1. Field of the Invention
This invention relates to a special class of allosteric polynucleotides and processes for generating highly specific polynucleotide sensors with relative ease and efficiency.
2. Description of the Related Art
Mastery of the molecular forces that dictate biopolymer folding and function would allow molecular engineers to participate in the design of enzymes—a task that to date has been managed largely by the random processes of evolution. The reward for acquiring this capability is substantial considering that many applications in medicine, industry and biotechnology demand high-speed enzymes with precisely tailored catalytic functions. ‘Modular rational design’ has proven to be an effective means for conferring additional chemical and kinetic complexity upon existing protein (e.g. 1-4) and RNA enzymes (5-9). This engineering strategy takes advantage of the modular nature of many protein (10) and RNA subdomains (11-13), which can be judiciously integrated to form new multifunctional constructs. The recent discoveries of new catalytic RNA motifs (14, 15) and new ligand-binding motifs (16, 17) have considerably expanded the opportunities for ribozyme engineering.
Modular rational design has been used to create several artificial ribozymes that are activated or deactivated by the binding of specific small organic molecules such as ATP (5,8) and flavin mononucleotide (FMN) (9). Each of these allosteric ribozymes is composed of two independent structural domains: one an RNA-cleaving ribozyme and the other a receptor (or “aptamer”) for a specific ligand. The conformational changes that occur within an aptamer domain upon introduction of the ligand, termed “adaptive binding” (22-25), can trigger kinetic modulation of the adjoining catalytic domain by several different mechanisms that ultimately influence ribozyme folding (7,8).
Several groups of investigators have suggested that ribozymes or other nucleic acids might be used in assays and the like. For example, diagnostics using ribozymes that catalyze the cleavage and release of a non-complementary, labelled nucleic acid co-target marker in the presence of a specific nucleic acid target molecule has been disclosed (43). Nucleic acid molecules which have no catalytic activity without a specific protein or nucleic acid co-factor and feature catalytic activity only in the presence of the same macromolecular co-factor have been disclosed as useful primarily in therapeutics (44). Bioreactive allosteric polynucleotides that modify a function or configuration of the polynucleotide with a chemical effector and/or physical signal were disclosed for biosensors and/or enzymes for diagnostic and catalytic purposes (45).
In nearly all examples reported to date, allosteric ribozymes have been created by joining preexisting ligand-binding domains (or “aptamers”) with ribozyme domains to produce the ligand-responsive construct of choice (9, 65). Since these methods require the use of preexisting ribozyme and ligand-binding structures, the limited number of RNA domains that are currently available restricts the versatility of allosteric ribozyme engineering. Moreover, while modular rational design alone or combined with in vitro selection techniques has been successful in producing allosteric catalysts from pre-existing aptamer and ribozyme motifs, the process can be slow and tedious. Many previously described procedures necessary to identify nucleic acids having specified binding or catalytic properties involve step-wise iterations of binding, partitioning and amplification (46-53). Furthermore, exclusive use of modular rational design precludes the development of allosteric ribozymes controlled by effectors for which no aptamer motifs exist.
It is an objective of the invention to use the combined application of modular rational design, in vitro selection, and allosteric selection to provide an effective strategy for the rapid generation of precision polynucleotide molecular sensors.
It is another objective of the invention to provide specific ways of employing polynucleotides as novel sensors and as in vivo genetic control elements for the regulation and/or report of gene expression.
It is a further objective of the invention to provide polynucleotide sensing elements for use in a variety of clinical, industrial, agricultural, and environmental analyses.
These and other objectives are accomplished by the present invention, which provides purified functional polynucleotides comprising an actuator domain, a receptor domain, and a bridging domain, wherein a signalling event such as binding of a ligand to the receptor domain triggers a conformational change in the bridging domain which then modulates the catalytic and/or reporter activity of the actuator domain. The domains may be partially or completely overlapping or non-overlapping such that one or more domain functions may be encoded in part by the same polynucleotide sequence. The polynucleotides can comprise RNA and/or RNA analogues or DNA and/or DNA analogues; tripartite ribozymes are illustrated in the examples.
Also provided are processes for screening for multidomain polynucleotide sensors using allosteric selection. In a typical process, a structural component of a multidomain allosteric polynucleotide is replaced with a random-sequence domain to develop new receptor domains or even new actuator domains using in vitro selection. Briefly, using an example process, randomization of the ligand-binding region of a polynucleotide generates new, structurally diverse polynucleotides that can then be screened to interact with other ligands.
Polynucleotide sensors of the invention are employed to qualitatively or quantitatively measure a variety of ligands, including, but not limited to, organic and/or inorganic compounds, metal ions, pharmaceuticals, microbial or cellular metabolites, blood or urine components, components of other bodily fluids, and macromolecules. The sensors can also be employed to respond to electromagnetic signals and/or physical signals such as temperature, light, sound, shock, pH, and ionic conditions. The sensors are attached to a solid support in some embodiments. Also provided are biosensors having multidomain polynucleotides of the invention as sensing elements.
Polynucleotide sensors of the invention may also be used in vivo as genetic control elements that regulate or report gene expression in response to a ligand or signal, including non-invasive diagnostics and gene therapy strategies.
In this aspect, methods of the invention encompass methods for regulating expression of a gene in a cell by operably linking polynucleotides of the invention to genetic molecules of a cell such that the biological or phenotypic activity encoded by the gene is modulated in accordance with modulation of the activity of the actuator domain. In embodiments involving expression of genes using RNA, multidomain polynucleotide sensors may be incorporated in the coding region of mRNA or in close proximity, but also in the 5′-leader or 3′-tail regions. In DNA embodiments, polynucleotide sensors may be incorporated in regions that signal gene destruction as well as gene expression.
Processes for generating ligand-responsive and other multidomain sensors of the invention are also provided by the generation of novel allosteric molecules using modular rational design strategies. In typical embodiments, a necessary structural component of an allosteric ribozyme is replaced with a random-sequence domain to produce polynucleotides having new effector-binding sites or new effector-modulated catalytic domains that can be screened using in vitro selection. Briefly, in one embodiment, for example, randomization of the ligand-binding region of an allosteric ribozyme generates new structural diversity and a family of structurally parallel polynucleotides that are screened for their efficiency in responding to, and/or reporting, ligand binding. By using this allosteric selection strategy, new allosteric ribozymes with specificity for a great variety of effector molecules are generated.
