The following documents are hereby incorporated by reference, in their entireties, for all purposes: U.S. Provisional Patent Application Ser. No. 62/796,395, filed Jan. 24, 2019; U.S. Patent Application No. 17/217,716, filed Mar. 30, 2021. However, such material is only incorporated to the extent that no conflict exists between the incorporated material and the statements and drawings set forth herein. In the event of any such conflict, including any conflict in terminology, the present disclosure is controlling.
This disclosure relates to systems and methods for a tactical multidirectional light. More specifically, the disclosed embodiments relate to a multidirectional light to be mounted to a firearm.
In tactical and self-defense situations warranting firearm usage, proper illumination may be critical to the safety and accuracy of the firearm user. Additionally, each tactical situation may require a specific lighting configuration to ensure safety and accuracy. Quick and easy access to the proper lighting configuration for any given tactical situation may be tantamount to survival.
The present disclosure provides systems, apparatuses, and methods relating to gun lights for firearms.
In some embodiments, an illumination device for a firearm may include: a housing supporting a front lamp disposed on a front end of the housing, a first side lamp disposed on a first lateral side of the housing, and a second side lamp disposed on a second lateral side of the housing; a clamp coupled to the housing and configured to mount the device to a firearm; a switch actuator rotationally coupled to a rear end of the housing, such that the actuator is manipulable in first and second rotational directions, the actuator extending transversely across a rear end of the housing; and a cam coupled to the switch actuator, such that the cam rotates with the actuator, the cam having a first end including a magnet and a second end having a shaped cam surface configured to interface with a cam follower, wherein the actuator and the cam are biased toward a neutral position; wherein the first end of the cam is adjacent a plurality of magnetic switches configured to control respective states of the front lamp and the side lamps, such that selective rotation of the cam causes the magnet of the cam to operate one or more of the magnetic switches; and wherein the shaped cam surface is configured to interact with the cam follower such that the cam is transitionable between a plurality of discrete positions including a first toggle position and a second toggle position disposed on the cam in the first rotational direction from the neutral position, and a first momentary position and a second momentary position disposed on the cam in the second rotational direction from the neutral position.
In some embodiments, a firearm assembly may include: a firearm having a mounting surface; and an illumination device coupled to the mounting surface, the illumination device comprising: a housing supporting a front lamp disposed on a front end of the housing, a first side lamp disposed on a first lateral side of the housing, and a second side lamp disposed on a second lateral side of the housing; a clamp coupled to the housing and removably securing the illumination device to the mounting surface of the firearm; a switch actuator rotationally coupled to a rear end of the housing, such that the actuator is manipulable in first and second rotational directions, the actuator extending transversely across a rear end of the housing; wherein the actuator is disposed adjacent a front end of a trigger guard of the firearm; and a cam coupled to the switch actuator, such that the cam rotates with the actuator, the cam having a first end including a magnet and a second end having a shaped cam surface configured to interface with a cam follower, wherein the actuator and the cam are biased toward a neutral position; wherein the first end of the cam is adjacent a plurality of magnetic switches configured to control respective states of the front lamp and the side lamps, such that selective rotation of the cam causes the magnet of the cam to operate one or more of the magnetic switches; wherein the shaped cam surface is configured to interact with the cam follower such that the cam is transitionable between a plurality of discrete positions including a first toggle position and a second toggle position disposed on the cam in the first rotational direction from the neutral position, and a first momentary position and a second momentary position disposed on the cam in the second rotational direction from the neutral position; and wherein the cam is configured such that transitioning between the discrete positions causes haptic feedback to the user.
Features, functions, and advantages may be achieved independently in various embodiments of the present disclosure, or may be combined in yet other embodiments, further details of which can be seen with reference to the following description and drawings.
Various aspects and examples of a gun or firearm light providing a tactical advantage are described below and illustrated in the associated drawings. Unless otherwise specified, a gun light in accordance with the present teachings, and/or its various components, may contain at least one of the structures, components, functionalities, and/or variations described, illustrated, and/or incorporated herein. Furthermore, unless specifically excluded, the process steps, structures, components, functionalities, and/or variations described, illustrated, and/or incorporated herein in connection with the present teachings may be included in other similar devices and methods, including being interchangeable between disclosed embodiments. The following description of various examples is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. Additionally, the advantages provided by the examples and embodiments described below are illustrative in nature and not all examples and embodiments provide the same advantages or the same degree of advantages.
This Detailed Description includes the following sections, which follow immediately below: (1) Definitions; (2) Overview; (3) Examples, Components, and Alternatives; (4) Advantages, Features, and Benefits; and (5) Conclusion. The Examples, Components, and Alternatives section is further divided into subsections A through D, each of which is labeled accordingly.
