The present technology relates to the field of capacitive sensors.
Sensors that rely on changes in capacitance are used in a very large number of important electronic products and systems. Capacitive sensors intended to detect motion or sound typically employ a lightweight, moveable electrode along with a fixed electrode. A bias voltage applied between these two electrodes enables the detection of changes in capacitance due to their relative motion. When detecting small motion, flow, or sound pressure, the performance of the sensor is normally improved when the effective stiffness between the moving and fixed electrodes is reduced. In sensitive microphones, the use of highly compliant moving electrodes having mass and stiffness as small as possible may be desired. In this situation, care must be taken in designing the capacitive electrodes to minimize the influence of electrostatic forces.
It is well-known that the design of capacitive motion sensors that use parallel plate capacitance require that the mechanical stiffness of the moving electrode be large enough to prevent collapse against the biasing electrode. This is because the electrostatic force acts as a negative stiffness for small motions about the static equilibrium position. If the bias voltage is high enough, the magnitude of this negative stiffness can exceed that of the mechanical stiffness, leading to instability. Other electrode designs can cause the electrostatic force to act as a positive stiffness which increases the overall system stiffness as the bias voltage is increased. In this case, an overly high bias voltage will lead to reduced response which reduces sensitivity. Responsivity measures the input-output gain of a detector system. Regardless of whether the electrostatic stiffness is positive or negative, it is nearly always true that the stiffness due to the electrostatic force has the effect of reducing the performance of the sensor.
If an electrostatic sensor has two electrodes, changes in the position of the moving electrode will typically result in a change in the electrostatic potential energy. The effective force applied by the electric field will be equal to the derivative of this potential energy with respect to the position of the moving electrode. To minimize the electrostatic force on the moving electrode, one may incorporate an additional fixed electrode such that the total potential energy of the system remains roughly constant with changes in the position of the moving electrode. While the total potential energy is nearly constant, resulting in a small electrostatic force and corresponding stiffness, the two fixed electrodes will experience dissimilar charges with changes in position of the moving electrode. Sensing these two fixed electrodes separately provides a sensor with greatly reduced influence of electrostatic forces on its motion.
In addition to seeking a design in which the total electrostatic potential energy remains roughly constant as the electrode moves, it is also desired to achieve absolute stability for large motions. This may be accomplished if the electrostatic force on the moving electrode always acts to restore it to its nominal equilibrium position for all possible motions.
Extremely thin, compliant materials are available for constructing these sensing electrodes, such as graphene [1], [2]. These structures have such low bending stiffness, however, that it is difficult to incorporate them into conventional microphone designs without their motion being strongly influenced by the electrostatic forces; their use in acoustic sensing requires new approaches to electrode design.
Highly compliant materials have shown considerable promise for acoustic sensing. Fine fibers such as spider silk have been found to very accurately represent the motion of air in a sound field [3], [4]. The challenges of incorporating highly compliant electrodes has motivated the creation of microphones that incorporate optical sensing [5]-[7]. While optical microphones do achieve the goal of preventing the designer from needing to consider the influence of the sensing mechanism on the forces applied to the mechanical elements, they have not yet proven competitive in high-volume, low-cost devices. The use of piezoelectric materials has also shown promise in avoiding the challenges of capacitive sensing for compliant microphone diaphragms [8]. It should also be mentioned that another motivation for avoiding the parallel plate capacitive sensing scheme is that the viscous damping caused by flow between the electrodes is a major source of thermal noise in miniature microphones [9].
There are, of course, countless electrode geometries that are possible in electrostatic sensing schemes. Depending on the amount of mass, stiffness and damping allowed in the moving electrode for the specific sensing application, existing approaches may achieve varying amounts of electrostatic force and stiffness. Four common configurations are shown in
The approximate expressions for the electrostatic potential energy, force, and effective stiffness for each of the four sensing configurations shown in
The potential energy of the configuration of
This force always acts to pull the moving electrode toward the fixed electrode. For small perturbations about the equilibrium point x, this force will be proportional to the motion where the negative of this proportionality constant is the equivalent electrostatic stiffness, ka,
The electrostatic force in
A similar approach can be taken to estimate the electrostatic energy, force, and stiffness of the configuration shown in
The effective electrostatic force is,
In this approximation, the force is independent of x and also acts to pull the moving electrode toward its nominal position. For this constant force, the effective stiffness is zero, kb≈0. This configuration can be realized using interdigitated fingers or fins and has been successfully incorporated in some acoustic pressure sensors [12]. It should be noted that a more detailed electrostatic analysis of this configuration shows that when x is not small relative to W the electrostatic stiffness becomes positive [13]. While instability is avoided, the electrostatic force can impede the electrode motion.
The electrostatic potential energy of
This expression depends on two terms, one that increases with x while the other decreases. The effective electrostatic force is,
And the effective electrostatic stiffness is
In
Because the energy is independent of x, the effective electro-static force and stiffness are zero, fd=0, kd=0. While this is highly desirable in a sensor, it is difficult to implement in a capacitive microphone. The electrode configuration presented in the following could be viewed as an attempt to realize an approximation to
See, U.S. Pat. Nos. 3,931,469; 3,935,397; 3,941,946; 3,942,029; 3,944,756; 3,946,422; 3,958,662; 3,961,202; 3,980,838; 3,992,585; 4,006,317; 4,014,091; 4,034,332; 4,037,062; 4,046,974; 4,063,050; 4,081,626; 4,085,297; 4,093,884; 4,122,302; 4,149,095; 4,151,480; 4,160,882; 4,170,721; 4,188,513; 4,207,412; 4,215,249; 4,225,755; 4,246,448; 4,246,449; 4,249,043; 4,281,221; 4,288,735; 4,289,936; 4,302,634; 4,311,881; 4,323,736; 4,329,547; 4,360,955; 4,101,858; 4,103,117; 4,109,411; 4,114,133; 4,120,790; 4,129,189; 4,129,191; 4,129,192; 4,129,193; 4,134,327; 4,436,648; 4,439,641; 4,139,642; 4,461,931; 4,489,278; 4,491,697; 4,192,825; 4,515,997; 4,524,247; 4,533,795; 4,541,112; 4,542,264; 4,558,184; 4,567,415; 4,582,961; 4,615,105; 4,621,171; 4,764,690; 4,767,973; 4,790,021; 4,796,725; 4,802,227; 4,849,050; 4,849,071; 4,922,471; 4,977,590; 4,993,072; 5,014,322; 5,038,459; 5,054,081; 5,097,224; 5,161,128; 5,206,914; 5,208,789; 5,214,709; 5,335,210; 5,392,358; 5,452,268; 5,471,540; 5,490,220; 5,570,428; 5,573,679; 5,590,212; 5,600,610; 5,712,598; 5,745,438; 5,802,198; 5,854,846; 5,862,239; 5,870,482; 5,978,491; 6,075,867; 6,125,189; 6,145,186; 6,175,636; 6,178,249; 6,188,772; 6,201,874; 6,218,883; 6,243,474; 6,249,075; 6,304,662; 6,308,398; 6,343,129; 6,357,299; 6,366,678; 6,376,971; 6,393,129; 6,427,015; 6,434,245; 6,441,451; 6,449,370; 6,483,924; 6,493,288; 6,504,937; 6,510,231; 6,535,460; 6,535,612; 6,543,110; 6,545,384; 6,580,797; 6,583,533; 6,584,206; 6,600,825; 6,628,791; 6,630,639; 6,661,897; 6,664,718; 6,667,189; 6,677,176; 6,724,058; 6,731,766; 6,741,709; 6,744,896; 6,756,248; 6,760,455; 6,781,284; 6,785,393; 6,788,794; 6,788,795; 6,804,362; 6,806,593; 6,812,620; 6,812,624; 6,818,092; 6,819,769; 6,829,131; 6,842,964; 6,870,938; 6,870,939; 6,911,764; 6,940,211; 6,941,308; 6,978,029; 6,987,859; 7,003,127; 7,019,955; 7,023,066; 7,034,132; 7,039,202; 7,040,173; 7,049,732; 7,054,156; 7,062,055; 7,064,172; 7,074,634; 7,095,864; 7,107,665; 7,132,307; 7,142,684; 7,146,016; 7,152,481; 7,158,646; 7,193,256; 7,194,095; 7,199,501; 7,208,996; 7,215,527; 7,218,742; 7,221,768; 7,224,106; 7,233,097; 7,233,679; 7,256,927; 7,259,503; 7,269,267; 7,269,268; 7,292,700; 7,295,675; 7,298,856; 7,305,096; 7,317,234; 7,320,457; 7,327,851; 7,329,933; 7,346,178; 7,352,876; 7,359,286; 7,362,032; 7,362,873; 7,368,862; 7,377,175; 7,386,136; 7,394,182; 7,400,737; 7,425,749; 7,447,326; 7,461,281; 7,466,835; 7,468,575; 7,489,791; 7,493,821; 7,570,773; 7,579,678; 7,585,743; 7,595,580; 7,607,355; 7,608,989; 7,620,197; 7,642,575; 7,668,323; 7,697,899; 7,702,118; 7,702,124; 7,710,371; 7,715,583; 7,756,279; 7,761,981; 7,769,193; 7,781,249; 7,804,968; 7,804,969; 7,804,971; 7,805,821; 7,812,418; 7,829,366; 7,835,533; 7,848,532; 7,855,095; 7,856,804; 7,860,258; 7,880,565; 7,884,467; 7,888,840; 7,889,882; 