Methods for using multidomain polynucleotide sensors of the invention are correspondingly provided, as are processes for preparing polynucleotides that are responsive to the presence or absence of a signalling agent such as a chemical ligand that binds to the receptor domain. Also provided are analytical sensors having multidomain polynucleotides of the invention as sensing elements.
This invention is based upon the finding that combining a polynucleotide actuator domain and a receptor domain, with a bridging domain that provides communication between the two, results in precision polynucleotide sensors. By use of modular rational design strategies that mix and match domains, multidomain polynucleotides are modified to generate large numbers of structurally parallel sensors that are then screened to identify sensors displaying optimal binding and/or reporting activity.
In the practice of the invention, purified functional polynucleotides are generated or selected which comprise an actuator domain, a receptor domain, and a bridging domain such that a signalling agent such as binding of a ligand to the receptor domain triggers a conformational change in the bridging domain which modulates the activity of the actuator domain. The overall structure functions as a molecular switch, with the signalling agent turning the reporter domain partially or totally “on” or “off” upon interaction with the receptor domain which then communicates via the bridging domain. The molecular bridge in the engineered sensor is not passive, but is instead a functional communication module that activates, accelerates, decelerates, or triggers the action of the catalytic or reporter actuator. Indeed, as will be discussed in greater detail below, the invention encompasses methods for providing or enhancing allosteric properties in a polynucleotide by inserting into the polynucleotide communication module sequences that bridge receptor domains and actuator domains in the polynucleotide such that the sequence modulates the activity of the actuator domain when the receptor domain is acted upon by a ligand or a physical signal. In some embodiments, different communications modules are additionally used to modify the properties of the catalytic or reporter actuator, such as changing the kinetics of a reaction rate. In other embodiments, the bridging domain can overlap the receptor or reporter domain such that it is no longer present as a distinct structural entity. Novel allosteric polynucleotides of the invention are generated using modular rational design strategies by varying the actuator domain or the receptor domain and screening the sensors so produced to identify sensors having optimal sensing and/or reporting activities. The generation of some novel RNA sensors using this method is illustrated in Example 3 below.
Other additional domains may also be part of the construct such as, for example, multiple receptor domains for the measurement or detection of multiple components in a mixture tested by the sensor. Two or more domains may be partially or completely overlapping or non-overlapping, or contain both partially overlapping and non-overlapping sequences. Thus, as used herein, a “domain” is a functional designation, not a physical one, and sensors of the invention do not necessarily comprise different combinations of at least three distinct sequences directly or indirectly linked together, but instead can comprise sequences wherein some or all of the bases in the domains overlap with one another.
Multidomain polynucleotide molecular sensors of the invention may be RNA, RNA analogues, DNA, DNA analogues, or mixtures thereof. Analogues include chemically modified bases and unusual natural bases such as, but not limited to, 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 2′-O-methylcytidine, 5′-carboxymethylaminomethyl-2-thioridine, 5-carboxymethylaminomethyluridine, dihydrouridine, 2′-O-methylpseudouridine, β-D-galactosylqueosine, 2′-O-methylguanosine, inosine, N6-isopentenyladenosine, 1-methyladenosine, 1-methylpseudouridine, 1-methylguanosine, 1-methylinosine, 2,2-dimethylguanosine, 2-methylguanosine, 2-methyladenosine, 3-methylcytidine, 5-methylcytidine, N6-methyladenosine, 7-methylguanosine, 5-methylaminomethyluridine, 5-methoxy-aminomethyl-2-thiouridine, β-D-mannosylqueosine, 5-methoxycarbonylmethyluridine, 5-methyloxyuridin, 2-methylthio-N-6-isopentenyladenosine, N((9-β-D-ribo-furanosyl-2-methylthiopurine-6-yl)carbamoyl)threonine, N-((9-β-D-ribofuranosyl-purine-6-yl)N-methyl-carbamoyl)threonine, uridine-5-oxyacetic acid methyl ester, uridine-5-oxyacetic acid, wybutoxosine, pseudouridine, queosine, 2-thiocytidine, 5-methyl-2-thiouridine, 2-thiouridine, 4-thiouridine, 5-methyluridine, N-((9-β-D-ribofuranosylpurine-6-yl)carbamoyl)threonine, 2′-O-methyl-5-methyluridine, 2′-0-methyluridine, wybutosine, and 3-(3-amino-3-carboxypropyl uridine. Further encompassed by the invention are polynucleotides modified during or after preparation of the sensor using standard means.
As summarized above, polynucleotide sensors of the invention are designed and constructed independently or together to comprise the actuator domain and receptor domain in communication with the bridging domain such that binding of a ligand to the receptor domain and/or a signal triggers a conformational change in the bridging domain which positively and/or negatively modulates the activity of the actuator domain. Where enzyme polynucleotides are employed, the reaction rate may be enhanced or inhibited by reversible binding to small effector molecules such as metal ions and/or compounds having a molecular weight of less than about 300. The effector molecule or effect binds to or affects a site that is spatially distinct from that of the enzyme or reporter domain, and rapidly interconvert from and “off” state to an “on” state, or vice versa, or intermediate states between “off” and “on”, reversibly, via the bridging domain on a time scale that is relevant for their use as biosensors (i.e., in preferably less than 60 minutes, even more preferably in less than 6 minutes, and in most cases in less than 1 minute, e.g., within seconds). Since they are responsive to ligands and/or signals, multidomain polynucleotides of the invention have a variety of uses, particularly as sensing elements in clinical, industrial, agricultural, and environmental analyses, and as genetic control or report elements for gene expression.
Sensors of the invention may be employed in solution or suspension or attached to a solid support. Alone or as a component of an analytical kit or probe, the polynucleotides are used to detect the presence or absence of a ligand or a signal in a sample by contact of the sample with the polynucleotide. In a typical practice of these methods, a sample is incubated with the polynucleotide or device comprising the polynucleotide as a sensing element for a time under conditions sufficient to observe the catalytic or reporter effect produced by the actuator domain. This is monitored using any method known to those skilled in the art, such as measurement and/or observation of polynucleotide self-cleavage or ligation; binding of a radioactive, fluorescent, or chromophoric tag; binding of a monoclonal or fusion phage antibody; or change in component concentration, spectrophotometric, or electrical properties. It is an advantage of the invention that current biosensor technology employing potentiometric electrodes, FETs, various probes, redox mediators, and the like can be adapted for use in conjunction with the new polynucleotide sensors of the invention for measurement of changes in polynucleotide function or configuration initiated by the actuator domain.