The following definitions apply herein, unless otherwise indicated.
“Comprising,” “including,” and “having” (and conjugations thereof) are used interchangeably to mean including but not necessarily limited to, and are open-ended terms not intended to exclude additional, unrecited elements or method steps.
Terms such as “first”, “second”, and “third” are used to distinguish or identify various members of a group, or the like, and are not intended to show serial or numerical limitation.
“AKA” means “also known as,” and may be used to indicate an alternative or corresponding term for a given element or elements.
“Elongate” or “elongated” refers to an object or aperture that has a length greater than its own width, although the width need not be uniform. For example, an elongate slot may be elliptical or stadium-shaped, and an elongate candlestick may have a height greater than its tapering diameter. As a negative example, a circular aperture would not be considered an elongate aperture.
Directional terms such as “up,” “down,” “rear,” “forward,” “vertical,” “horizontal,” and the like are intended to be understood in the context of a host firearm on which systems described herein may be mounted or otherwise attached. If applicable, the host firearm should be considered as it is held in a typical firing position, such that the barrel of the weapon is substantially horizontal. In the absence of a host firearm, the same directional terms may be used as if the firearm were present. For example, even when viewed in isolation, a component may have a “forward” edge, based on the fact that the edge in question would be installed generally facing the front portion (i.e., muzzle end) of a host firearm.
“Coupled” or “mounted” means connected, either permanently or releasably, whether directly or indirectly through intervening components.
“Resilient” describes a material or structure configured to respond to normal operating loads (e.g., when compressed) by deforming elastically and returning to an original shape or position when unloaded.
“Rigid” describes a material or structure configured to be stiff, non-deformable, or substantially lacking in flexibility under normal operating conditions.
“Elastic” describes a material or structure configured to spontaneously resume its former shape after being stretched or expanded.
“Providing,” in the context of a method, may include receiving, obtaining, purchasing, manufacturing, generating, processing, preprocessing, and/or the like, such that the object or material provided is in a state and configuration for other steps to be carried out.
In general, a firearm light of the present disclosure includes a front facing light and two peripheral lights positioned on either side of the front facing light, although more or fewer lights may be included. The term “light” is utilized herein to refer to a battery-powered, portable light, lamp, or torch. Additionally, firearm lights of the present disclosure include one or more actuators configured to switch the firearm light between a plurality of (e.g., five) different positions. These positions may include a neutral position in which all lamps of the gun light are off, a first momentary position in which the front light is on, a second momentary position in which the front light and the side lights are on, a first toggle position in which the front light is on, and a second toggle position in which the front light and the side lights are on. In general, the two momentary positions are configured such that upon release of the actuator(s), the actuator and switch automatically return to the neutral position due to a biasing force provided by a biasing member. Additionally, with respect to the two toggle positions, the actuator is configured to remain in that position until the user manually returns the actuator to the neutral position and/or otherwise manually changes the position of the actuator.
The firearm light is configured to be mounted to a firearm (e.g., to a tactical rail beneath, above, or otherwise adjacent the barrel, etc.), in an orientation generally parallel to the barrel. The front light of the firearm light is configured to illuminate the area directly in front of the barrel. This configuration advantageously increases the accuracy of the user in dimly lit or unlit areas. in some examples, the front light may have an aspheric front light lens configured to increase the width of the light beam. Additionally, or alternatively, the front light lens may be substantially frustoconical. In some examples, the firearm light may include a bezel (e.g., a removable bezel) disposed at a front end of the firearm light and configured to hold the front light lens.
The side lights of the firearm light are disposed laterally, on either side of the front light, and are configured to illuminate peripheral areas adjacent the firearm. This configuration advantageously increases the accuracy and awareness of the user in dimly lit or unlit areas. The side lights may each have a reflective dish shaped formed in the shape of a truncated, skewed (i.e., slanted) cone, such that the reflective dish is configured to align and direct the light beam in a generally forward and diagonal direction.
The firearm light includes a body further including a battery cavity and a mounting bracket. The battery cavity is configured to receive one or more (e.g., rechargeable) batteries. Disposed on a first (front) end of the body is a lens sub-assembly housing the front light and side lights described above. Disposed on a second (rear) end of the body is a switch sub-assembly.
The switch sub-assembly includes the one or more actuators for switching the lights. In some examples, the actuator has a pair of manual interface elements configured to be disposed on either side of a trigger of the firearm when the firearm light is mounted under the barrel. This advantageously provides easy access to the actuator, for example, with a thumb and/or finger of the user while holding the firearm. In some examples, a biasing member (e.g., a spring, resilient member, etc.) is configured to engage the one or more actuators, causing a biasing of the actuators in a single direction. In other words, if the actuator is moved in a first direction, the biasing member is engaged and returns the actuator back to the neutral position upon release. In contrast, if the actuator is moved in a second direction, the biasing member does not engage (i.e., the actuator would not return to the neutral position unless acted on by some other force).