7,894,616; 7,898,159; 7,899,196; 7,903,831; 7,907,743; 7,911,115; 7,912,235; 7,912,236; 7,916,879; 7,923,064; 7,923,902; 7,925,033; 7,925,221; 7,932,117; 7,940,944; 7,948,731; 7,949,142; 7,951,636; 7,953,235; 7,970,154; 7,974,130; 8,000,483; 8,004,373; 8,005,242; 8,009,838; 8,018,301; 8,023,667; 8,036,401; 8,041,059; 8,042,264; 8,045,733; 8,045,734; 8,047,995; 8,054,566; 8,059,837; 8,059,838; 8,059,842; 8,064,620; 8,072,010; 8,073,166; 8,073,167; 8,073,179; 8,080,835; 8,081,784; 8,085,956; 8,085,965; 8,090,125; 8,093,783; 8,094,839; 8,094,841; 8,094,844; 8,098,853; 8,098,855; 8,103,039; 8,104,354; 8,107,651; 8,111,847; 8,111,871; 8,114,700; 8,126,166; 8,126,167; 8,126,171; 8,130,986; 8,134,375; 8,138,034; 8,139,762; 8,139,790; 8,139,794; 8,165,323; 8,170,237; 8,175,293; 8,175,294; 8,183,739; 8,184,832; 8,188,557; 8,194,908; 8,196,282; 8,199,939; 8,218,794; 8,229,140; 8,242,840; 8,243,962; 8,243,966; 8,254,598; 8,259,963; 8,265,287; 8,284,967; 8,295,514; 8,295,528; 8,300,858; 8,300,860; 8,327,521; 8,327,711; 8,335,328; 8,345,898; 8,345,910; 8,369,545; 8,369,552; 8,374,363; 8,379,890; 8,385,570; 8,385,586; 8,389,349; 8,391,520; 8,401,217; 8,401,513; 8,405,419; 8,406,437; 8,411,882; 8,416,973; 8,433,084; 8,438,710; 8,447,049; 8,448,326; 8,456,958; 8,467,550; 8,467,559; 8,468,665; 8,497,149; 8,502,329; 8,503,702; 8,508,109; 8,509,459; 8,515,100; 8,519,492; 8,526,656; 8,542,850; 8,542,852; 8,542,853; 8,546,170; 8,548,178; 8,553,913; 8,559,660; 8,562,565; 8,565,452; 8,565,454; 8,582,787; 8,588,433; 8,588,438; 8,588,451; 8,590,136; 8,594,349; 8,600,083; 8,605,919; 8,611,566; 8,618,718; 8,625,809; 8,625,823; 8,625,824; 8,625,825; 8,630,429; 8,630,430; 8,637,945; 8,638,249; 8,643,129; 8,643,382; 8,641,529; 8,664,733; 8,666,094; 8,666,095; 8,666,097; 8,670,581; 8,673,732; 8,675,895; 8,686,519; 8,692,340; 8,698,255; 8,698,256; 8,699,726; 8,699,728; 8,699,740; 8,705,767; 8,705,775; 8,710,601; 8,718,297; 8,723,277; 8,724,832; 8,731,220; 8,737,646; 8,742,517; 8,744,117; 8,755,539; 8,755,541; 8,755,556; 8,758,253; 8,760,031; 8,767,980; 8,774,128; 8,783,113; 8,787,600; 8,787,601; 8,790,567; 8,792,658; 8,803,261; 8,804,982; 8,811,635; 8,818,007; 8,824,706; 8,824,707; 8,824,713; 8,831,246; 8,836,111; 8,837,754; 8,842,858; 8,847,289; 8,848,950; 8,855,335; 8,855,337; 8,860,154; 8,861,764; 8,873,777; 8,885,853; 8,897,465; 8,913,762; 8,921,957; 8,929,584; 8,942,389; 8,942,394; 8,958,574; 8,958,581; 8,962,368; 8,965,008; 8,965,013; 8,965,027; 8,975,791; 8,975,984; 8,976,997; 8,983,090; 8,983,097; 8,983,099; 8,988,911; 8,995,690; 9,001,622; 9,002,037; 9,002,043; 9,008,332; 9,008,336; 9,008,344; 9,031,266; 9,042,578; 9,056,760; 9,059,630; 9,061,318; 9,071,694; 9,078,069; 9,083,286; 9,083,288; 9,084,366; 9,085,012; 9,094,110; 9,094,111; 9,094,112; 9,094,764; 9,096,424; 9,107,008; 9,111,548; 9,113,260; 9,113,263; 9,124,220; 9,128,136; 9,131,319; 9,133,016; 9,139,418; 9,143,869; 9,143,870; 9,143,876; 9,148,712; 9,148,726; 9,148,729; 9,148,730; 9,154,886; 9,161,113; 9,167,354; 9,170,164; 9,179,221; 9,181,080; 9,181,086; 9,197,967; 9,204,224; 9,210,516; 9,212,046; 9,214,151; 9,215,532; 9,216,897; 9,219,963; 9,221,675; 9,226,079; 9,232,317; 9,236,837; 9,241,205; 9,242,275; 9,247,331; 9,250,142; 9,253,579; 9,258,651; 9,258,660; 9,264,815; 9,266,713; 9,270,238; 9,271,067; 9,277,327; 9,277,329; 9,281,744; 9,282,389; 9,282,415; 9,287,834; 9,288,583; 9,290,375; 9,294,847; 9,301,036; 9,301,055; 9,319,765; 9,319,772; 9,321,626; 9,327,967; 9,332,332; 9,332,342; 9,332,345; 9,337,722; 9,338,557; 9,338,559; 9,340,413; 9,342,179; 9,341,805; 9,341,807; 9,341,808; 9,344,809; 9,344,810; 9,350,305; 9,351,062; 9,351,074; 9,351,083; 9,357,294; 9,357,296; 9,363,610; 9,369,804; 9,369,810; 9,382,109; 9,392,359; 9,402,137; 9,403,670; 9,407,991; 9,408,555; 9,413,317; 9,414,175; 9,419,562; 9,420,365; 9,420,380; 9,420,391; 9,426,563; 9,428,379; 9,438,979; 9,439,002; 9,441,928; 9,445,173; 9,445,188; 9,451,359; 9,455,671; 9,456,283; 9,462,364; 9,462,395; 9,466,277; 9,467,774; 9,470,710; 9,470,910; 9,479,875; 9,488,541; 9,491,531; 9,497,552; 9,499,395; 9,502,019; 9,503,814; 9,503,820; 9,503,821; 9,503,823; 9,510,108; 9,510,121; 9,516,415; 9,516,420; 9,516,425; 9,516,428; 9,518,884; 9,520,505; 9,521,492; 9,525,925; 9,537,359; 9,538,273; 9,540,226; 9,544,672; 9,544,697; 9,548,632; 9,548,655; 9,554,212; 9,554,213; 9,559,647; 9,560,454; 9,571,931; 9,575,116; 9,578,424; 9,584,924; 9,584,941; 9,590,570; 9,591,408; 9,591,417; 9,596,995; 9,602,921; 9,602,924; 9,609,429; 9,609,432; 9,609,764; 9,611,135; 9,615,167; 9,628,886; 9,628,909; 9,628,920; 9,634,628; 9,635,460; 9,641,949; 9,648,433; 9,654,071; 9,658,179; 9,661,411; 9,661,423; 9,667,173; 9,668,047; 9,668,056; 9,668,062; 9,673,768; 9,673,785; 9,674,627; 9,676,615; 9,676,617; 9,681,229; 9,681,243; 9,685,254; 9,686,617; 9,686,618; 9,692,372; 9,693,135; 9,695,038; 9,706,294; 9,706,312; 9,706,618; 9,708,174; 9,712,923; 9,716,945; 9,722,563; 9,723,423; 9,729,014; 9,729,114; 9,729,988; 9,736,586; 9,736,594; 9,738,514; 9,743,167; 9,743,191; 9,743,196; 9,743,203; 9,756,159; 9,756,430; 9,762,188; 9,769,573; 9,774,969; 9,778,302; 9,781,518; 9,787,142; 9,790,087; 9,791,341; 9,793,764; 9,794,661; 9,794,711; 9,800,212; 9,800,980; 9,809,414; 9,809,418; 9,809,451; 9,812,906; 9,813,831; 9,815,685; 9,820,056; 9,825,492; 9,828,236; 9,828,237; 9,831,723; 9,832,573; 9,838,767; 9,843,862; 9,854,360; 9,854,367; 9,860,649; 9,866,938; 9,866,959; 9,866,972; 9,877,106; 9,878,901; 9,893,691; 9,894,137; 9,900,707; 9,906,869; 9,919,913; 9,921,114; 9,929,603; 9,930,451; 9,936,304; 9,941,817; 9,942,666; 9,944,514; 9,947,858; 9,949,023; 9,949,025; 9,949,037; 9,955,269; 9,955,273; 9,961,440; 9,961,451; 9,966,090; 9,967,677; 9,967,678; 9,967,679; 20010002865; 20010005032; 20010033670; 20010046306; 20020034312; 20020048220; 20020067663; 20020076069; 20020076076; 20020093038; 20020118850; 20020122561; 20020127760; 20020141606; 20020172387; 20030016839; 20030021425; 20030021432; 20030034536; 20030057068; 20030063762; 20030068055; 20030118203; 20030123683; 20030128847; 20030133588; 20030137021; 20030174850; 20030210799; 20040062405; 20040088851; 20040113153; 20040179705; 20040179706; 20040179709; 20040184633; 20040252858; 20050002536; 20050005421; 20050013455; 20050058298; 20050061770; 20050069164; 20050094832; 20050123155; 20050196010; 20050207596; 20050254671; 20050254679; 20050259835; 20050262947; 20060008097; 20060008098; 20060072770; 20060078137; 20060078148; 20060093170; 20060093171; 20060131163; 20060177083; 20060210106; 20060215858; 20060227984; 20060230835; 20060233400; 20060233401; 20060256981; 20060280319; 20060284516; 20060285707; 20070003082; 20070009111; 20070023851; 20070056377; 20070057603; 20070058825; 20070058826; 20070075956; 20070076904; 20070108541; 20070113664; 20070116305; 20070121967; 20070121972; 20070140514; 20070154040; 20070160248; 20070182002; 20070189559; 20070193354; 20070201709; 20070201710; 20070230721; 20070242844; 20070274541; 20070284682; 20070286438; 20070297631; 20080006093; 20080019543; 20080031476; 20080042223; 20080047128; 20080075193; 20080075306; 20080083961; 20080089536; 20080104825; 20080123242; 20080123876; 20080123878; 20080164888; 20080175418; 20080190203; 20080192962; 20080203560; 20080204379; 20080205668; 20080212807; 20080229840; 20080247573; 20080285784; 20090003629; 20090003630; 20090016550; 20090022341; 20090050989; 20090060230; 20090060232; 20090067659; 20090087002; 20090087009; 20090090190; 20090130783; 20090136064; 20090154729; 20090161886; 20090161890; 20090169035; 20090185700; 20090190782; 20090202083; 20090208037; 20090214049; 20090214061; 20090214062; 20090218642; 20090232336; 20090243058; 20090252351; 20090262958; 20090278217; 20090285414; 20090316935; 20100013501; 20100072561; 20100084721; 20100098284; 20100119088; 20100142742; 20100142744; 20100155864; 20100158279; 20100158280; 20100166227; 20100166228; 20100177846; 20100177922; 20100208919; 20100212432; 20100219839; 20100254561; 20100277229; 20100284553; 20100315272; 20100328836; 20100329487; 20110003614; 20110019845; 20110026739; 20110038493; 20110038497; 20110045616; 20110073967; 20110075865; 20110089504; 20110090009; 20110108838; 20110110536; 20110123043; 20110131794; 20110135122; 20110154905; 20110163615; 20110170714; 20110170735; 20110182150; 20110200212; 20110222713; 20110228954; 20110228957; 20110255228; 20110303994; 20120014543; 20120017693; 20120033832; 20120043974; 20120056282; 20120076322; 20120076329; 20120091541; 20120091545; 20120099753; 20120104898; 20120106769; 20120121106; 20120133005; 20120140956; 20120153771; 20120170777; 20120213390; 20120217171; 20120223770; 20120224722; 20120224726; 20120230522; 20120250897; 20120250910; 20120260500; 20120269363; 20120294464; 20120299130; 20120319174; 20120321111; 20120326249; 20120328132; 20130010990; 20130010996; 20130016859; 20130028450; 20130028459; 20130032936; 20130044899; 20130051582; 20130051583; 20130051586; 20130051587; 20130062710; 20130070940; 20130089222; 20130108074; 20130109990; 20130119492; 20130121523; 20130129117; 20130129119; 20130129133; 20130156234; 20130160554; 20130170673; 20130177180; 20130195291; 20130208915; 20130221453; 20130221457; 20130223023; 20130223654; 20130230183; 20130233078; 20130256816; 20130271307; 20130277776; 20130279738; 20130287231; 20130334627; 20140003609; 20140010384; 20140013581; 20140037113; 20140037121; 20140038335; 20140072150; 20140072152; 20140079277; 20140086433; 20140090884; 20140105428; 20140109680; 20140119573; 20140126762; 20140132294; 20140133685; 20140137668; 20140140538; 20140140560; 20140145276; 20140191344; 20140225205; 20140226846; 20140233784; 20140239352; 