Sensors of the invention may be used to detect the presence or absence of a compound or other ligand, as well as its concentration. Sensors can be engineered to detect any type of ligand such as, but not limited to, all types of organic and inorganic compounds, metal ions, minerals, macromolecules, polymers, oils, microbial or cellular metabolites, blood or urine components, other bodily fluids obtained from biological samples, pesticides, herbicides, toxins, nonbiological materials, and combinations of any of these. Organic compounds include various biochemicals in addition to those mentioned above such as amino acids, peptides, polypeptides, nucleic acids, nucleosides, nucleotides, sugars, carbohydrates, polymers, and lipids. One or more ligands may be sensed by the same sensor in some embodiments.
Thus, sensors of the invention have wide application in clinical diagnosis and medicine and veterinary medicine, including the determination of blood components such as glucose, electrolytes, metabolites and gases; serum analyte determinations; bacterial and viral analyses; pharmaceutical and drug analyses; drug design; cell recognition/histocompatibility; cell adhesion studies; bacterial and viral analysis; DNA probe design; gene identification; and hormone receptor binding. Industrial applications include the detection of vitamins and other ingredients, toxins, and microorganisms in foods; military applications such as dispstick testing; industrial effluent control; pollution control and monitoring; remote sensing; process control; separation chemistry; and biocomputing. Agricultural applications include farm and garden analyses and evaluations of genetic control and effects of compounds, particularly small molecules, in transgenic plants and animals (including in vivo measurements). Multiple sensors may be placed on a single sensory element or chip, such as that illustrated in
In alternate embodiments, or in combination with ligand detection, multidomain polynucleotide sensors of the invention can be engineered to respond to any change in energy reception measurable by a change in molecular conformation, a physical signal, an electromagnetic signal, and combinations thereof including, but not limited to radiation such as UV irradiation of caged effectors illustrated in
Upon stimulation by a ligand or signal, the actuator domain modifies its catalytic function or reporter function. Any observation of a change in polynucleotide configuration or function may be employed to determine this. In many embodiments, an observation of a chemical reaction is made such as measurement and/or observation of polynucleotide self-cleavage or ligation, substrate cleavage, or generation of a catalytic reaction product using standard assays. In others, simple binding of a radioactive, fluorescent, or chromophoric tag, binding of a monoclonal or fusion phage antibody, or binding of a tagged antibody is observed. Alternatively, changes in component concentration, temperature, pH, appearance, spectrophotometric or electrical properties and the like, may be observed.
As mentioned above, the invention correspondingly provides methods for detecting one or more ligands and/or signals by contacting the sample with a polynucleotide sensor of the invention responsive to the ligand and/or signal. Use of sensors responsive to more than one ligand and/or signal, tandem use of an array of multiple sensors each responsive to different ligands and/or signals, and tandem use of multiple sensors with sensors responsive to more than one ligand and/or signal, in many cases attached to a solid support, are encompassed by the invention.
Multidomain polynucleotide sensors of the invention may also be used for the control and/or report of gene expression in vivo. For example, ribozymes exhibiting new allosteric binding specificity and refined kinetic characteristics are generated using allosteric selection are made to function inside cells with a level of catalytic performance that is of biological significance. In these embodiments, regulation or report of gene expression in a cell of an organism is achieved by operably linking a sensor to a genetic molecule in the cell such that the biological or phenotypic activity encoded by the gene is modulated in accordance with modulation of the activity of the actuator domain. RNA sensors may be inserted anywhere in the coding region of an mRNA encoding a gene-of-interest, or in close proximity thereto, or in the 5′-leader or 3′-tail regions, so long as the sensor functions to stimulate, terminate, or modulate expression of gene translation in the presence of the sensor's corresponding ligand(s) and/or signal(s). Likewise, DNA sensors may be inserted anywhere in a gene-of-interest or a gene regulating it, including in regions encoding gene self-destruction, regions upstream of gene expression, as well as in the coding regions of the gene, so long as the sensor functions to stimulate, terminate, or modulate gene transcription in the presence of the sensor's corresponding ligand(s) and/or signal(s).
Sensors are inserted in genetic molecules for control and/or report of gene expression using standard methods of introducing foreign genes into cells. The methodology depends upon the gene of interest, and typically includes cell transfection, transformation or transduction of cells using plasmids; Herpes, adeno, adeno-associated, vaccinia, retroviral, and other insertion vector viruses; and liposomes. Although less common, insertion of naked RNA (or DNA) by cleavage of cellular genetic material followed by ligation may also be employed.
Gene expression may be regulated or reported in any type of organisms, including microorganisms, plants, and animals. Gene regulation is achieved by administration to a cell having a sensor attached to a genetic molecule, the appropriate ligand(s) and/or signal(s) using standard methods. Administration of ligands to microorganisms, for example, is typically achieved simply by adding the ligand to the medium or removing it, or by perfusing the bacteria, yeast, or molds. Ligands may be administered to plants by spraying or injecting the plant itself, or applying it to the soil and/or with water. Ligands may be administered to animals orally, topically, intravenously, and intraperitoneally, typically in association with a pharmaceutically acceptable carrier. Report of gene expression is correspondingly determined by measurement of receptor binding to ligand, and can be used for non-invasive diagnostics of nearly any biological or pharmaceutical compound of interest administered to, or produced by, an organism. In this context, multidomain polynucleotides of the invention are useful both in non-invasive diagnostics as well as for control of therapeutic ribozymes.
The invention correspondingly provides processes for preparing polynucleotides that are responsive to the presence or absence of a chemical effector or other ligand, a physical signal, an electromagnetic signal, or combinations thereof, comprising linking an actuator domain, a receptor domain, and a bridging domain together such that binding of a ligand to the receptor domain and/or signal triggers a conformational change in the bridging domain which modulates the activity of the actuator domain. Other sensors can be developed by mixing and matching domains from different sensors.
Some sensors of the invention are developed through allosteric selection. Allosteric selection is an in vitro selection technique for the development of allosteric nucleic acid enzymes that are controlled by ligands for which an aptamer has not previously been identified. In this capacity, allosteric selection also represents a novel approach to the generation of aptamers than bind target ligands. For this purpose, a random sequence library is typically appended to a catalytic nucleic acid motif such as the hammerhead ribozyme illustrated in
Using this selection strategy, four natural 3′,5′-cyclic mononucleotides including the second messengers cGMP and cAMP were targeted by hammerhead ribozymes in Example 3. This collection of molecules provides a diverse set of targets that are of biological importance and that challenge the structure formation and molecular recognition capabilities of RNA. Ribozymes that rapidly self-cleave only when incubated with their corresponding effector compounds were identified. Representative RNAs exhibit 5,000-fold activation in the presence of cGMP or cAMP, thus displaying precise molecular recognition characteristics and operating with catalytic rates that match those exhibited by unaltered ribozymes. These findings demonstrate that a vast number of ligand-responsive ribozymes with dynamic structural chacteristics can be generated in a massively parallel fashion. Moreover, optimized allosteric ribozymes provide especially selective sensors of chemical agents or as genetic control elements for the programmed destruction of cellular RNAs.
