CN |
108412050 | Aug 2018 | CN |
111851816 | Oct 2020 | CN |
112065137 | Dec 2020 | CN |
112282096 | Jan 2021 | CN |
112982715 | Jun 2021 | CN |
112983103 | Jun 2021 | CN |
113062487 | Jul 2021 | CN |
Number | Date | Country | |
---|---|---|---|
20200392752 A1 | Dec 2020 | US |