20140247954; 20140264652; 20140266260; 20140266263; 20140270204; 20140270271; 20140270273; 20140270312; 20140286509; 20140291781; 20140294218; 20140299949; 20140301571; 20140301572; 20140307885; 20140307909; 20140318395; 20140341402; 20140369530; 20140376749; 20150001647; 20150003643; 20150003646; 20150003660; 20150010174; 20150014797; 20150016635; 20150023529; 20150031160; 20150035091; 20150049886; 20150055799; 20150061458; 20150063608; 20150071466; 20150078587; 20150078589; 20150078592; 20150082917; 20150088008; 20150102435; 20150110333; 20150125003; 20150131820; 20150137834; 20150139453; 20150162883; 20150163594; 20150181352; 20150189443; 20150189446; 20150202656; 20150208176; 20150228265; 20150230010; 20150230027; 20150245123; 20150256913; 20150256914; 20150264465; 20150264498; 20150271586; 20150289046; 20150296303; 20150304777; 20150311870; 20150318829; 20150319538; 20150326978; 20150336790; 20150341720; 20150341721; 20150350760; 20150373446; 20150380636; 20150381078; 20150381782; 20150382091; 20160014521; 20160014528; 20160014529; 20160029110; 20160029126; 20160029129; 20160037257; 20160037263; 20160041211; 20160044396; 20160050475; 20160057532; 20160065152; 20160066099; 20160073212; 20160087606; 20160091378; 20160105748; 20160107884; 20160111954; 20160134967; 20160134973; 20160142829; 20160149542; 20160155532; 20160156319; 20160157017; 20160157022; 20160157025; 20160165355; 20160165356; 20160167946; 20160173967; 20160173992; 20160173993; 20160173994; 20160176704; 20160182989; 20160183008; 20160192084; 20160192086; 20160192511; 20160218688; 20160219374; 20160219378; 20160221822; 20160241958; 20160241965; 20160255441; 20160255442; 20160277844; 20160295333; 20160304337; 20160309264; 20160330550; 20160336013; 20160337751; 20160340173; 20160344360; 20160345097; 20160352294; 20160360304; 20160360322; 20160362292; 20160373864; 20160373874; 20160377569; 20170034634; 20170041708; 20170041716; 20170048634; 20170059433; 20170064449; 20170070816; 20170078798; 20170078801; 20170094136; 20170099549; 20170102276; 20170127189; 20170135592; 20170142519; 20170142525; 20170155365; 20170156002; 20170160337; 20170164105; 20170164119; 20170166437; 20170180853; 20170180864; 20170180900; 20170195788; 20170215006; 20170217765; 20170223450; 20170230750; 20170238108; 20170245035; 20170245059; 20170245061; 20170247248; 20170251302; 20170251303; 20170257093; 20170260044; 20170265005; 20170265009; 20170275152; 20170280237; 20170280263; 20170284825; 20170289678; 20170318385; 20170318393; 20170318394; 20170332178; 20170355594; 20170363493; 20170366898; 20170374469; 20180002159; 20180002160; 20180002161; 20180002167; 20180002168; 20180007474; 20180012588; 20180027338; 20180035206; 20180035228; 20180035229; 20180044167; 20180050900; 20180059708; 20180062588; 20180063644; 20180066980; 20180067005; 20180077499; 20180091900; 20180091903; 20180091906; 20180103325; 20180103326; and RE40860 each of which is expressly incorporated herein by reference in its entirety.
A dynamic capacitive sensor configuration is provided that is intended to impose minimal force and resistance to motion on the moving electrode. The aim is to enable the use of moving electrodes having arbitrary levels of compliance without suffering the adverse effects of large bias voltages such as pull-in instability. This configuration facilitates incorporation of highly compliant and thin electrode materials that present the least possible resistance to motion. This type of material is particularly useful for sensing sound. Measured results show that for the highly compliant acoustic sensor design examined here, a large bias voltage of 400 volts can be applied without influencing its motion. The electrical sensitivity to sound is found to be approximately 0.5 volts/pascal, two orders of magnitude greater than typical acoustic sensors.
One aspect of the present technology seeks to provide electrode designs for capacitive sensors that can minimize the effects of electrostatic stiffness on the microphone performance. If this can be accomplished, the moving electrode can be designed for maximum performance without being limited by constraints resulting from electrostatic forces.
Another aspect of the present technology seeks to provide electrode designs which are stable under all operating conditions. The electrode arrangement described herein achieves the goals of maintaining nearly constant potential energy and guaranteed stability.
A further aspect of the present technology provides a microphone design where a moving, sensing electrode has as little mechanical stiffness and mass as possible in order to properly respond to the minute pressure and air velocity fluctuations in a sound field.
The present approach follows from previous work on repulsive electrostatic actuators and sensors [14], [15], These designs used an electrode configuration that permits the moving and sensing electrodes to move apart as the bias voltage is increased, rather than move toward each other as in the ubiquitous parallel plate configuration. While repulsive electrostatic devices avoid pull-in instability, it remains challenging to achieve an electrode design that doesn't suffer from electro-static stiffening, which limits the achievable performance.
In the following, a lightweight, compliant capacitive electrode configuration is provided that is intended to respond readily to acoustic pressure.
The preferred embodiment is a microphone, wherein the moving element responds to changes in air pressure or air flow, and the position of the moving element is sensed. However, the sensor design is not limited to microphones, and is more generally useful as an accelerometer, MEMS gyroscope, displacement sensor, vibrometer, shock sensor, etc. Further, while the basic design provides a pair of fixed electrodes maintained at virtual ground by a negative feedback transimpedance amplifier, this is not a limit of the technology. For example, if the voltage potential of one of the electrode surfaces is maintained at a different voltage than the other, the electric field experienced by the charged moving element will then be asymmetric, and rather than a normal force that acts parallel to the elongated axis of the element, a displacement forced will exist. Thus, the charged element will act as an actuator, for example of a digital mirror device, with analog control over displacement, and feedback control to maintain position. This same implementation also produces an output responsive to displacement of the charged element from its deflected position. Because the electrostatic forces on an inclined element are interactive with the effective stiffness of the sensor moving element, the result is a sensor whose sensitivity is controllable, dependent on the imbalance of the electrodes and the voltage potential of the charged element.
In another embodiment, the moving element is intentionally oscillated by a time-varying electrostatic field developed by the electrodes. For example, a chemi-selective sensor is possible if the diaphragm or fiber is coated with a chemi-specific material. As a species of interest is absorbed on the moving element, its mass changes, and this in turn alters its response to the oscillating electric field.
In a further embodiment, the moving element is thermally responsive, and for example changes in mechanical properties or dimensions. This in turn will alter the frequency and/or linear or non-linear response of the charged element to a perturbation, such as an oscillating electric field.
The repositioning of the nominal state of the moving charged element may also affect other sensor properties. For example, the charged element may be situated in an inhomogeneous medium. Therefore, a movement of the charged element will result in a different environment of operation.
In some cases, more than three electrodes may interact with a single moving element. In the case of a diaphragm, this may induce or sense twist. In the case of a fiber or filament, of other structure suspended for movement along two axes, the larger number of electrodes may detect the various axes of movement.
In some cases, more than one moving element is provided. These may interact with the electrodes and each other in various ways. For example, these can sense movement or effects along different axes (multi-axis sensor), and detect or process spatial variations in an exciting condition.
In some cases, the sensor can operate in a liquid medium. In the case of an electrostatic sensor, this typically implies a high dielectric liquid, in some cases it is possible to employ ionic liquids or low dielectric liquids, including water. For example, if the device according to the present technology is immersed in water, and the voltage potentials maintained below the hydrolysis potential of water, the result is that there will be a leakage current from the charged element to the electrodes resulting from the natural pKa (pH) of water, ˜10−7. This amount of ionization does not disqualify the embodiment Other liquids have lower leakage. For example, mineral oil, hydrocarbons, silicones, hydrofluorocarbons, cryogenic liquefied gasses, etc.
In another embodiment, the presumption of no elongation of the charged element due to voltage potential with respect to the electrodes is not strictly valid. Therefore, the length of the element, and its distance from the electrodes, will vary with applied voltage. Typically, one does not wish the sensor to experience pull-in, but in specific sensor types, this is exactly the effect sought, since it locks the moving element in place.