Allosteric selection of aptamers to small ligands has two distinct advantages over the conventional affinity chromatography methods for aptamer selection. First, aptamers to numerous ligands may be generated in a single selection rather than the laborious single ligand-single aptamer selection strategy afforded by affinity chromatography. Second, aptamers are selected to bind ligands free in solution rather than ligand that has been covalently modified and immobilized on a solid support. This aspect affords potential aptamers complete access to the entire ligand. It is conceivable that any effector-ribozyme pair could be developed using this approach. This unique process of nucleic acid development may therefore be used to develop nucleic acids that interact with a variety of ligands including small organic compounds, peptides or proteins, or other nucleic acids. In addition to ligand binding, allosteric selection also provides a means of developing nucleic acid motifs capable of detecting a variety of physical phenomena including pH, temperature, ionic conditions, or light.
While not wishing to be bound to any theory, it appears that the communication module function provided by the bridging domain is accomplished in sensors of the invention by one or a combination of mechanisms such as the ‘slip-structure’ interconversion set out in Example 1 below. Control can also be achieved using steric interactions such as binding of small compounds, structure stabilization such as unfolding or misfolding in the presence or absence of an effector, antisense effects based on simple nucleic acid base pairing, and/or quarternary structure. Any type of relay of a ligand-binding or physical or electromagnetic effect sensed by the receptor domain may be employed to transfer information to the actuator (reporter or catalytic) domain by the bridging domain.
It is an advantage of the invention that use of polynucleotides as sensors offer advantages over protein-based enzymes in a number of commercial and industrial processes. Problems such as protein stability, supply, substrate specificity and inflexible reaction conditions all limit the practical implementation of natural biocatalysts. DNA can be engineered to operate as a sensor under defined reactions conditions. Moreover, sensors made from DNA are expected to be much more stable and can be easily made by automated oligonucleotide synthesis. In addition, both DNA and RNA sensors may be selected for their ability to function on a solid support and are expected to retain their activity when immobilized.
As has been mentioned, the invention further encompasses the use of multidomain polynucleotide molecular sensors attached to a solid support for assays, diagnostics, catalytic processes, and the like. Immobilizing novel RNA or DNA enzymes provides a new form of coated surfaces for the efficient sensing of ligands or chemical transformations for testing of individual samples or in a continuous-flow reactor under both physiological and non-physiological conditions. The engineering of new sensors can be each tailor-made to efficiently respond to certain ligands or signals under user-defined conditions. Due to the high stability of the DNA phosphodiester bond, such surfaces when coated with multidomain DNA sensors are expected to remain active for much longer than similar surfaces that are be coated with protein enzymes or ribozymes.
A variety of different chromatographic resins and coupling methods can be employed to immobilize sensors of the invention on a support. For example, a simple non-covalent method that takes advantage of the strong binding affinity of streptavidin for biotin as previously described (45) may be employed. In other embodiments, sensors can be coupled to the column supports via covalent links to the matrix, thereby creating a longer-lived biosensor. Various parameters of the system including temperature, sample preparation, sensor size and sensitivity, and the like, can be adjusted to give optimal sensing properties. In fact, these parameters can be preset based on the kinetic or other characteristic displayed by the immobilized sensor.
In conclusion, the simultaneous use of rational and combinatorial approaches to enzyme engineering (41) provides a powerful approach to the design of new ribozymes and other sensors. As illustrated below, in some embodiments, tripartite ribozyme constructs generated using this strategy of polynucleotide engineering function as highly-specific sensors for various small organic compounds. A critical component of these constructs are the ligand-responsive bridge elements. These dynamic structural domains act as simple ‘communication modules’ that can be used to rapidly engineer new RNA molecular sensors simply by swapping domains within the context of the tripartite construct. In addition, the introduction of mutations into the receptor domain of the construct should make possible the in vitro selection of new ligand-binding domains based on the modulation of a catalytic or other reporter activity. In a similar manner, new RNA molecular sensors can be made that serve as new precision biosensors, or that function in vivo as genetic control or reporter elements that regulate gene expression in response to the presence of many different kinds of effector molecules.
The following examples are presented to further illustrate and explain the present invention and should not be taken as limiting in any regard.
Ligand-specific molecular sensors composed of RNA were created by coupling pre-existing catalytic and receptor domains via novel structural bridges (65). Binding of ligand to the receptor triggers a conformational change within the bridge, and this structural reorganization dictates the activity of the adjoining ribozyme. The modular nature of these tripartite constructs makes possible the rapid construction of precision RNA molecular sensors that trigger only in the presence of their corresponding ligand.
Materials and Methods
Oligonucleotides. Synthetic DNA and the 14-nucleotide substrate RNA were prepared by standard solid phase methods and purified by denaturing (8 M urea) polyacrylamide gel electrophoresis (PAGE) as described previously (4). RNA substrate was 5′-32P-labeled with T4 polynucleotide kinase and (γ-32P)-ATP, and repurified by PAGE. Double-stranded DNA templates for in vitro transcription using T7 RNA polymerase were generated by extension of primer A (5′-TAATACGACTCACTATAGGGCGACCCTGATGAG, SEQ ID NO: 32)) on a DNA template complementary to the desired RNA. Extension reaction were conducted with reverse transcriptase (RT) as described previously (7).