Movement of the actuator of the switch sub-assembly is configured to cause rotation of an internal cam. This cam has a magnet disposed on one end, an opposite end being shaped to interact with a cam follower. In some examples, the shaped opposite end includes a plurality of teeth). The cam follower is configured to mate with the shaped end (e.g., teeth) of the cam, and to selectively arrest or inhibit rotation of the cam, similar to the configuration of a ratchet and pawl. The cam and cam follower are configured to obtain one of a plurality of (e.g., five) discrete cam positions corresponding to the several lighting configurations described above.
A circuit board (e.g., a printed circuit board or PCB) is disposed proximate the cam and cam follower, the board having a plurality of magnetic switches (e.g., reed switches) disposed thereon in a selected pattern. The pattern of magnetic switches is configured such that, as the cam rotates, the magnet of the cam passes above and/or near one or more of the magnetic switches, thereby selectively activating one or more of the switches. For example, the magnetic switches may be normally open, such that, if the magnet is sufficiently close to one of the magnetic switches, the magnetic switch will close. Each magnetic switch may be configured to close a corresponding path between the power source (e.g., battery or batteries) and one or more corresponding lights (i.e., the front and/or side lights described above). Accordingly, in this example, when the magnet passes above one of the magnetic switches, that switch is closed, completing a circuit to supply power to the corresponding light(s). This switch is described below in association with an illumination device for a firearm, but the switch mechanism may also be utilized in other suitable applications and devices.
The following sections describe selected aspects of illustrative firearm lights as well as related systems and/or methods. The examples in these sections are intended for illustration and should not be interpreted as limiting the scope of the present disclosure. Each section may include one or more distinct embodiments or examples, and/or contextual or related information, function, and/or structure.
In
Halogen bulbs, High-intensity discharge lamps (HIDs), etc. may be utilized in addition to or in place of one or more of the LEDs.
Front lens 120 may include any suitable structure configured to amplify, reflect, and/or direct a light beam emitted by the front lamp. For example, front lens 120 may include a solid prism and/or a reflective surface. Front lens 120 may be aspherical, for example front lens may be a convex lens, a Fresnel lens, and/or the like. In some examples, front lens 120 may be substantially frustoconical. Front lens 120 may be configured to increase the width of a light beam emitted from light source 134, for example, by diverging rays of the light beam from the optical axis.
Side lenses 124 are disposed on either side of lens sub-assembly 110. Side lenses 124 are configured to direct light from light source 134 to either side of firearm light 108, providing advantageous peripheral lighting for the user. Side lenses 124 may be non-spherical, frustoconical, and/or otherwise shaped to increase the width of a light beam emitted from light source 134. As shown in
As shown in
Switch sub-assembly 114 includes a two-part folding clasp comprising a hooked member 144 and a linkage bar 142. The two-part folding clasp is configured to fasten lens sub-assembly 114 to main body 112.
As shown in the end cutaway view of
An alternative embodiment of the cam and cam follower is shown in the end cutaway views of
As described above, in response to a force being applied to actuator 116 by a user, actuator 116 is configured to rotate cam 236 in the corresponding rotational direction (i.e., clockwise or counterclockwise). As cam 236 rotates, magnet 250 passes over normally open magnetic (e.g., reed) switches 152A, 152B, 152C, and 152D, selectively causing each switch to close. In the present embodiment, magnetic switches 152B and 152C are both individually configured to electrically connect the front LED of light source 134 to batteries 130. Magnetic switches 152A and 152D are both individually configured to electrically connect the side LEDs of light source 134 simultaneously to batteries 130.
Pawl 238B is configured to mate with the teeth of cam 236 such that five distinct positions are possible. Specifically, positions 154A, 154B, 154C, 154D, and 154E correspond to unique positions of cam 236 and magnet 250. In other words, positions 154A, 154B, 154C, 154D, and 154E are configured such that each position corresponds to a particular positioning of magnet 250 with respect to magnetic switches 152A, 152B, 152C, and 152D.
In the first momentary position, magnet 250 is located above magnetic switch 152C. The magnetic field of magnet 250 closes magnetic switch 152C and therefore electrically connects the front LED of light source 134 to batteries 130. In other words, in the first momentary position, the front light of firearm light 108 is on. Additionally, due to the force of biasing member 146, cam 236 and actuator 116 automatically return to the neutral position when the actuator is released.