Other modifications of the basic system are also possible. The following patents and published patent applications, each of which is expressly incorporated herein by reference in its entirety, disclose various implementation technologies, applications, and contexts in which the sensing technology according to the present technology may be implemented: See, U.S. Pat. Nos. 5,948,981; 6,104,492; 6,312,393; 6,360,601; 6,480,645; 6,529,652; 6,544,193; 6,549,692; 6,591,029; 6,625,399; 6,642,067; 6,745,627; 6,768,181; 6,784,500; 6,798,796; 6,847,036; 7,041,063; 7,054,519; 7,091,715; 7,100,446; 7,123,111; 7,157,712; 7,159,411; 7,208,729; 7,212,487; 7,214,298; 7,260,980; 7,275,433; 7,282,709; 7,284,430; 7,286,743; 7,294,503; 7,305,880; 7,308,827; 7,351,376; 7,403,805; 7,421,898; 7,448,995; 7,469,834; 7,481,111; 7,482,589; 7,485,100; 7,521,257; 7,622,081; 7,640,803; 7,652,752; 7,654,957; 7,714,278; 7,756,559; 7,791,027; 7,804,374; 7,809,417; 7,818,871; 7,822,510; 7,826,629; 7,827,864; 7,836,765; 7,939,021; 7,990,539; 8,022,779; 8,037,756; 8,051,698; 8,061,201; 8,129,176; 8,136,385; 8,164,588; 8,193,869; 8,220,318; 8,226,236; 8,252,539; 8,257,666; 8,263,336; 8,319,177; 8,322,213; 8,333,112; 8,339,014; 8,367,426; 8,391,517; 8,427,249; 8,427,657; 8,445,210; 8,451,068; 8,461,936; 8,482,300; 8,488,973; 8,556,428; 8,580,597; 8,586,918; 8,592,153; 8,592,154; 8,592,215; 8,627,511; 8,650,955; 8,658,367; 8,658,368; 8,669,771; 8,677,821; 8,686,802; 8,698,212; 8,742,469; 8,742,770; 8,746,039; 8,746,048; 8,748,947; 8,766,327; 8,774,885; 8,776,573; 8,787,117; 8,793,811; 8,800,369; 8,822,205; 8,822,906; 8,844,340; 8,875,576; 8,912,580; 8,914,089; 8,928,203; 8,953,414; 8,994,076; 8,994,954; 9,072,429; 9,146,109; 9,182,454; 9,200,887; 9,209,746; 9,217,641; 9,233,395; 9,238,250; 9,267,923; 9,270,281; 9,372,154; 9,389,079; 9,395,317; 9,411,000; 9,423,254; 9,448,069; 9,515,676; 9,535,137; 9,575,089; 9,611,139; 9,618,475; 9,618,533; 9,638,617; 9,645,166; 9,658,247; 9,668,035; 9,680,414; 9,702,992; 9,719,847; 9,740,003; 9,774,276; 9,778,282; 9,780,435; 9,800,019; 9,804,264; 9,810,775; 9,810,786; 9,812,838; 9,823,353; 9,857,468; 9,864,846; 9,869,754; 9,874,635; 9,905,992; 9,910,061; 9,910,062; 9,915,520; 9,927,393; 9,941,981; 9,958,414; 9,958,415; 9,958,545; 9,966,966; 20020049389; 20020068370; 20030033850; 20030071686; 20030139687; 20030142934; 20030179791; 20030196489; 20040039297; 20040039298; 20040060355; 20040237626; 20050009197; 20050020926; 20050068612; 20050104675; 20050147017; 20050167508; 20050199047; 20050274888; 20060032308; 20060032309; 20060033588; 20060158662; 20060158666; 20060196266; 20060233498; 20070016074; 20070024840; 20070034005; 20070115440; 20070119258; 20070142718; 20070194239; 20070287923; 20070289382; 20080007693; 20080190198; 20080190200; 20080191132; 20090036761; 20090064781; 20090174885; 20090229020; 20090289606; 20090301193; 20100000289; 20100024546; 20100024560; 20100078564; 20100137143; 20100145180; 20100155883; 20100194374; 20100213791; 20100253332; 20100267164; 20100301398; 20100308930; 20100313657; 20110006196; 20110028807; 20110040161; 20110138891; 20110167908; 20110170108; 20110194711; 20110194857; 20110227448; 20110248320; 20110275522; 20110281737; 20110281741; 20120006114; 20120009713; 20120013392; 20120032747; 20120068776; 20120086307; 20120112056; 20120168605; 20120172256; 20120187983; 20120192647; 20120194107; 20120227498; 20120261274; 20120265474; 20120304341; 20120325683; 20120326213; 20120326767; 20120327368; 20120329043; 20120329044; 20120329192; 20130001653; 20130004948; 20130004949; 20130009214; 20130017642; 20130025368; 20130064035; 20130071915; 20130119243; 20130139285; 20130180333; 20130201316; 20130210128; 20130210182; 20130217004; 20130231870; 20130247669; 20130271123; 20130302932; 20140000344; 20140028997; 20140062619; 20140093881; 20140104618; 20140113828; 20140144230; 20140147337; 20140159748; 20140159826; 20140176958; 20140185054; 20140194301; 20140194302; 20140194303; 20140224971; 20140230547; 20140235452; 20140235463; 20140251017; 20140265720; 20140287958; 20140301167; 20140324376; 20140331367; 20140360272; 20140372057; 20150029490; 20150043002; 20150065837; 20150085249; 20150091477; 20150143905; 20150166332; 20150168344; 20150171595; 20150177272; 20150293243; 20150304741; 20150308829; 20150377622; 20150377623; 20150377916; 20150377917; 20150377918; 20160003868; 20160006414; 20160033448; 20160035314; 20160054400; 20160061772; 20160062112; 20160069686; 20160072472; 20160079953; 20160087551; 20160139176; 20160187289; 20160223319; 20160298963; 20160329682; 20160341758; 20160341761; 20160341762; 20160341765; 20160344368; 20160374703; 20170003314; 20170003316; 20170025736; 20170059530; 20170067856; 20170068319; 20170074640; 20170078400; 20170126206; 20170146484; 20170153319; 20170155225; 20170164839; 20170176596; 20170184644; 20170185954; 20170194985; 20170199277; 20170201059; 20170205223; 20170219521; 20170219622; 20170258320; 20170271610; 20170272878; 20170272886; 20170276723; 20170277125; 20170277138; 20170277902; 20170278226; 20170278447; 20170278465; 20170278480; 20170278733; 20170278874; 20170278878; 20170278973; 20170280041; 20170280265; 20170281083; 20170285404; 20170285815; 20170285871; 20170286588; 20170287127; 20170287228; 20170287293; 20170287414; 20170287943; 20170288023; 20170288125; 20170288670; 20170289678; 20170289702; 20170290097; 20170293155; 20170293156; 20170293171; 20170294543; 20170295325; 20170295434; 20170297895; 20170297899; 20170299494; 20170299721; 20170300162; 20170301391; 20170301699; 20170308216; 20170309856; 20170310743; 20170316487; 20170316713; 20170317610; 20170318388; 20170318394; 20170319179; 20170320726; 20170323481; 20170323892; 20170323908; 20170325025; 20170325081; 20170328702; 20170328931; 20170329162; 20170329439; 20170331899; 20170332170; 20170334187; 20170336205; 20170336396; 20170336903; 20170337888; 20170338107; 20170338108; 20170338353; 20170338818; 20170340396; 20170343874; 20170344114; 20170347886; 20170348095; 20170352233; 20170352540; 20170352746; 20170354031; 20170355591; 20170355599; 20170356928; 20170357113; 20170357144; 20170357365; 20170359113; 20170359536; 20170359658; 20170359669; 20170362648; 20170363493; 20170363906; 20170364154; 20170365224; 20170365234; 20170365451; 20170365648; 20170366104; 20170366235; 20170366898; 20170367578; 20170370869; 20170372114; 20170372542; 20170372669; 20170373196; 20170374111; 20170374112; 20170374457; 20170374469; 20170374473; 20170374474; 20180000341; 20180002159; 20180002160; 20180002161; 20180002162; 20180002167; 20180002168; 20180004047; 20180004282; 20180004701; 20180004702; 20180005566; 20180005588; 20180005600; 20180005946; 20180006356; 20180007032; 20180007472; 20180007473; 20180007474; 20180009374; 20180011355; 20180011447; 20180011590; 20180012536; 20180012538; 20180012912; 20180013003; 20180014128; 20180017996; 20180018014; 20180018565; 20180018752; 20180018918; 20180018934; 20180019425; 20180020291; 20180021679; 20180024241; 20180024286; 20180024546; 20180024656; 20180024680; 20180025297; 20180025905; 20180025913; 20180025918; 20180026037; 20180026218; 20180027325; 20180027339; 20180029878; 20180031601; 20180031603; 20180031943; 20180032160; 20180032163; 20180033362; 20180033399; 20180033696; 20180033978; 20180034912; 20180035190; 20180035229; 20180038699; 20180039117; 20180039302; 20180039815; 20180040274; 20180040642; 20180040722; 20180041140; 20180042513; 20180044167; 20180046004; 20180046305; 20180047260; 20180047582; 20180047609; 20180048359; 20180048953; 20180050900; 20180052274; 20180052535; 20180052844; 20180052950; 20180052951; 20180053459; 20180055159; 20180055625; 20180058967; 20180059318; 20180059466; 20180059690; 20180061344; 20180061638; 20180061639; 20180063647; 20180067005; 20180067303; 20180067373; 20180067586; 20180069064; 20180069367; 20180070821; 20180072033; 20180074592; 20180075924; 20180076195; 20180076231; 20180076232; 20180076332; 20180076333; 20180076385; 20180076394; 20180076507; 20180076893; 20180077408; 20180077497; 20180077499; 20180079429; 20180081449; 20180081536; 20180082102; 20180082118; 20180083048; 20180083074; 20180084245; 20180084365; 20180085593; 20180085859; 20180086628; 20180087984; 20180088068; 20180088236; 20180088776; 20180090602; 20180090616; 20180090621; 20180091906; 20180092313; 20180093117; 20180095127; 20180095336; 20180095502; 20180095504; 20180096177; 20180096735; 20180096971; 20180096979; 20180097040; 20180097275; 20180097516; 20180097622; 20180097983; 20180098001; 20180098139; 20180098143; 20180099867; 20180099868; 20180100721; 20180101359; 20180101388; 20180101422; 20180101715; 20180101965; 20180102086; 20180102420; 20180102442; 20180102586; 20180102667; 20180102981; 20180103029; 20180103132; 20180103320; 20180103323; 20180103324; 20180103325; 20180104407; 20180105270; 20180106759; 20180107221; 20180107280; 20180107303; 20180107333; 20180107353; 20180107382; 20180107849; 20180107908; 20180108002; 20180108172; 20180108227; 20180108440; 20180108760; 20180109061; 20180109180; 20180109267; 20180109676; 20180109710; 20180109724; 20180109751; 20180109752; 20180109835; 20180109869; 20180109875; 20180109892; 20180109947; 20180110148; 20180110466; 20180111824; 20180112837; 20180112887; 20180113138; 20180113304; 20180113305; 20180113501; 20180113512; 20180113566; 20180113607; 20180114047; 20180114386; 20180114942; 20180115116; 20180115579; 20180115755; 20180115756; 20180115811; 20180115836; 20180115837; 20180115838; 20180115864; 20180115867; 20180116514; 20180116535; 20180116561; 20180116728; 20180116904; 20180117341; 20180117436; 20180118560; 20180120172; 20180120264; 20180120265; 20180120433; 20180120436; 20180120902; 20180120930; 20180120948; 20180121067; 20180121671; 20180121703; 20180121738; 20180121796; 20180122356; 20180122506; 20180122831; 20180123224; 20180123379; 20180123402; 20180123412; 20180124181; 20180124225; 20180124230; 20180124495; 20180124514; 20180124521; 20180124564; 20180124601; 20180124846; 20180125363; 20180125366; 20180125404; 20180125584; 20180126075; 20180126273; 20180127265; 20180127266; 20180128783; 20180128851; 20180128896; 20180129112; 20180129170; 20180129290; 20180129409; 20180129459; 20180129511; 20180129831; 20180129849; 20180130318; 20180130320; 20180130434; 20180130441; 20180130483; 20180130484; 20180130539; 20180130861; 20180130940; 20180130967; 20180131091; 20180131201; 20180131478; 20180131543; 20180131664; 20180131797; 20180131804; 20180131858; 20180131869; 20180131873; 20180132023; 20180132024; 20180132031; 20180132043; 20180132048; 20180132116; 20180132171; 20180132192; 20180132815; 20180133431; 20180133504; 20180133507; 20180133583; 20180133801; 20180134385; 20180134546; 20180136321; 20180136363; 20180136712; 20180136715; 20180136801; 20180136819; 20180136899; 20180137467; 20180137488; 20180137498; 20180138102; 20180138155; 20180138201; 20180138283; 20180138391; 20180138416; 20180138882; 20180139389; 20180139398; 20180139431; 20180139534; 20180139536; 20180139543; 20180139544; 20180139545; and 20180139862; each of which is expressly incorporated herein by reference in its entirety.