In Vitro Selection. Selection for allosteric activation was performed by first preselecting each successive population (1 μM internally 32P-labeled RNA; ref. 5) for self-cleavage without FMN in 10 μL reaction buffer (50 mM Tris-HCl (pH 7.5 at 23° C. and 20 mM MgCl2) for 20 hr at 23° C. Preselections for G4-G6 were punctuated at 5 hr intervals by heating to 65° C. for 1 min to denature and refold any misfolded molecules. Uncleaved RNA was purified by denaturing (8 M urea) 10% (PAGE), eluted from excised gel, and precipitated with ethanol. The resulting RNA was selected by incubation in the reaction buffer in the presence of 200 μM FMN for the times indicated. Reaction times for positive selections during subsequent iterations of the selective-amplification process were decreased to favor allosteric ribozymes with the fastest rates of self-cleavage. Products separated by 10% PAGE were imaged and quantitated using a PhosphorImager and ImageQuaNT software (Molecular Dynamics). The 5′-cleavage fragments produced in the presence of FMN were isolated as described above, amplified by RT-PCR (primer A and primer B: 5′-GGGCAACCTACGGCTTTCACCGTTTCG (5,9, SEQ ID NO: 33), and the resulting double-stranded DNA was transcribed in vitro (5) to generate the next RNA population. Selection for FMN inhibition was conducted in an identical fashion, except that FMN was included in both the transcription and the preselection, but was excluded in the selection reaction, Individual molecules from G6 populations of both selections were isolated by cloning (TA Cloning Kit, Invitrogen) and analyzed by sequencing (ThermalSequenase Kit, Amersham).
Allosteric Ribozyme Assays. Reactions containing internally 32P-labeled self-cleaving ribozyme (100 to 500 nM) and either 200 μM FMN, 1 mM theophylline, or 1 mM ATP were initiated by the addition of reaction buffer and incubated through several half lives with periodic sampling. Products were separated by denaturing PAGE and yields were quantitated as described above. Rate constants were derived by plotting the natural logarithm of the fraction of uncleaved RNA versus time and establishing the negative slope of the resulting line. The values for each rate constant given are the average of a minimum of three replicate assays, each that differed by less than two fold. Ribozymes carrying the class I induction element and the class II inhibition element were arbitrarily chosen for detailed analysis.
Bimolecular assays were conducted under single-turnover conditions with ribozyme (500 nM) in excess over trace amounts ˜5 nM of 5′-32P-labeled substrate. Reactions were initiated by combining ribozyme and substrate that were preincubated separately for 10 min at 23° C. in reaction buffer. Kinetic parameters were generated as described above. Product yields were corrected for the amount of substrate that remained uncleaved after exhaustive incubation with the unmodified hammerhead ribozyme (5). The values for each rate constant given are the average of a minimum of two replicate assays that differed by less than two fold.
Results and Discussion
In Vitro Selection of Allosteric Ribozymes. A population of >65,000 variant RNAs composed of separate FMN-binding aptamer (26) and hammerhead ribozyme (27, 28) domains that are joined by a random-sequence bridge were generated (
Both RNA populations isolated after six rounds of selection (G6) display high sensitivity to FMN, demonstrating that the combined engineering approach is an effective means to generate ribozymes that function as highly-specific molecular switches. The in vitro selection process could have produced novel RNA structures that cleave by some other means under the permissive reaction conditions. For example, isoalloxazine rings like that found in FMN have been shown to promote photocleavage of RNA molecules (31) and could conceivably serve as a cofactor for a novel FMN-dependent ribozyme. However, the RNAs isolated by selection appear to cleave in a reaction that is solely mediated by the original hammerhead ribozyme domain that was integrated into each construct as determined by gel mobility of RNA cleavage fragments.
Sequence and Functional Characteristics of Isolated Bridge Elements.
The G6 populations from both selections were cloned, sequenced, and assayed for allosteric function (
Likewise, five distinct classes of bridges were identified and were designated as ‘inhibition elements’ I through V (
Many of the bridge elements isolated by selection display maximum rate enhancements that are at least 10-fold lower than that measured for the unmodified hammerhead ribozyme H1 (
Rapid Interconversion Between Active and Inactive Ribozyme Structures. The inactive state for ribozymes that carry the class I induction element (
Mechanism for Allosteric Function. The rapid ligand-dependent activation or inhibition of ribozyme function indicates that the conformational changes required to modulate activity must be highly responsive to ligand binding. It appears that for some elements this allosteric transition is achieved through localized base-pairing changes within each bridge domain, and that binding energy derived from ligand-aptamer complex formation is used to create this shift in structural configuration.
A critical component of the proposed mechanism for both allosteric induction and inhibition is a single sheared A•G base pair, located within the aptamer domain immediately adjacent to the bridge, which forms only when FMN is bound (33, 34). With class I induction elements, the presence of FMN stabilizes the A•G base pair which in turn establishes a specific register for base pairing within the bridge (
To further investigate this ‘slip structure’ mechanism for allosteric regulation, several ribozyme constructs were created using stable stem-loop structures in place of the FMN-binding domain (
Further evidence for a slip-structure mechanism was provided by examining the class II inhibition element. Here, FMN binding enforces a base pairing pattern that precludes formation of the active ribozyme conformation (
Engineering Allosteric Ribozymes with New Ligand Specificities. If binding energy derived from the ligand-aptamer complex is used to shift the thermodynamic balance between two slip-structure conformations, then each bridge may act as a generic reporter of the occupation state of the adjoining aptamer domain in a manner that is independent of the sequence and ligand specificity of the aptamer. To examine this possibility, the FMN aptamer was removed from the class I induction element of an FMN-sensitive ribozyme and replaced with either an aptamer that binds theophylline (37) or an aptamer that binds ATP (38) (
Although the class I induction element can be engineered to respond to several unrelated effector molecules, this characteristic is not universally applicable. For example, appending an aptamer for arginine (40) to the class I induction element failed to produce a significant allosteric effect. Two of three other classes of induction elements tested (classes VI and VII) also display modularity when engineered to carry the theophylline aptamer. However, class III induction element and class III inhibition elements showed no response to the addition of effector when similarly appended to the same aptamer. These findings indicate that the successful design of an allosteric ribozyme using this modular approach requires the fusion of compatible ‘matched pairs’ of aptamer and bridge domains.
In Vitro Selection of Theophylline-Sensitive Allosteric Hammerhead Ribozymes
To investigate whether the process of developing communication modules may be applicable toward any number of aptamer-ribozyme combinations, in vitro selection for allosteric hammerhead ribozymes activated by theophylline binding has been performed. This selection has sought not only to validate the combined modular rational design and in vitro selection process, but develop new communication modules that try the limits of nucleic acid allostery. The initial population for the development of allosteric theophylline-sensitive ribozymes is conceptually identical to that previously demonstrated to yield FMN-sensitive catalysts. However, the theophylline aptamer was appended to stem II of the hammerhead ribozyme through a random-sequence region consisting of 5+5 or 10 total nucleotide positions (
aSequence of each clone derived from nucleotides comprising the random region of the initial population.
bObserved rate constant for self-cleavage in the absence of theophylline.
cInitial observed rate constant for self-cleavage in the presence of 200 μM theophylline.
dkobs+/kobs−.
isolates were demonstrated to achieve theophylline-dependent rate constants that approach or exceed 1 min−1, where allosteric activation ranged from several hundred- to several thousand-fold. In this manner, selection for theophylline-sensitive allosteric hammerhead ribozymes has provided functionally superior catalysts without compromising the catalytic efficiency of the ribozyme motif. The use of combined modular rational design and in vitro selection techniques for the development of ligand-sensitive allosteric ribozymes is thus be widely applicable toward the development of novel allosteric catalysts.