In the second momentary position, magnet 250 is above magnetic switches 152C and 152D (both) and thus, the magnetic field of magnet 250 closes both of these magnetic switches. This results in the front LED and side LEDs of light source 134 being electrically connected to batteries 130. In other words, in the second momentary position, both the front light and the side lights of firearm light 108 are on (i.e., all light-emitting features of the firearm light are in an on state). Due to the force of biasing member 146, cam 236 and actuator 116 are configured to automatically return to the neutral position when the actuator is released.
In the first toggle position, magnet 250 is above magnetic switch 152B. Accordingly, the magnetic field of magnet 250 closes magnetic switch 152B, thus electrically connecting the front light LED of light source 134 to batteries 130. In other words, in the first toggle position, the front light of firearm light 108 is on. Since the force of biasing member 146 is only in a single rotational direction (i.e., opposing only a rotation toward the momentary positions), cam 236 and actuator 116 remain in the first toggle position when the actuator is released and do not automatically return to the neutral position.
In the second toggle position, magnet 250 is above magnetic switches 152A and 152B (both). Accordingly, the magnetic field of magnet 250 closes both magnetic switches, thus electrically connecting both the front light LED and side LED lights of light source 134 to batteries 130. In other words, in the second toggle position both the front light and side lights of firearm light 108 are on (i.e., all light-emitting features of the firearm light are in an on state). As with the first toggle position, cam 236 and actuator 116 remain in the first toggle position when the actuator is released and do not automatically return to the neutral position.
As described above, the two toggle positions may be selectively engaged by the user through a force applied to actuator 116. In either of the toggle positions, the user manually manipulates actuator 116 back to the neutral position to turn firearm light 108 completely off. In contrast, in either of the momentary positions, cam 236 and actuator 116 automatically return to the neutral position when the actuator is released.
B. Second Illustrative Switch Sub-assembly
This section describes a second illustrative switch sub-assembly 314 substantially similar to subassembly 114 described above. Switch sub-assembly 314 may be incorporated into firearm light 108 in place of switch sub-assembly 114. All other components of firearm light 108 described above may be incorporated in their entirety in (or combined with) subassembly 314, unless noted otherwise in the description below. As shown in the exploded view of
As described above, a biasing member 346 is disposed between actuator 316 and mounting plate 348 and configured to bias actuator 316 in only a single rotational direction (e.g., clockwise or counterclockwise). As in subassembly 114, biasing member 346 is a resilient device (e.g., a spring) configured to allow actuator 316 to freely rotate in a first (unbiased) direction but to oppose rotation in a second (biased) direction. In other words, biasing member 346 is configured to build tension as a user rotates actuator 316 in the second direction, such that upon release by the user, actuator 316 returns to a neutral position.
Shield 335, disposed between PCB 334 and cam 336 and described further below, provides additional confinement of ball 338B. In other words, shield 335, assembly housing 340, leaf spring 338A, and protrusions 341A and 341B all work in concert to confine ball 338B in a single region within assembly housing 340. Shield 335 may be included in subassembly 114.
As shown in the end cutaway view of
As described above, in response to a force being applied to actuator 316 by a user, actuator 316 is configured to rotate cam 336 in the corresponding rotational direction (i.e., clockwise or counterclockwise). As described in the previous section, as cam 336 rotates, magnet 350 passes over normally open magnetic (e.g., reed) switches 352A, 352B, 352C, and 352D, selectively causing each switch to close. In the present embodiment, magnetic switches 352B and 352C are individually configured to electrically connect the front LED of light source 134 to batteries 130. Magnetic switches 352A and 352D are individually configured to electrically connect the side LEDs of light source 134 simultaneously to batteries 130.
Shield 335 includes a cutout such that, when assembled, the cutout (i.e., opening) is disposed between the path of magnet 350 and magnetic switches 352A, 352B, 352C, and 352D. In this manner, the magnetic field of magnet 350 is substantially isolated to the vicinity of the magnetic switches.
Ball 338B is configured to mate with the teeth of cam 336 such that five distinct positions are possible. Specifically, positions 354A, 354B, 354C, 354D, and 354E correspond to unique positions of cam 336 and magnet 350. In other words, positions 354A, 354B, 354C, 354D, and 354E are configured such that each position corresponds to a particular positioning of magnet 350 with respect to magnetic switches 352A, 352B, 352C, and 352D.
In the first momentary position, magnet 350 is located above magnetic switch 352C. The magnetic field of magnet 350 closes magnetic switch 352C and therefore electrically connects the front LED of light source 134 to batteries 130. In other words, in the first momentary position, the front light of firearm light 108 is on. Additionally, due to the force of biasing member 346, cam 336 and actuator 316 automatically return to the neutral position when the actuator is released.