Microelectromechanical electrostatic actuators of various types are known. See: U.S. Pat. Nos. 6,128,122; 6,164,134; 6,201,629; 6,273,544; 6,309,048; 6,312,114; 6,353,492; 6,360,035; 6,378,989; 6,408,878; 6,424,466; 6,433,911; 6,439,689; 6,439,699; 6,443,558; 6,450,628; 6,474,781; 6,481,835; 6,491,362; 6,508,546; 6,517,197; 6,531,668; 6,538,799; 6,547,371; 6,554,110; 6,572,220; 6,575,566; 6,588,882; 6,592,207; 6,594,057; 6,598,964; 6,623,108; 6,634,735; 6,641,273; 6,644,793; 6,652,082; 6,666,548; 6,698,867; 6,733,116; 6,742,873; 6,746,108; 6,786,573; 6,793,328; 6,793,753; 6,798,729; 6,799,835; 6,805,435; 6,805,454; 6,808,253; 6,824,257; 6,827,428; 6,827,429; 6,832,828; 6,848,181; 6,851,796; 6,860,590; 6,863,378; 6,863,384; 6,866,369; 6,880,235; 6,880,922; 6,883,904; 6,883,906; 6,886,915; 6,890,059; 6,891,240; 6,899,137; 6,899,416; 6,902,255; 6,905,195; 6,905,620; 6,913,347; 6,916,087; 6,916,091; 6,918,655; 6,921,150; 6,922,118; 6,923,526; 6,929,030; 6,929,350; 6,938,989; 6,938,991; 6,938,994; 6,949,756; 6,955,428; 6,974,206; 6,988,785; 6,988,789; 6,988,790; 6,991,318; 6,994,124; 6,994,126; 6,994,130; 6,998,278; 7,001,007; 7,004,563; 7,004,577; 7,006,720; 7,014,296; 7,014,298; 7,014,785; 7,025,324; 7,028,474; 7,032,992; 7,032,997; 7,034,854; 7,040,338; 7,048,868; 7,052,114; 7,052,120; 7,064,883; 7,066,579; 7,070,256; 7,070,258; 7,073,881; 7,080,893; 7,080,895; 7,083,262; 7,086,717; 7,101,020; 7,111,924; 7,132,056; 7,134,740; 7,141,519; 7,141,616; 7,147,304; 7,147,307; 7,152,944; 7,152,961; 7,152,967; 7,155,823; 7,159,968; 7,160,475; 7,168,167; 7,169,314; 7,175,775; 7,178,899; 7,182,431; 7,182,437; 7,183,618; 7,184,193; 7,188,935; 7,188,938; 7,189,334; 7,198,346; 7,207,656; 7,210,764; 7,216,671; 7,216,956; 7,219,427; 7,219,982; 7,226,147; 7,227,687; 7,229,154; 7,233,101; 7,234,795; 7,249,830; 7,250,128; 7,258,421; 7,258,774; 7,264,333; 7,273,270; 7,278,713; 7,282,834; 7,284,836; 7,290,859; 7,293,855; 7,322,680; 7,328,975; 7,331,101; 7,331,659; 7,334,874; 7,338,147; 7,347,535; 7,347,697; 7,350,901; 7,350,906; 7,354,787; 7,359,106; 7,360,871; 7,370,942; 7,375,872; 7,380,339; 7,380,906; 7,380,913; 7,384,131; 7,387,365; 7,387,368; 7,393,083; 7,396,108; 7,399,068; 7,401,884; 7,401,895; 7,401,900; 7,401,906; 7,410,243; 7,410,250; 7,413,293; 7,416,275; 7,419,244; 7,419,247; 7,419,250; 7,431,427; 7,434,919; 7,441,867; 7,442,317; 7,417,547; 7,418,728; 7,457,021; 7,467,850; 7,468,997; 7,472,984; 7,475,965; 7,494,555; 7,506,966; 7,517,055; 7,524,029; 7,524,032; 7,527,357; 7,528,691; 7,537,314; 7,537,325; 7,549,726; 7,553,001; 7,556,351; 7,556,352; 7,556,353; 7,556,358; 7,556,361; 7,562,962; 7,562,963; 7,569,926; 7,578,569; 7,578,582; 7,585,047; 7,585,066; 7,588,327; 7,591,539; 7,591,541; 7,597,435; 7,601,270; 7,611,220; 7,615,744; 7,616,367; 7,625,061; 7,625,067; 7,625,068; 7,628,468; 7,637,582; 7,654,628; 7,654,642; 7,658,473; 7,661,793; 7,661,796; 7,661,797; 7,669,950; 7,669,951; 7,669,964; 7,669,971; 7,673,976; 7,677,685; 7,677,686; 7,699,410; 7,703,890; 7,708,372; 7,708,381; 7,717,542; 7,731,334; 7,731,336; 7,731,341; 7,735,963; 7,735,968; 7,740,337; 7,746,538; 7,748,827; 7,753,469; 7,753,487; 7,753,491; 7,753,504; 7,754,010; 7,758,160; 7,758,162; 7,758,166; 7,758,171; 7,762,638; 7,766,055; 7,771,025; 7,771,032; 7,775,634; 7,780,264; 7,784,905; 7,784,910; 7,794,050; 7,815,290; 7,815,291; 7,835,055; 7,864,006; 7,874,644; 7,891,773; 7,893,798; 7,896,468; 7,896,473; 7,901,023; 7,905,574; 7,905,588; 7,914,115; 7,918,540; 7,918,541; 7,931,351; 7,934,797; 7,934,799; 7,934,808; 7,938,524; 7,939,994; 7,946,671; 7,950,771; 7,950,773; 7,950,774; 7,960,208; 7,967,422; 7,971,967; 7,971,972; 7,971,975; 7,973,278; 7,976,131; 7,987,784; 7,992,968; 8,002,933; 8,011,757; 8,021,614; 8,025,355; 8,047,633; 8,057,014; 8,061,795; 8,066,355; 8,079,669; 8,079,688; 8,087,740; 8,087,757; 8,104,497; 8,104,515; 8,104,878; 8,110,813; 8,124,218; 8,167,406; 8,220,487; 8,226,199; 8,226,217; 8,231,207; 8,251,495; 8,264,307; 8,282,181; 8,282,202; 8,288,211; 8,323,982; 8,336,990; 8,376,513; 8,382,258; 8,382,259; 8,393,714; 8,398,210; 8,398,221; 8,398,222; 8,419,176; 8,440,093; 8,444,260; 8,455,570; 8,459,787; 8,465,129; 8,465,142; 8,468,939; 8,469,496; 8,480,224; 8,485,654; 8,506,039; 8,517,516; 8,523,327; 8,523,328; 8,529,021; 8,530,854; 8,534,818; 8,550,119; 8,562,120; 8,585,189; 8,585,971; 8,602,531; 8,602,535; 8,604,111; 8,629,393; 8,632,162; 8,633,955; 8,641,175; 8,646,882; 8,646,883; 8,651,632; 8,651,633; 8,652,409; 8,656,958; 8,657,419; 8,659,631; 8,668,312; 8,668,313; 8,684,483; 8,695,640; 8,696,094; 8,714,676; 8,717,395; 8,736,081; 8,770,722; 8,783,804; 8,784,549; 8,791,971; 8,802,568; 8,806,751; 8,845,914; 8,846,183; 8,847,148; 8,916,395; 8,929,584; 8,932,677; 8,936,353; 8,936,354; 8,939,551; 8,991,986; 8,992,858; 9,010,909; 9,017,537; 9,103,761; 9,151,949; 9,162,878; 9,174,222; 9,174,438; 9,234,797; 9,508,823; 9,653,254; 9,696,375; 9,799,488; 9,897,530; 9,953,787; 9,956,562; 20010021058; 20010022682; 20010029983; 20010033796; 20010045525; 20010054778; 20020024569; 20020029814; 20020033863; 20020036674; 20020097300; 20020101474; 20020122102; 20020127736; 20020130931; 20020144738; 20020171716; 20030016275; 20030019833; 20030020784; 20030020786; 20030025758; 20030025761; 20030042117; 20030063166; 20030081082; 20030103106; 20030132824; 20030132985; 20030132995; 20030137567; 20030142175; 20030146957; 20030174190; 20030202055; 20030202735; 20030202738; 20040001263; 20040031150; 20040032440; 20040051759; 20040056923; 20040056924; 20040075715; 20040075718; 20040079724; 20040080556; 20040085159; 20040092121; 20040094506; 20040095434; 20040095411; 20040099636; 20040100529; 20040113983; 20040118808; 20040119784; 20040160495; 20040169697; 20040169701; 20040207687; 20040207689; 20040207690; 20040207691; 20040218016; 20040218022; 20040246305; 20040246308; 20040246311; 20040257400; 20040263551; 20040263577; 20050016951; 20050018015; 20050018016; 20050018017; 20050024134; 20050024135; 20050024136; 20050024137; 20050024113; 20050030338; 20050030339; 20050030342; 20050030343; 20050035983; 20050036002; 20050037532; 20050039453; 20050041052; 20050041055; 20050041063; 20050046663; 20050046673; 20050052497; 20050052514; 20050057628; 20050083377; 20050093933; 20050093934; 20050097742; 20050099465; 20050099466; 20050104922; 20050109730; 20050110832; 20050112882; 20050116990; 20050128247; 20050128249; 20050131490; 20050134648; 20050134649; 20050140726; 20050140728; 20050144781; 20050141782; 20050146559; 20050146562; 20050146563; 20050146566; 20050157042; 20050157081; 20050157082; 20050166980; 20050167769; 20050168532; 20050168533; 20050174375; 20050174394; 20050185021; 20050189316; 20050189317; 20050200659; 20050206684; 20050215089; 20050225601; 20050225602; 20050225604; 20050226742; 20050231560; 20050237743; 20050242058; 20050243134; 20050248620; 20050253897; 20050264607; 20050264612; 20050269901; 20050270335; 20050270338; 20050275690; 20050275691; 20050279090; 20050285901; 20060007266; 20060007514; 20060017772; 20060018005; 20060033785; 20060034006; 20060054228; 20060061628; 20060072187; 20060077235; 20060092220; 20060093753; 20060098047; 20060109310; 20060109313; 20060119661; 20060152551; 20060197810; 20060202933; 20060227156; 20060227167; 20060227168; 20060238571; 20060250448; 20060268048; 20060268064; 20060274119; 20060274121; 20070002009; 20070008386; 20070008390; 20070030315; 20070030321; 20070046759; 20070048887; 20070048898; 20070052766; 20070059494; 20070064034; 20070064037; 20070064066; 20070064067; 20070070133; 20070070161; 20070080695; 20070081031; 20070109345; 20070115316; 20070120891; 20070146432; 20070153058; 20070176967; 20070176968; 20070176971; 20070182784; 20070182785; 20070183643; 20070188554; 20070188556; 20070188557; 20070188570; 20070211102; 20070211112; 20070222807; 20070222819; 20070222821; 20070222826; 20070236313; 20070257966; 20070257971; 20070268327; 20070268343; 20070291070; 20070291091; 20070296765; 20080012913; 20080012923; 20080024556; 20080030541; 20080036821; 20080050283; 20080079760; 20080094132; 20080111853; 20080111863; 20080117258; 20080129800; 20080129809; 20080141884; 20080165226; 20080173365; 20080180778; 20080192096; 20080204514; 20080204518; 20080204519; 20080210319; 20080210320; 20080210321; 20080210322; 20080211876; 20080211877; 20080211879; 20080220216; 20080220535; 20080231669; 20080236669; 20080246817; 20080252691; 20080266341; 20080266356; 20080266361; 20080273059; 20080277005; 20080277007; 20080277258; 20080278268; 20080278559; 20080289710; 20080303866; 20080303871; 20080309693; 20080309694; 20080309695; 20080309696; 20080309697; 20080309699; 20080309720; 20080309721; 20080309722; 20080316240; 20080316241; 20080316242; 20080316262; 20080316271; 20080316276; 20080318349; 20090002470; 20090027418; 20090027459; 20090085975; 20090091601; 20090091603; 20090121156; 20090122116; 20090124029; 20090128604; 20090151422; 20090153619; 20090153936; 20090160910; 20090174014; 20090185007; 20090189953; 20090195598; 20090195614; 20090201339; 20090213186; 20090213191; 20090237433; 20090237450; 20090237456; 20090237461; 20090244193; 20090241194; 20090256890; 20090261244; 20090278897; 20090289979; 20090295861; 20090303290; 20090303297; 20090303303; 20090309909; 20090322812; 20100003772; 20100026765; 20100039478; 20100050415; 20100053268; 20100053274; 20100053275; 20100053276; 20100073441; 20100110129; 20100110130; 20100118071; 20100149268; 20100149274; 20100175767; 20100187105; 20100200782; 20100201750; 20100208000; 20100231645; 20100242765; 20100253745; 20100265298; 20100276588; 20100276606; 20100277549; 20100295887; 