Allosteric Selection of Ribozymes Responsive to cGMP and cAMP Messengers
Example 1 illustrated the generation of a series of allosteric ribozymes using a three-domain construct (
Materials and Methods
RNA Pool Preparation. DNA templates for the RNA pool depicted in
The resulting double-stranded DNAs were recovered by precipitation with ethanol and resuspended in a 2 ml transcription mixture containing 50 mM Tris-HCl (pH 7.5 at 23° C.), 15 mM MgCl2, 5 mM dithiothreitol, 2 mM spermidine, 2 mM each of the four dNTPs, 200 μCi (32P)UTP, and 60,000 U T7 RNAP. The transcription mixture was incubated at 37° C. for 1 hr and the resulting uncleaved precursor RNAs (internally 32P-labeled) were isolated by denaturing 10% PAGE. Note that PAGE purification eliminates ribozymes that have undergone self-cleavage during the in vitro transcription reaction. This inherently introduces an additional negative selection step that disfavors the isolation of ribozymes, that function without activation by an effector. Moreover, this step disfavors the isolation of allosteric ribozymes that cannot distinguish between the intended cNMP target effectors and the NTPs that are required for in vitro transcription.
Allosteric Selection. In vitro selection for allosteric ribozymes that respond to the cNMPs (Sigma) was carried out using repeated rounds of negative and positive selection. For the first round of negative selection, an initial pool of RNA precursors (9.3 nmol, 5.6×1015 molecules) was incubated at 23° C. for 5 hr in a reaction mixture (930 μl) containing 50 mM Tris-HCl (pH 7.5) and 20 mM MgCl2 in the absence of the four cNMPs. Precursor RNAs that resist cleavage during this incubation were isolated by denaturing 10% PAGE. Purified precursor RNAs were then subjected to the first round of positive selection at 23° C. for 30 min in the same reaction buffer (930 μl) containing 500 μM each of the four cNMPs. At this stage, cleaved products were purified by denaturing 10% PAGE and the 5′ cleavage fragments were recovered from the gel by crush-soak elution and amplified by reverse transcription followed by PCR (RT-PCR). Reverse transcription was conducted in a reaction buffer (400 μl total) using SuperScript II RT according to the manufacturer's directions cDNA and using primer 1 (5′-GGGCAACCTACGGCTTTCACCGTTTCG, SEQ ID NO: 33). Subsequent PCR amplification of the resulting cDNA using primers 1 and 2 (500 pmoles each) was conducted in a reaction mixture (2 ml total) containing 10 mM Tris-HCl (pH 8.3 at 23° C.), 50 mM KCl, 1.5 mM MgCl2, 0.01% gelatin, 0.2 mM each dNTP and 50 U Taq polymerase (Promega). The reaction was thermocycled for the desired number of iterations at 94° C. for 30 sec, 55° C. for 30 sec, and 72° C. for 60 sec.
Additional rounds of selective amplification were repeated in a similar fashion using 15 min positive selection reactions until effector-sensitive ribozyme function was detected. Subsequent rounds of selection included both negative and positive selection steps that were conducted as described above using smaller RNA pools and with the reaction sizes scaled down accordingly. For the first 5 rounds of selection, a 10× stock mixture of cNMPs was added to the RNA pool prior to the addition of the remaining components of the reaction buffer. In subsequent rounds, the cNMP mixture was added after the reaction buffer to preclude the isolation of acid-sensitive ribozymes. In addition, negative selections were altered to more aggressively select against ribozymes that cleave slowly or that distribute between active and inactive conformations upon refolding. To disfavor slow-cleaving ribozymes, the negative selection time was increased from 5 hr to as much as 48 hr and multiple negative selection steps were occasionally employed prior to conducting positive selection. To disfavor misfolding ribozymes, periodic thermocycling was employed as described previously (65), or chemical denaturation with urea or mild alkali were used in an iterative fashion between periods of negative selection to induce multiple cycles of denaturation, renaturation and self-cleavage. Interestingly, ribozymes that use a misfolding strategy for survival also resisted the negative selection strategies that rely on thermal and urea-mediated denaturation (unpublished observations). Therefore, the use of alkaline denaturation proved most effective for negative selection.
Allosteric Ribozyme Characterization. RNA populations displaying cNMP-dependent self-cleavage were cloned (TOPO TA Cloning Kit, Invitrogen), sequenced (Thermo Sequenase Cycle Sequencing Kit, USB) and further analyzed by establishing the effector-mediated modulation of ribozyme kinetics.
Double-stranded DNA templates for individual allosteric ribozyme clones were prepared either by PCR amplification of the plasmid DNA using primers 1 and 2, or by preparation of the appropriate synthetic DNA template. Internally 32P labeled RNAs were prepared by in vitro transcription as described above.
Initial rate constants for RNA self-cleavage were established by incubating trace amounts (˜100 nM) of internally 32P labeled RNA precursors in selection buffer containing different concentrations of cNMP effectors as indicated for each experiment. Reactions were terminated by the addition of 2× PAGE loading buffer containing additional EDTA to sequester the Mg2+ cofactor (65). For each clone, a plot of the fraction of precursor cleaved (<20% processed) versus time gave a straight line where the slope reflects the initial rate constant for the ribozyme under the particular reaction conditions used. In all cases, duplicate experiments gave rate constants that varied by less that 50%.
The caged cAMP analogue, adenosine 3′,5′-cyclic monophosphate, P1-(2-nitrophenyl)ethyl ester (Calbiochem), was resuspended in dimethylsulfoxide (DMSO) to yield a 100× stock solution (200 mM). Dissolved analogue was delivered to the ribozyme reaction to yield final concentrations of 2 mM, and the resulting reaction mixture was supplemented with DMSO to give a final concentration of 5% to prevent its precipitation. This concentration of DMSO had no affect on the function of the clone cAMP-3. UV irradiation of the samples contained in a polycarbonate microtiter plate (USA Scientific) was conducted using a UV transilluminator (Spectroline model TVC-312A) that produces light centered at 312 nm. Under these conditions, greater than 80% of the analogue is converted to cAMP.