In the second momentary position, magnet 350 is above magnetic switches 352C and 352D (both) and thus, the magnetic field of magnet 350 closes both of these magnetic switches. This results in the front LED and side LEDs of light source 134 being electrically connected to batteries 130. In other words, in the second momentary position, both the front light and the side lights of firearm light 108 are on (i.e., all light-emitting features of the firearm light are in an on state). Due to the force of biasing member 346, cam 336 and actuator 316 are configured to automatically return to the neutral position when the actuator is released.
In the first toggle position, magnet 350 is above magnetic switch 352B. Accordingly, the magnetic field of magnet 350 closes magnetic switch 352B, thus electrically connecting the front light LED of light source 134 to batteries 130. In other words, in the first toggle position, the front light of firearm light 108 is on. Since the force of biasing member 346 is only in a single rotational direction (i.e., opposing only a rotation toward the momentary positions), cam 336 and actuator 316 remain in the first toggle position when the actuator is released and do not automatically return to the neutral position.
In the second toggle position, magnet 350 is above magnetic switches 352A and 352B (both). Accordingly, the magnetic field of magnet 350 closes both magnetic switches, thus electrically connecting both the front light LED and side LED lights of light source 134 to batteries 130. In other words, in the second toggle position both the front light and side lights of firearm light 108 are on (i.e., all light-emitting features of the firearm light are in an on state). As with the first toggle position, cam 336 and actuator 316 remain in the first toggle position when the actuator is released and do not automatically return to the neutral position.
As described above, the two toggle positions may be selectively engaged by the user through a force applied to actuator 316. In either of the toggle positions, the user manually manipulates actuator 316 back to the neutral position to turn firearm light 108 completely off. In contrast, in either of the momentary positions, cam 236 and actuator 316 automatically return to the neutral position when the actuator is released.
C. Illustrative Method
This section describes steps of an illustrative method 400 of use suitable for a firearm light of the present disclosure; see
In the current example, the firearm light includes a front light, two side lights disposed on opposing sides of the firearm light, and a switch having an actuator with a neutral position, two momentary positions, and two toggle positions. Each position is substantially similar to the positions described above and, accordingly, corresponds to the lighting configurations described above. A user of the firearm may switch between the different lighting configurations by manipulating the actuator into the different positions. In the current example, the momentary positions are enabled by rotating the actuator, e.g., using a finger or thumb, in a first direction from the neutral position. The toggle positions are enabled by rotating the actuator in a second direction from the neutral position. In general, the actuator may be configured to transition to either the momentary positions or the toggle positions by pressing in any suitable direction (e.g., up, down, clockwise, counterclockwise). The current example is for illustration and is not intended to limit the direction of the positions.
Step 402 of method 400 includes rotating the actuator in a first rotational direction from a neutral position to a first momentary position. In response, a front light turns on.
Step 404 of method 400 includes releasing the actuator. In response, the actuator automatically returns to the neutral position and the front light turns off.
Step 406 of method 400 includes rotating the actuator in the first rotational direction from the neutral position, through the first momentary position, to a second momentary position. In response, the front light and a pair of side lights turn on. Optionally, the user may transition the actuator directly to the second momentary position from the first momentary position of step 402, in which case the front light is already on and only the side lights turn on.
Step 408 of method 400 includes releasing the actuator. In response, the actuator automatically returns to the neutral position and the front light and side lights turns off. In some examples, this automatic return is facilitated by a biasing member, e.g., a spring.
Step 410 of method 400 includes rotating the actuator in a second rotational direction from the neutral position to a first toggle position. In response, the front light turns on. In the first toggle position, if the actuator is released, the actuator remains stationary, and does not return automatically to the neutral position. Instead, the actuator remains in the first toggle position until acted on by the user.
Step 412 of method 400 includes rotating the actuator in the second rotational direction from the first toggle position to the second toggle position. In response to transitioning to the second toggle position, the side lights turn on. In the second toggle position, if the actuator is released, the actuator remains stationary, and does not return automatically to the neutral position. Instead, the actuator remains in the second toggle position until acted on by the user.
Step 414 of method 400 includes rotating the actuator in the first rotational direction from the second toggle position to the first toggle position. In response, the side lights turn off.
Step 416 of method 400 includes rotating the actuator in the first rotational direction from the first toggle position to the neutral position. In response, the front light turns off.
D. Selected Embodiments and Claim Concepts
This section describes additional aspects and features of firearm lights, presented without limitation as a series of paragraphs, some or all of which may be alphanumerically designated for clarity and efficiency. Each of these paragraphs can be combined with one or more other paragraphs, and/or with disclosure from elsewhere in this application, in any suitable manner. Some of the paragraphs below may expressly refer to and further limit other paragraphs, providing without limitation examples of some of the suitable combinations.