20100302292; 20110024923; 20110025350; 20110025780; 20110037796; 20110037797; 20110037809; 20110090288; 20110109675; 20110109677; 20110109705; 20110155548; 20110164081; 20110204018; 20110205306; 20110205319; 20110258851; 20110261123; 20110261124; 20110261125; 20110261126; 20110271857; 20120026251; 20120026252; 20120026253; 20120026259; 20120026260; 20120026261; 20120038695; 20120045615; 20120056952; 20120091374; 20120105535; 20120105548; 20120105549; 20120105550; 20120105553; 20120268525; 20120268527; 20120268528; 20120268529; 20120268530; 20120268531; 20120299998; 20120299999; 20120300000; 20120300001; 20120307211; 20120319303; 20120328834; 20130059396; 20130068131; 20130070031; 20130072614; 20130199730; 20130235101; 20130235102; 20130249982; 20130249983; 20130249984; 20130249985; 20130252234; 20130257991; 20130257992; 20130257994; 20130257996; 20130257997; 20130258002; 20130278677; 20130278689; 20130280831; 20130286108; 20130286109; 20130302785; 20130328976; 20130328977; 20130330475; 20130342597; 20140009523; 20140015878; 20140015879; 20140015880; 20140015893; 20140015901; 20140021343; 20140084390; 20140126762; 20140212917; 20140220621; 20140262972; 20140273408; 20140308770; 20140322489; 20140363678; 20150043002; 20150183633; 20150213996; 20150266726; 20150276089; 20150294838; 20160091479; 20160103174; 20160172197; 20160173001; 20160202286; 20160243827; 20160268084; 20160324564; 20170001195; 20170146364; 20170303383; 20180075994; and 20180079640; each of which is expressly incorporated herein by reference in its entirety.
It is an object to provide a sensor, comprising at least two electrodes within an electrical field; and an elongated displaceable element configured to be charged, disposed proximate to the at least two electrodes within the electrical field, and having an aspect ratio of at least IO, the element being configured to interact with each of the at least two electrodes to produce a composite force within the element that is at least 95% tensile along an elongated axis, such that the element when displaced by a condition, induces a charge redistribution on the at least two electrodes corresponding to a magnitude of the condition substantially without altering a responsivity of the charge redistribution to the condition or pull-in instability.
It is also an object to provide a sensor, comprising: an element configured to be charged, disposed proximate to at least two electrodes within an electrical field, the element interacting with each of the at least two electrodes to produce a composite force within the element that is at least 95% tensile, such that the element when displaced from the nominal position by a condition, induces a charge redistribution on the at least two electrodes corresponding to a magnitude of the condition. The at least two electrically isolated and separated electrodes may comprise a pair of fixed conductors, separated by a linear gap, each of the pair of fixed conductors may be maintained at a respective electric potential, and sensing an electrical field in a space above the pair of fixed conductors based on charge redistribution. The axis preferably has a vector component directed across the linear gap, wherein the net force on the charged element is insensitive to a state of displacement of the charged element in response to the sensed condition.
It is also an object to provide a method for sensing a capacitive difference, comprising: providing a charged element in an electric field, having a movement along an axis in response to a sensed condition; proving at least two electrically isolated and separated conductors, each interacting with the electric field, and having a respective electrode for electrically sensing a perturbation of the electric field, the at least two electrically isolated and separated conductors producing a net force on the charged element normal to the axis; and sensing a perturbation of the electric field caused by movement of the charged element along the axis in response to the condition, wherein over a range of the movement of the charged element, a position of the charged element in the electric field does not substantially alter a responsivity of the displaceable element to the condition or cause pull-in instability.
The at least two electrically isolated and separated conductors may comprise a pair of fixed conductors, separated by a linear gap, each of the pair of fixed conductors being maintained at a respective electric potential, to sense an electrical field in a space above the pair of fixed conductors based on charge redistribution, and the axis may have a vector component directed across the gap, wherein the net force on the charged element is insensitive to a state of displacement of the charged element in response to the sensed condition.
The charged element may be responsive to acoustic vibrations, and the sensed perturbation quantitatively represents the acoustic vibrations.
The charged element may have an elongated axis, being suspended from one end, having a restoring force which tends to return the charged element to a nominal position, and in the nominal position a free end of the charged element being proximate to the at least two electrically isolated and separated electrodes. A vector of the net force between the charged element and the at least two electrically isolated and separated electrodes may deviate from the elongated axis by less than 5 degrees, e.g., 4 degrees, 3 degrees, 2 degrees, 1 degree, etc.
It is a further object to provide a capacitive sensor, comprising at least two conductors, isolated from each other by at least one spatial gap, each respective conductor interacting with an electrostatic field occupying a region proximate to the at least two conductors and the at least one spatial gap, being electrically responsive to a perturbation of the electrostatic field; and a displaceable element configured to move along an axis of displacement having a directional component crossing the spatial gap selectively responsive to a sensed condition, and perturbing the electrostatic field corresponding to the movement, wherein over a range of the movement of the displaceable element, the electrostatic field does not substantially alter a responsivity of the displaceable element to the sensed condition or cause pull-in instability.
The at least two conductors may co arise a pair of fixed conductors, separated by a linear spatial gap, each of the pair of fixed conductors being maintained at a respective electric potential, to generate the electrostatic field in a space above the pair of fixed conductors having a major field vector component directed across the linear spatial gap dependent on a difference between the respective electric potentials of the pair of fixed conductors, and the displaceable element may comprise a charged element configured with the axis of displacement having a vector component directed across the linear spatial gap, such that a force imposed on the displaceable element due to the electrostatic field is insensitive to a state of displacement of the displaceable element in response to the sensed condition.
The displaceable element is unsupported on at least one edge.
The displaceable element comprises a metallic or metallized polymer diaphragm having a thickness of less than about 10 μm; a fiber; a mesh; at least one of a carbon nanotube and a graphene sheet; and/or an electret, a thin metal sheet, polysilicon or any doped semiconductor.
The displaceable element may be configured to displace along two different sensing axes, and the at least two conductors comprises at least three conductors.
The displaceable element may comprise a diaphragm, and the at least two fixed conductors be together configured such that a change in an electric potential difference between the diaphragm and either of the at least two fixed conductors does not substantially displace or alter an effective stiffness of the diaphragm with respect to the axis of displacement.
The capacitive sensor may further comprise a respective transimpedance amplifier configured to produce an output signal from each respective conductor.
The displaceable element may comprise a micromachined silicon diaphragm having opposite sides which are sufficiently isolated to maintain a pressure difference across the diaphragm, further comprising a housing configured to selectively define at least one path for a fluid medium from a respective environmental port to a respective side of the micromachined silicon diaphragm, to selectively alter the pressure on the respective side of the micromachined silicon diaphragm.
The deflectable element may have a movement dynamically responsive to changes in inertial state. The deflectable element may have a movement dynamically responsive to aerodynamic influences. The deflectable element may have a movement dynamically responsive to a chemical or biochemical process.
A potential between the displaceable element and at least one of the conductors may be at least 1 V, e.g., 3V, 5V, 10V, 15V, 20V, 30V, 50V, 100V, 200V, 300V, 400V, or 500V. The electric field between the displaceable element and at least one of the conductors is at least 0.1 V/mm, e.g., 0.5V/mm, 1 V/mm, 2V/mm, 3V/mm, 4V/mm, 5V/mm, 10V/mm, 25V/mm, 50V/mm, 75V/mm, 100V/mm, 200V/mm, 300V/mm, 400V/mm, 500V/mm, 750V/mm, 1000V/mm, 1500V/mm, 2000V/mm, 2500V/mm, etc. In some cases, the potential may be established at the dielectric strength of the isolating medium. For example, air has a dielectric strength of about 3000V/mm.