The cAMP depletion reactions were prepared by delivering cAMP (500 μM), 3′,5′-cyclic nucleotide phosphodiesterase (activator deficient from bovine brain, Sigma) and calmodulin (3′,5′-cyclic nucleotide phosphodiesterase activator, Sigma) as indicated for each reaction. Lyophilized phosphodiesterase and calmodulin samples were separately resuspended in a buffer containing 50 mM MES (pH 6.5 at 23° C.), 100 mM NaCl and 60% glycerol. Phosphodiesterase was delivered as indicated to a final concentration of 5×10−4 Uμl−1 and calmodulin was delivered as indicated to a final concentration of 1.5 Uμl−1. Reactions for the cAMP depletion studies contained 50 mM Tris-HCl (pH 7.5 at 23° C.), 20 mM MgCl2, 30 μM CaCl2, and 2.7% glycerol. Trace amount of internally 32P labeled cAMP-1 RNA was added immediately (no preincubation) or was added after a 40 or 80 min preincubation that was carried out at 301C.
Results and Discussion
Beginning with a pool of 1015 RNA molecules representing nearly all possible sequence variants within the random-sequence domain of the construct, successive negative and positive selection reactions were conducted using a mixture of the four natural 3′,5′-cyclic mononucleotides (cNMPs; 500 μM each) as potential effector molecules. Each RNA population was prepared by in vitro transcription in the absence of the cNMP mixture and the full-length precursor RNAs were purified by denaturing 10% polyacrylamide gel electrophoresis (PAGE). The isolated RNA precursors were incubated in the absence of the effector mixture under otherwise permissive reaction conditions (reaction buffer: 50 mM Tris-HCl, pH 7.5 at 23° C., and 20 mM Mg2+) for an extended period of time. Uncleaved precursors from this negative selection reaction were again isolated by PAGE and subjected to positive selection by brief incubation under the permissive reaction conditions containing the cNMP mixture. The resulting 5′-cleavage products were purified by PAGE and amplified by reverse transcription followed by the polymerase chain reaction (RT-PCR). This selective-amplification process was repeated to favor the enrichment of allosteric ribozymes that respond to any of the four cNMPs.
Acid-Sensitive and Effector-Independent Ribozymes. After only six rounds of selective amplification (G6), the RNA pool exhibited a significant positive response to the addition of the cNMP mixture (
Two additional classes of selfish RNA molecules also became evident in the early stages of selection. One class of selfish ribozymes promote the RNA cleavage reaction with substantially reduced catalytic rates in both the negative and positive selection steps. The other class distributes into properly folded and misfolded states. In both cases, the ribozymes are not completely self-processed during the negative selection reaction, and therefore are enriched by the selective-amplification process without responding to the effectors. These two types of selfish RNAs contributed to the high background level of RNA catalysis that was observed in the positive selection reaction, and this rendered the efficiency of the allosteric selection process less than optimal.
Fortunately, ribozymes that specifically activate by recognizing an effector molecule attain a significant selective advantage over ribozymes that employ the effector-independent strategies described above. Extension of the incubation time for the negative selection reaction was used to further disfavor ribozymes that cleave more slowly. However, ribozymes that persist using a misfolding strategy were more difficult to eliminate. Presumably, a certain portions of these molecules partition into active and inactive conformational states after each denaturation event. Therefore, only part of the population cleaves during the negative selection. Upon purification of the uncleaved. precursors by denaturing PAGE, the RNAs have another chance to refold and distribute between the two conformational states. This allows a significant portion of the population to cleave during the subsequent positive selection reaction. To disfavor ribozymes that employ this strategy, multiple rounds of negative selection and purification were conducted. Alternatively, negative selection reactions were interspersed with thermal or chemical denaturation steps to cleave and refold the RNAs repetitively (see Materials and Methods above).
Isolation of cNMP-Dependent Hammerhead Ribozymes. A measurable response to the cNMP mixture was once again exhibited by the selected RNA populations after a total of 14 rounds (
To recover ribozymes that respond to the remaining cNMPs, cGMP was added to the negative selection reaction at G17 and supplied the remaining three effectors in the positive selection reaction. By G19, the RNA pool no longer responds to cGMP, but shows specificity for cCMP. Therefore, an additional round of selection using only cCMP as the effector was conducted to produce G20′ RNA. This RNA population preferentially cleaves in the presence of cCMP (
In a repetition of this strategy, both cGMP and cCMP were included in the negative selection beginning with G20, while supplying cAMP and cUMP in the positive selection. This process yielded a population of RNAs at G22 that now responds positively to cAMP. An additional round of selection using only cAMP gave rise to G23′ RNA, a population that exhibits allosteric activation exclusively by this effector (
Kinetic Modulation of Ribozymes with cGMP, cCMP and cAMP.