A0. An illumination device for a firearm, the illumination device comprising: a housing supporting a front lamp disposed on a front end of the housing, a first side lamp disposed on a first lateral side of the housing, and a second side lamp disposed on a second lateral side of the housing;
a clamp coupled to the housing and configured to mount the device to a firearm;
a switch actuator rotationally coupled to a rear end of the housing, such that the actuator is manipulable in first and second rotational directions, the actuator extending transversely across a rear end of the housing; and
a cam coupled to the switch actuator, such that the cam rotates with the actuator, the cam having a first end including a magnet and a second end having a shaped cam surface configured to interface with a cam follower, wherein the actuator and the cam are biased toward a neutral position;
wherein the first end of the cam is adjacent a plurality of magnetic switches configured to control respective states of the front lamp and the side lamps, such that selective rotation of the cam causes the magnet of the cam to operate one or more of the magnetic switches; and
wherein the shaped cam surface is configured to interact with the cam follower such that the cam is transitionable between a plurality of discrete positions including a first toggle position and a second toggle position disposed on the cam in the first rotational direction from the neutral position, and a first momentary position and a second momentary position disposed on the cam in the second rotational direction from the neutral position.
A1. The illumination device of paragraph A0, wherein at least one of the magnetic switches is normally open.
A2. The illumination device of any one of paragraphs A0 through A1, further comprising a portable power source enclosed within the housing and configured to be electrically coupled to the front lamp via one or more of the magnetic switches.
A3. The illumination device of A2, wherein the portable power source comprises a rechargeable battery.
A4. The illumination device of any one of paragraphs A0 through A3, wherein the first toggle position is separated from the neutral position by a first tooth of the shaped cam surface.
A5. The illumination device of any one of paragraphs A0 through A4, wherein the first toggle position is separated from the second toggle position by a second tooth of the shaped cam surface.
A6. The illumination device of any one of paragraphs A0 through A5, further comprising a biasing member coupled to the actuator, such that the cam and the actuator are biased toward the neutral position from the first and second momentary positions.
A7. The illumination device of A6, wherein the biasing member comprises a coil spring, and the coil spring is configured to engage the actuator only when the actuator is rotated in the second rotational direction.
A8. The illumination device of any one of paragraphs A0 through A7, wherein the switches and the cam are configured such that the front lamp, the first side lamp, and the second side lamp are unpowered when the cam is in the neutral position.
A9. The illumination device of any one of paragraphs A0 through A8, wherein the first toggle position is configured to cause the magnetic switches to power on only the front lamp.
A10. The illumination device of any one of paragraphs A0 through A9, wherein the second toggle position is configured to cause the magnetic switches to power on the front lamp and the first and second side lamps.
A11. The illumination device of any one of paragraphs A0 through A10, wherein the first momentary position is configured to cause the magnetic switches to power on only the front lamp.
A12. The illumination device of any one of paragraphs A0 through A11, wherein the second momentary position is configured to cause the magnetic switches to power on the front lamp and the first and second side lamps.
A13. The illumination device of any one of paragraphs A0 through A12, wherein the second momentary position is separated from the first momentary position by a ramp on the shaped cam surface.
A14. The illumination device of any one of paragraphs A0 through A13, wherein the cam is configured such that transitioning between the discrete positions causes haptic feedback to the user.
B0. A firearm assembly comprising:
a firearm having a mounting surface; and
an illumination device coupled to the mounting surface, the illumination device comprising:
B1. The firearm assembly of B0, wherein the first toggle position is separated from the neutral position by a first tooth of the shaped cam surface.
B2. The firearm assembly of B0 or B1, further comprising a biasing member coupled to the actuator, such that the cam and the actuator are biased toward the neutral position from the first and second momentary positions.
B3. The firearm assembly of B2, wherein the biasing member comprises a coil spring, and the coil spring is configured to engage the actuator only when the actuator is rotated in the second rotational direction.
B4. The firearm assembly of any one of paragraphs B0 through B3, wherein the switches and the cam are configured such that the front lamp, the first side lamp, and the second side lamp are unpowered when the cam is in the neutral position.
B5. The firearm assembly of any one of paragraphs B0 through B4, wherein the cam follower comprises a leaf spring and a ball.
C0. A switch for use with an electrical load, the switch comprising:
a switch actuator manipulable in first and second rotational directions; and
a cam coupled to the switch actuator, such that the cam rotates with the actuator, the cam having a first end including a magnet and a second end having a shaped cam surface configured to interface with a cam follower, wherein the actuator and the cam are biased toward a neutral position;
wherein the first end of the cam is adjacent a plurality of magnetic switches configured to control respective states of the electrical load, such that selective rotation of the cam causes the magnet of the cam to operate one or more of the magnetic switches; and
wherein the shaped cam surface is configured to interact with the cam follower such that the cam is transitionable between a plurality of discrete positions including a first toggle position and a second toggle position disposed on the cam in the first rotational direction from the neutral position, and a first momentary position and a second momentary position disposed on the cam in the second rotational direction from the neutral position.