It is therefore an object to provide a capacitive sensor, comprising a pair of coplanar surfaces, separated by a gap; a diaphragm, disposed in a plane perpendicular to the coplanar surfaces, and configured to move along an axis perpendicular to the gap and parallel to the coplanar surfaces, the diaphragm and the pair of coplanar surfaces being together configured such that a voltage difference between the conductive diaphragm and either of the pair of coplanar conductive surfaces does not substantially deflect or alter an effective stiffness of the diaphragm; and a set of electrodes, in electrical communication with each of the pair of coplanar surfaces and the diaphragm, configured to determine a differential charge induced between the pair of coplanar surfaces by a potential of the diaphragm.
It is also an object to provide a method of sensing a vibration or sound, comprising providing a pair of coplanar surfaces, separated by a gap, and a diaphragm, disposed in a plane perpendicular to the coplanar surfaces, configured to flex along an axis perpendicular to the gap and parallel to the coplanar surfaces; inducing a voltage potential on the diaphragm with respect to the pair of coplanar surfaces; and sensing a change in induced charge on the pair of coplanar surfaces resulting from flexion of the diaphragm along the perpendicular axis, wherein the diaphragm and the pair of coplanar surfaces are together configured such that the voltage potential does not substantially deflect or alter an effective stiffness of the diaphragm.
The sensor may further comprise a transimpedance amplifier configured to amplify the differential charge. A potential at each of the coplanar surfaces may be maintained at ground potential by a respective transimpedance amplifier while a change in charge is induced on the respective coplanar surfaces by a movement of the diaphragm.
The diaphragm may comprise a metallized polymer membrane or micromachined silicon, for example, having a thickness of, e.g., <10 μm, <7.5 μm, <5 μm, <3 μm, <2 μm, <1 μm, for example.
The diaphragm is preferably configured to oscillate, e.g., in response to acoustic vibrations, e.g., sounds produced by human speech, or electric field variations, though it may act as an electrometer, accelerometer, shock sensor, flow sensor, or other type of electrical or mechanical sensor.
The sensor may further comprise a housing configured to selectively direct acoustic vibrations from an environmental port to one side of the diaphragm, or from each of a pair of environmental ports to respective sides of the diaphragm, or provide a defined path for a fluid medium from an environmental port to one side of the deflectable element.
The diaphragm may have a movement which approximates an air movement within a sound field.
The diaphragm has a lowest resonant frequency of movement, and may be configured to have a velocity of movement in response to a movement of air within a sound field having a frequency above the lowest resonant frequency approximately in phase with an acoustic velocity of the acoustic waves. The lowest resonant frequency may be <250 Hz, <200 Hz, <150 Hz, <100 Hz, <80 Hz, <50 Hz, <35 Hz, <24 Hz, <20 Hz, <15 Hz, or <10 Hz, for example.
A potential between the diaphragm and at least one of the coplanar surfaces may be >400 V, >200 V, >100V, >50V, >24V, >12V, >10V, >6V, or >5V, for example.
It is also an object to provide a capacitive sensor, comprising at least two fixed conductive surfaces, separated by at least one non-conductive gap, each having an associated electrostatic field, and together causing a composite force vector; and a deflectable element configured to move along an axis perpendicular to the composite force vector, having an amplitude of movement corresponding to a sensed condition, the element being configured to have an electrostatic interaction with the associated electrostatic field of each of the pair of fixed conductive surfaces, wherein over a range of the movement of the element along the axis, the composite force vector does not substantially alter a deflection of the deflectable element. The capacitive sensor may be a microphone, and the sensed condition comprise acoustic waves.
The deflectable element may comprise a diaphragm, e.g., a cantilever supported diaphragm, a diaphragm or beam supported on opposed edges (and free to flex between the supports), a perforated diaphragm, a solid diaphragm, or a metallized polymer diaphragm. The deflectable element may comprise a fiber, a fiber mesh, a fiber mat, or a metallized electrospun fiber. The deflectable element may have a solid edge, e.g., an intrinsic part of a mechanical diaphragm, or a fiber mesh having a solid border element. The deflectable element may comprise a carbon nanotube, graphene, silicon, micromachined silicon or other material, and/or silicon nitride. The deflectable element may be metallized, a doped semiconductor, or an electret. The sensor may be manufactured using an additive manufacturing process, a subtractive manufacturing process, or aspects of each. For example, semiconductor fabrication typically employs both deposition and etching. The manufacturing process may be customized to produce a single sensor, or an array of sensors.
A moving electrode may be provided that represents a beam or plate supported on opposite ends with two free edges. These two edges may be adjacent to pairs of fixed electrodes, similar to those shown in
The deflectable element may be configured to oscillate in response to acoustic vibrations.
The deflectable element may be configured to deflect in response to vibrations or acoustic waves along a single axis, along two axes, or have a greater number of degrees of freedom (e.g., rotational, internal vibrations and harmonics, flexion, etc.).
The at least two fixed conductive surfaces may be coplanar or reside in different planes. The at least two fixed conductive surfaces may comprise at least three conductive surfaces.
The deflectable element may comprise a diaphragm, and the at least two fixed conductive surfaces be together configured such that a voltage difference between the diaphragm and either of the at least two fixed conductive surfaces does not substantially deflect or alter an effective stiffness of the diaphragm.
The capacitive sensor may further comprise a set of electrodes, in electrical communication with each of the at least two pair of conductive surfaces, configured to determine a charge redistribution induced between the movement of the deflectable element.
A respective transimpedance amplifier may be provided, configured to produce an output signal from each respective conductive surface.
The capacitive sensor may have a housing configured to selectively direct acoustic vibrations from an environmental port to one side of the deflectable element, or to selectively direct acoustic vibrations from each of a pair of environmental ports to respective sides of the deflectable element. The housing may be configured to selectively provide a set of defined paths from a fluid medium from each of a pair of environmental ports to respective sides of the deflectable element.
The deflectable element may have a movement which approximates an air movement within a sound field surrounding the deflectable element. The deflectable element may have a movement which corresponds to an inertial state of the deflectable element, i.e., acceleration, angular rotation, etc.
The deflectable element may comprise a diaphragm having a thickness of less than about 10 μm, 7.5 μm, 5 μm, 3 μm, or 1 μm. The deflectable element may comprise a fiber having a diameter of about 1 μm, less than 800 nm, 750 nm, 700 nm, 600 nm, 550 nm, 500 nm, 400 nm, 300 nm, 250 nm, 225 nm, 200 nm, 175 nm. 150 nm, 125 nm, 100 nm, 80 nm, 75 nm, 60 nm or 50 nm. The diaphragm or fiber may be metallized, for example with a coating of gold of <100 nm, 90 nm, 80 nm, 75 nm, 70 nm, 60 nm, 50 nm, 40 nm, 30 nm, 25 nm, 20 nm, 15 nm, or 10 nm.
The deflectable element has a lowest resonant frequency of movement, e.g., less than 250 Hz, 200 Hz, 175 Hz, 150 Hz, 125 Hz, 100 Hz, 80 Hz, 75 Hz, 70 Hz, 65 Hz, 60 Hz, 55 Hz, 50 Hz, 45 Hz, 40 Hz, 35 Hz, 30 Hz, 25 Hz, 20 Hz, 15 Hz, or 10 Hz. The deflectable element may be configured to move in response to changes in air pressure corresponding to acoustic waves within a sound field having a frequency above its lowest resonant frequency in phase with an acoustic velocity of the acoustic waves.
A potential between the deflectable element and at least one of the conductive surfaces may be at least 400 V, 300 V, 240 V, 200 V, 150 V, 120 V, 100 V, 75 V, 48 V, 24 V, 12 V, 10 V, 6 V, 5 V, 3.3 V, 3 V, 2.5 V, 2 V, 1.5 V, 1 V, or 0.5 V.
The deflectable element may have a lowest resonant frequency of movement less than 250 Hz, and is configured to have a velocity which has a phase lag of less than 90 degrees of a movement of air in response to acoustic waves within a sound field having a frequency above the lowest resonant frequency. The deflectable element may have a lowest resonant frequency of movement less than 150 Hz, and is configured to have a velocity which has a phase lag of less than 90 degrees of a movement of air in response to acoustic waves within a sound field having a frequency above the lowest resonant frequency. The deflectable element may have a lowest resonant frequency of movement less than 80 Hz, and is configured to have a velocity which has a phase lag of less than 90 degrees of a movement of air in response to acoustic waves within a sound field having a frequency above the lowest resonant frequency. The deflectable element may have a lowest resonant frequency of movement less than 50 Hz, and is configured to have a velocity which has a phase lag of less than 90 degrees of a movement of air in response to acoustic waves within a sound field having a frequency above the lowest resonant frequency. The deflectable element may have a lowest resonant frequency of movement less than 25 Hz, and is configured to have a velocity which has a phase lag of less than 90 degrees of a movement of air in response to acoustic waves within a sound field having a frequency above the lowest resonant frequency. The deflectable element may have a lowest resonant frequency, and move with a phase lag of less than 90 degrees in response to pressure changes in air having a frequency above the lowest resonant frequency.
A potential at each of the conductive surfaces may be maintained at ground potential by a respective transimpedance amplifier while a change in charge is induced on the respective conductive surfaces by a movement of the deflectable element.
It is also an object to provide a method of sensing a vibration, comprising: providing at least two separated conductive surfaces, and a deflectable element, having an axis of deflection perpendicular to a force on the deflectable element generated by the at least two separated conductive surfaces; inducing a voltage potential on the deflectable element with respect to the at least two conductive surfaces; and sensing a change in induced charge on the at least two conductive surfaces resulting from deflection of the deflectable element along the axis of deflection, wherein the force on the deflectable element generated by the at least two separated conductive surfaces does not substantially alter a deflection of the deflectable element. The change in induced charge may be sensed by at least one transimpedance amplifier. The deflectable element may have a movement in response to acoustic waves in air at standard temperature and pressure, and 20% relative humidity, which approximates an air movement within a sound field surrounding the deflectable element.
The deflectable element may have a lowest resonant frequency, and moves with a phase lag of less than 90 degrees in response to an acoustic wave in air having a frequency above the lowest resonant frequency. The lowest resonant frequency is, for example, 250 Hz. The movement of the deflectable element may correspond to an external force, viscous drag, pressure differential, etc. The movement of the deflectable element may correspond to an external force, e.g., a change in stress or strain, expansion, contraction, swelling, heating, cooling, etc. of the deflectable element.
A potential at each of the conductive surfaces may be maintained at ground potential by a respective transimpedance amplifier while the deflection causes a movement of the deflectable element to induce the change in charge on the respective conductive surfaces.