Clones from the G18′, G20′ and G23′ populations were sequenced in order to further characterize the function of the selected RNAs. Of the 12 clones examined from the G18 population, eight display considerable diversity within the original random-sequence domain (
Clones cGMP-1 through cGMP-4 were tested for catalytic activity and each responds positively to the addition of cGMP with distinctive characteristics (
Similarly, individual clones from the G20′ and G23′ populations demonstrate specific activation with cCMP and cAMP effectors, respectively. As observed with the cGMP-specific RNAs, the sequences of the isolated G20′ RNAs reveal the acquisition of significant mutations or deletions over the course of the selection process, indicating that these changes may have been necessary to give rise to allosteric function (
Eight distinct individuals were also identified among the 13 clones sequenced from the G23′ population (
Molecular Recognition by Effector Binding Sites. Of primary concern is whether the representative cGMP-, cCMP- and cAMP-dependent ribozymes directly recognize the atomic structures of their corresponding effectors, or whether they respond to some other physicochemical signaling agent that might be unintentionally introduced into the reaction mixture. Precedence for alternative effectors for allosteric activation is provided by the observation that the first ribozymes that dominated the RNA population do not respond specifically to any of the four cNMPs, but are sensitive to acidification of the reaction mixture. To determine if the mechanism of ribozyme activation is mediated through direct molecular recognition of cNMPs, adenosine 3′,5′-cyclic monophosphate, P1-(2-nitrophenyl)ethyl ester, a “caged” form of cAMP was used (
The cAMP-dependent clones cAMP-1, cAMP-2 and cAMP-4 (
To further investigate whether molecular recognition of cNMP effectors by RNA mediates allosteric ribozyme function, an assay wherein cAMP is depleted from the reaction mixture in situ was established (
The allosteric ribozyme cAMP-1 does not accommodate 5′-AMP as an effector (see
Molecular Discrimination by Allosteric Binding Sites. A preliminary survey of the molecular recognition determinants was conducted using representative clones cGMP-1, cCMP-1 and cAMP-1. In each case, the RNAs exhibit significant discrimination against closely related analogues of their corresponding effector (
Although additional experimentation is necessary to more clearly define the determinants of molecular recognition for these allosteric ribozymes, it appears that in each case the discrimination against opened-ring analogues could be due to steric interactions. The observation that all three clones remain at least partially active when supplied with the corresponding nucleoside and deoxynucleoside analogues of cNMP indicates that the phosphate moiety is not absolutely required for allosteric activation. In contrast, alteration of many of the functional groups on the nucleotide base of each effector adversely affects allosteric ribozyme function (
Rapid Activation of cNMP-Dependent Ribozymes. A common characteristic of the small-molecule-dependent allosteric ribozymes created to date is the rapid activation or deactivation of ribozyme function upon addition of the effector (5, 7, 65). The rapid allosteric response is a kinetic feature that is highly desirable for RNA molecular switches that are to find practical application. Therefore, the activation kinetics for the three representative clones cGMP-1, cCMP-1 and cAMP-1 were examined. In each case, the ribozymes appear to be activated within seconds after introduction of their corresponding effector molecules (
Each of the clones described above maintain linear cleavage kinetics through at least one half life (
Binding Affinities and Dynamic ranges. The effector-binding site of each allosteric ribozyme is expected to bind its ligand with a distinct affinity that can be described by a dissociation constant (KD) for the RNA-ligand interaction. If occupation of the effector-binding site indeed correlates with the level of activation for a particular allosteric ribozyme, then an apparent KD for effector binding can be established for this interaction by examining the dependency of catalytic rate on the concentration of effector.
To provide a comprehensive analysis of the binding affinities displayed by the allosteric ribozymes that were isolated in this study, the effector concentration-dependent activities of all ten allosteric ribozymes described in FIGS. 11 to 13 were determined. Apparent KD values were determined by establishing the effector concentration that produces a rate constant that is half maximal (½ kmax). In all cases, the apparent KD falls near the concentration of each effector used during in vitro selection (
The plots used to define the apparent KD for each allosteric ribozyme (
Engineering Novel RNA Molecular Sensors. The allosteric selection strategy (
Structural and Functional Versatility of RNAs. In contrast to the limited functions of natural ribozymes, protein enzymes catalyze a tremendous array of chemical transformations with extraordinary precision and enormous rate enhancements. Included among the diverse biochemical functions of protein enzymes are conformational. changes that in some instances provide effector-dependent allosteric modulation (21). Unlike their protein counterparts, natural ribozymes are not known to undergo allosteric modulation of catalytic activity. However, the results of this study and several earlier studies (5, 6, 8, 9, 61-63, 65, 66) provide evidence that nucleic acids are quite capable of modulating catalytic activity in response to various effector compounds. These findings are consistent with earlier suggestions (57-60) that RNA may have significant untapped potential for complex catalytic function. Presumably, the true catalytic potential of nucleic acids can be harnessed for the construction of synthetic ribozymes that make unique biochemical applications possible.
It is important to note that the allosteric ribozymes described in this study have not been subjected to any efforts to optimize their allosteric responses and catalytic function. Illustrated are representative clones that were generated by this initial in vitro selection process, regardless of their kinetic characteristics, in order to give a sense of the properties of allosteric ribozymes that first proved successful. The ribozymes described in this example should be considered prototypic because in most cases their effector binding affinities and catalytic rates are most likely inadequate to serve in most applications. Presumably, individual classes of allosteric ribozymes isolated by allosteric selection will be amenable to further optimization using similar in vitro selection strategies like those used in this study. This would ultimately allow their development as efficient molecular sensors for various applications.
Implications for the Control of Gene Expression. Precise control over gene expression is of profound importance to the normal function of all cells.
Likewise, the purposeful manipulation of gene expression that is directed with precise temporal or spatial command is of great interest to those who desire to control biological systems at the molecular level. Conceivably, the regulation of gene expression can occur at any stage of the process of information transfer from DNA to RNA and from RNA to the final protein product. In fact, natural systems have evolved an abundance of strategies that are used to adjust the levels of gene accessibility and to modulate the molecular processes that occur after transcription (69). Many of these mechanisms have become targets for the development of small-molecule regulators that can be used to control gene expression (70).
A number of genetic control mechanisms of cells are exerted at the level of RNA. Natural antisense interactions and the modulation of RNA stability, for example, are two mechanisms that are known to impact gene expression. Antisense oligonucleotides and ribozymes are widely used by investigators to purposefully influence the expression of specific genes by exploiting these two mechanisms. These approaches modulate RNA function either by sterically blocking access to the RNA target or by targeting the RNA for destruction. Recently, it was shown that mRNA translation could be blocked by exploiting specific interactions between aptamers and certain dye compounds (71). Specifically, RNA aptamers that selectively bind Hoechst dyes H33258 and H33342 were integrated into mRNAs such that gene expression was selectively blocked when these ligands were introduced to the cell. Similarly, allosteric ribozymes could be fused to mRNAs so that when the corresponding effector molecule is introduced into the cell, the ribozyme domain adjusts its catalytic activity. Therefore, allosteric effector molecules could be used to modulate the stability of mRNAs and thus influence the expression of a target gene.
The allosteric selection protocol described herein makes possible the simultaneous selection of new allosteric ribozymes that respond to any of hundreds or even thousands of compounds. This provides a means to test whether self-cleaving ribozymes such as the hammerhead can be made to respond to a wide range of effector stimuli and whether the resulting allosteric constructs can be integrated with mRNAs as new genetic control elements. If this proves feasible, then nearly any natural or bioavailable compound is a candidate for the purposeful control of gene expression in genetically transformed organisms.
The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention, which is defined by the following claims. The claims are intended to cover the claimed components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.
The papers and patents cited herein are expressly incorporated in their entireties by reference.
This application claims priority benefit of U.S. Application Ser. No. 60/106,829, filed Nov. 3, 1998, and U.S. Application Ser. No. 60/126,683, filed Mar. 29, 1999.
This invention was made with partial government support under grants from the NIH (GM57500 and GM59343) and the Defense Advance Research Projects Agency (DARPA). The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60106829 | Nov 1998 | US | |
60126693 | Mar 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09830905 | Aug 2001 | US |
Child | 11288869 | Nov 2005 | US |