C1. The switch of C0, wherein at least one of the magnetic switches is normally open.
C2. The switch of C0 or C1, wherein the first toggle position is separated from the neutral position by a first tooth of the shaped cam surface.
C3. The switch of any one of paragraphs C0 through C2, wherein the first toggle position is separated from the second toggle position by a second tooth of the shaped cam surface.
C4. The switch of any one of paragraphs C0 through C3, further comprising a biasing member coupled to the actuator, such that the cam and the actuator are biased toward the neutral position from the first and second momentary positions.
C5. The switch of C4, wherein the biasing member comprises a coil spring, and the coil spring is configured to engage the actuator only when the actuator is rotated in the second rotational direction.
C6. The switch of any one of paragraphs C0 through C5, wherein the switches and the cam are configured such that the electrical load is unpowered when the cam is in the neutral position.
C7. The switch of any one of paragraphs C0 through C6, wherein the second momentary position is separated from the first momentary position by a ramp on the shaped cam surface.
C8. The switch of any one of paragraphs C0 through C7, wherein the cam is configured such that transitioning between the discrete positions by a user causes haptic feedback to the user.
C9. The switch of any one of paragraphs C0 through C8, wherein the cam follower comprises a leaf spring and a ball.
C10. An illumination device for firearms, the illumination device comprising the switch of any one of paragraphs C0 through C9.
D0. A switch for use with an electrical load, the switch comprising:
a switch actuator manipulable in first and second rotational directions; and
a cam coupled to the switch actuator, such that the cam rotates with the actuator, the cam having a first end including a magnet and a second end having a shaped cam surface configured to interface with a cam follower, wherein the actuator and the cam are biased toward a neutral position;
wherein the first end of the cam is adjacent a plurality of magnetic switches configured to control respective states of the electrical load, such that selective rotation of the cam causes the magnet of the cam to operate one or more of the magnetic switches; and
wherein the shaped cam surface is configured to interact with the cam follower such that the cam is transitionable between a plurality of discrete positions including a toggle position disposed on the cam in the first rotational direction from the neutral position and a momentary position disposed on the cam in the second rotational direction from the neutral position.
D1. The switch of D0, wherein at least one of the magnetic switches is normally open.
D2. The switch of D0 or D1, wherein the toggle position is separated from the neutral position by a first tooth of the shaped cam surface.
D3. The switch of any one of paragraphs D0 through D2, further comprising a biasing member coupled to the actuator, such that the cam and the actuator are biased toward the neutral position from the first and second momentary positions.
D4. The switch of D3, wherein the biasing member comprises a coil spring, and the coil spring is configured to engage the actuator only when the actuator is rotated in the second rotational direction.
D5. The switch of any one of paragraphs D0 through D4, wherein the switches and the cam are configured such that the electrical load is unpowered when the cam is in the neutral position.
D6. The switch of any one of paragraphs D0 through D5, wherein the cam is configured such that transitioning between the discrete positions by a user causes haptic feedback to the user.
D7. The switch of any one of paragraphs D0 through D6, wherein the cam follower comprises a leaf spring and a ball.
D8. An illumination device for firearms, the illumination device comprising the switch of any one of paragraphs D0 through D7
E0. An illumination device for a firearm, the illumination device comprising:
a housing supporting a lamp;
a clamp coupled to the housing and configured to mount the device to a firearm;
a switch actuator rotationally coupled to a rear end of the housing, such that the actuator is manipulable in first and second rotational directions, the actuator extending transversely across a rear end of the housing; and
a cam coupled to the switch actuator, such that the cam rotates with the actuator, the cam having a first end including a magnet and a second end having a shaped cam surface configured to interface with a cam follower, wherein the actuator and the cam are biased toward a neutral position;
wherein the first end of the cam is adjacent a plurality of magnetic switches configured to control respective states of the lamp, such that selective rotation of the cam causes the magnet of the cam to operate one or more of the magnetic switches; and
wherein the shaped cam surface is configured to interact with the cam follower such that the cam is transitionable between a plurality of discrete positions including a toggle position disposed on the cam in the first rotational direction from the neutral position, and a momentary position disposed on the cam in the second rotational direction from the neutral position.
E1. The illumination device of E0, wherein at least one of the magnetic switches is normally open.
E2. The illumination device of E0 or E1, further comprising a portable power source enclosed within the housing and configured to be electrically coupled to the lamp via one or more of the magnetic switches.
E3. The illumination device of E2, wherein the portable power source comprises a rechargeable battery.
E4. The illumination device of any one of paragraphs E0 through E3 wherein the toggle position is separated from the neutral position by a first tooth of the shaped cam surface.
E5. The illumination device of any one of paragraphs E0 through E4, further comprising a biasing member coupled to the actuator, such that the cam and the actuator are biased toward the neutral position from the momentary position.
E6. The illumination device of E5, wherein the biasing member comprises a coil spring, and the coil spring is configured to engage the actuator only when the actuator is rotated in the second rotational direction.
E7. The illumination device of any one of paragraphs E0 through E6, wherein the switches and the cam are configured such that the lamp is unpowered when the cam is in the neutral position.
E8. The illumination device of any one of paragraphs E0 through E7, wherein the toggle position is configured to cause the magnetic switches to power on the lamp.
E9. The illumination device of any one of paragraphs E0 through E8, wherein the momentary position is configured to cause the magnetic switches to power on the lamp.
E10. The illumination device of any one of paragraphs E0 through E9, wherein the cam is configured such that transitioning between the discrete positions by a user causes haptic feedback to the user.
E11. The illumination device of any one of paragraphs E0 through E10, wherein the cam follower comprises a leaf spring and a ball.
F0. A firearm assembly comprising:
a firearm having a mounting surface; and
an illumination device coupled to the mounting surface, the illumination device comprising:
F1. The firearm assembly of F0, wherein at least one of the magnetic switches is normally open.
F2. The firearm assembly of F0 or F1, further comprising a portable power source enclosed within the housing and configured to be electrically coupled to the lamp via one or more of the magnetic switches.
F3. The firearm assembly of F2, wherein the portable power source comprises a rechargeable battery.
F4. The firearm assembly of any one of paragraphs F0 through F3, wherein the toggle position is separated from the neutral position by a first tooth of the shaped cam surface.
F5. The firearm assembly of any one of paragraphs F0 through F4, further comprising a biasing member coupled to the actuator, such that the cam and the actuator are biased toward the neutral position from the momentary position.
F6. The firearm assembly of F5, wherein the biasing member comprises a coil spring, and the coil spring is configured to engage the actuator only when the actuator is rotated in the second rotational direction.
F7. The firearm assembly of any one of paragraphs F0 through F6, wherein the switches and the cam are configured such that the lamp is unpowered when the cam is in the neutral position.
F8. The firearm assembly of any one of paragraphs F0 through F7, wherein the toggle position is configured to cause the magnetic switches to power on the lamp.
F9. The firearm assembly of any one of paragraphs F0 through F8, wherein the momentary position is configured to cause the magnetic switches to power on the lamp.
F10. The firearm assembly of any one of paragraphs F0 through F9, wherein the cam is configured such that transitioning between the discrete positions by a user causes haptic feedback to the user.
F11. The firearm assembly of any one of paragraphs F0 through F0, wherein the cam follower comprises a leaf spring and a ball.
The different embodiments and examples of the firearm light described herein provide several advantages over known solutions for illuminating areas adjacent a firearm. For example, illustrative embodiments and examples described herein allow tactical advantages in quickly switching the firearm light on and off.
Additionally, and among other benefits, illustrative embodiments and examples described herein allow a user to selectively illuminate an area directly in front of the firearm and/or peripheral areas near the firearm.
Additionally, and among other benefits, illustrative embodiments and examples described herein allow a single gun light to be easily accessible to both right-handed and left-handed users.
Additionally, and among other benefits, illustrative embodiments and examples described herein allow the firearm light to have multiple momentary and toggle positions indicated by a tactile response to the user. In other words, the user is given a haptic sensation (e.g., a mechanical bump or click felt through the actuator) to assist in determining a change between switch positions. This can be very helpful to facilitate choosing among the positions and/or knowing when a position has been achieved, without needing to view the position of the actuator directly.
No known system or device can perform these functions. However, not all embodiments and examples described herein provide the same advantages or the same degree of advantage.
The disclosure set forth above may encompass multiple distinct examples with independent utility. Although each of these has been disclosed in its preferred form(s), the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, because numerous variations are possible. To the extent that section headings are used within this disclosure, such headings are for organizational purposes only. The subject matter of the disclosure includes all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. Other combinations and subcombinations of features, functions, elements, and/or properties may be claimed in applications claiming priority from this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
5704155 | Primeau, IV | Jan 1998 | A |
8529083 | Reed | Sep 2013 | B1 |
20070039226 | Stokes | Feb 2007 | A1 |
20100091485 | Matthews et al. | Apr 2010 | A1 |
20150276347 | Sharrah | Oct 2015 | A1 |
20200200508 | Teetzel | Jun 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20230107508 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
62796395 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17217716 | Mar 2021 | US |
Child | 17834301 | US | |
Parent | 16746262 | Jan 2020 | US |
Child | 17217716 | US |