It is a further object to provide a capacitive sensing method, comprising: providing a sensor comprising at least two electrically isolated electrodes having an associated electrical field, and a charged element within the associated electrical field, having an axis of movement in response to a sensed condition which is orthogonal to an electrostatic force between the charged element and the at least two electrically isolated electrodes, and being mechanically unresponsive to a magnitude of the electrostatic force between the charged element and the at least two electrically isolated electrodes; inducing a movement of the charged element with respect to the at least two electrically isolated electrodes along the axis of movement; sensing an induced charge on each of the at least two electrically isolated electrodes as a result of the movement of the charged element; and generating a signal corresponding to the movement. The sensed condition may be sound.
The charged element may be suspended from one end and have an elongated axis and has a restoring force which tends to return the charged element to a nominal position, and in the nominal position a free end of the charged element is proximate to the at least two electrically isolated electrodes, and the electrostatic force between the charged element and the at least two electrically isolated electrodes is parallel to the elongated axis.
The charged element may have an elongated axis and be supported by an elastic cantilever, the elongated axis being parallel to the electrostatic force and directed at a gap between the at least two electrically isolated electrodes.
Each of the at least two electrically isolated electrodes may exert a force component on the charged element along the axis of movement, wherein a superposition of the force components exerted on the charged element along the axis of movement cancels a net force along the axis of movement.
The charged element may comprise a filament, having a diameter less than about 1 micron. The charged element may comprise a filament or conductive filament having a diameter less than about 550 nm. The movement in air may be in response to an acoustic vibration at frequencies above 250 Hz dominated by viscous drag.
The charged element may comprise a conductive perforated plate having a cantilever support which supports movement of the conductive perforated plate only along the axis of movement. The charged element may have a movement in air in response to an acoustic vibration at frequencies above 100 Hz dominated by viscous drag.
The charged element may have an elongated profile and an elongated axis, the elongated axis having an angle with respect to a vector of the electrostatic force of less than about 3 degrees, less than 2 degrees, less than 1 degree, or less than 0.5 degree.
The charged element may have an elongated profile and an elongated axis perpendicular to the axis of movement, and a force component of the electrostatic force along the axis of movement is at least −18 dB, −20 dB, −24 dB, −28 dB, −30 dB, −33 dB. −36 dB, or −40 dB lower than a force component of the electrostatic force along elongated axis.
The charged element may have an elongated axis parallel to the electrostatic force, and have a tensile stiffness, and wherein the charged element is not subject to pull-in by the electrostatic force before the electrostatic force exceeds the tensile stiffness.
The at least two electrically isolated electrodes may be symmetric with respect to the charged element, and the signal be generated by providing a transimpedance amplifier for each respective electrode, and a movement of the charged element determined based on voltage differences in outputs of the respective transimpedance amplifiers.
It is another object to provide a directional microphone or sensor, comprising at least two electrically isolated electrodes having an associated electrical field; a charged element within the associated electrical field, having an axis of movement about a fixed position, configured to move along the axis of movement; e.g., in response to sound, which is orthogonal to an electrostatic force between the charged element and the at least two electrically isolated electrodes; and an electronic circuit configured to produce an output dependent on the movement, e.g., in response to sound, and to produce a deflection force on the charged element, to thereby alter the axis of movement of the charged element. An input may receive a signal defining a desired axis of movement of the charged element.
It is also an object to provide a method of determining a propagation vector of a wave, e.g., a sound or vibration, comprising: providing at least two electrically isolated electrodes having an associated electrical field; and a charged element within the associated electrical field, having an axis of movement about a fixed position, configured to move about the axis of movement which is orthogonal to an electrostatic force between the charged element and the at least two electrically isolated electrodes; producing a first output dependent on the movement along the axis; receiving a signal for altering the associated electrical field and thereby deflecting the charged element, to thereby alter the axis of movement to a second axis of movement; producing a second output dependent on the movement along the second axis; and analyzing the first output and the second output to determine a vector propagation property of the vibration.
It is also an object to provide a sensor comprising a charged (or chargeable) element which is disposed within an electrical field having at least two electrodes, the charged or chargeable element interacting with each of the at least two electrodes to produce a composite force within the charged element that is tensile only does not have a deflection tendency from a nominal position of the charged element, such that the charged element when deflected from the nominal position induces a charge redistribution on the electrodes which can be sensed.
The deflection may be caused by various effects. For example, in a microphone embodiment, sound may act on the charged element to displace it in a movement pattern that corresponds to pressure variations or bulk flow patterns (e.g., viscous drag).
In an accelerometer embodiment, the charged element may be, or may have a movement corresponding to a proof mass or inertial mass.
In a shock sensor, the inertial mass has either a mechanical integration over time, or the output is electrically integrated over time, to determine the impulse magnitude.
Similarly, in a gyroscope (e.g., MEMS gyroscope), the charged element may be directly or indirectly responsive to a Coriolis force or gyroscopic reaction force.
The charged element may be a microcantilever beam, which, for example, can sense asymmetric bending effects. For example, if one side of a beam is coated with a chemically responsive material, and the other is not, or one side is selectively exposed to a chemical to which it is responsive, the deflection may be measured. Typically, the low frequency response (<1 Hz or 0.1 Hz) of the device may be low or subject to noise, and therefore the charged element may be induced to vibrate. In this case, the vibration will act as a frequency modulation of the offset position of the charged element.
The microcantilever may also be coated with a selective chemisorbent, which has the effect of changing the mass of the charged element based on an amount of exposure to a particular type of chemical species. In this case, it is often useful to sense the mass change of the charged element by vibrating the microcantilever, and sensing dynamic characteristics. For example, there the microcantilever has an elastic mount, the resonant frequency of movement of the charged element will depend on its mass. In non-resonant systems, the inertia of the charged element induced in response to a defined force will change with the mass of the charged element.
In some cases, the mount for the charged element has a relevant physical property that varies with a sensed condition. For example, the mount may be a thermally responsive material. Therefore, as the temperature of the mount changes, a mechanical property of the mounting of the charged element may be sensed. This may be a deflection, damping coefficient, spring force, or the like.
The charged element may also act as a sensor for fluid dynamical properties of the medium in which it is immersed. For example, instead of providing a fiber for which fluid drag is a dominating factor in the response to bulk flow, such as a submicron fiber, a larger fiber is provided which is in a transition region range. Therefore, the movement of the fiber in response to a standardized vibration within the medium will alter based on properties of the medium. If the medium is homogeneous and constant temperature and pressure, changes in mass and/or viscosity will be reflected in the response of the charged element.
In some cases, an array of sensors may be provided. For example, the array may sense spatial or volumetric differences in a condition, such as sound waves. Note that the charged element may be directional, and as a result, spatial and volumetric sensors may produce information about propagation vectors, scattering, and other influences. In other cases, the array of sensors may be configured or processed to null or cancel undesired signal components, and select or respond to desired signal components.
It is another object to provide a sensor, comprising an element configured to be charged disposed within an electrical field having at least two electrodes, the element interacting with each of the at least two electrodes to produce a composite force within the element that is tensile only, and without a deflection tendency from a nominal position, such that the element when deflected from the nominal position induces a charge redistribution on the at least two electrodes.
The element may have a movement or deflection responsive to an acceleration, Coriolis force, asymmetric bending force, a chemical interaction of a medium and a surface of the element, a biological interaction of a medium and a surface of the element, or a chemisorptive interaction of a medium and a surface of the element, for example. The sensor may further comprise a mechanical integrator, wherein the element has a movement responsive to a shock.
The composite force may be oscillating, and the element have a deflection responsive to at least the oscillating composite force.
The sensor may further comprise an electronic amplifier configured to produce a signal corresponding to the deflection of the element.
The sensor may further comprise an electronic device configured to determine analyze a time-response of the deflection of the element.
The time response may comprise a vibration frequency, a resonant frequency, or a phase delay.
The deflection of the element may be responsive to a temperature, pressure, an illumination, and/or a viscosity of a fluid surrounding the element, for example.
The sensor may further comprise an elastic mount for the element, which pivotally supports the element. The deflection of the element may be responsive to a change in physical properties of the elastic mount. The deflection of the element may be responsive to a chemical interaction of the elastic mount with a surrounding medium.
The element may have an associated catalyst, wherein a deflection of the element is responsive to an amount of substrate for the associated catalyst.
It is another object to provide a sensor array, comprising a plurality of elements arranged in a spatial array, the plurality of elements being configured to be electrically charged, each respective element of the spatial being disposed within an electrical field controlled by at least two respective electrodes, the respective element interacting with each of the at least two respective electrodes to produce a composite tensile force within the respective element, substantially without a deflection tendency from a nominal position due to the composite force, such that the respective element induces a charge redistribution on the at least two respective electrodes upon deflection. The spatial array may provide a three dimensional array of the plurality of elements. The sensor array may further comprise an external condition gradient surrounding the plurality of elements. The sensor array may further comprise a thermal control configured to create a thermal gradient in the plurality of elements. The sensor array may further comprise an optical system configured to project an image onto the spatial array. The respective elements may have a plurality of respective different selective chemical responses.
An array may also be provided in which the environment of the sensor is controlled to provide difference conditions, typically incrementally varying, over a range. For example, a linear array of sensors may be provided which are maintained at different temperatures. This may be as simple as providing a temperature gradient cause by a heat source at one end of the array. The array may then sense characteristics of the medium over the range of temperatures. Similarly, other gradients may be imposed, such as illumination or other electromagnetic radiation, magnetic field, distance from an axis of rotation, or the like.
As discussed above, chemisensors may be employed, and the array may have incrementally (or otherwise) varying properties of the sensors, environment of sensing, or the medium to be sensed.
The sensor may, for example, include a catalyst (inorganic, organic, enzyme, etc.) which selectively interacts with an analyte in the medium. This may produce various effects, but often heat (thermal energy) or change in redox potential are available outputs. To sense heat, the static properties (deflection position) or dynamic properties (frequency of vibration, amplitude of vibration, etc.) can be measured.
Redox changes are especially interesting because these can be used to alter the voltage (charge) of the charged element, and therefore produce an output dependent on a modulated charge. Redox changes may also alter electrical conductivity, and other properties. For example, a redox change may be measured with a colorimetric redox indicator, which can interact with an optical system, such as a laser or light emitting diode (semiconductor or organic semiconductor). The result can be a change in temperature. However, in a pulse illumination system, the coupling of the charged element to the pulse may vary depending on its optical absorption, and therefore a dynamic response without significant change in bulk temperature may be measured.
In some cases, the sensor may provide fluidic sensing. Typically, the presence of a liquid between the sensing electrodes and the charge element is problematic, since many liquids are conductive and will bleed the charge on the charged element, though some liquids are dielectric and non-conductive. However, considering aqueous solutions and biological analytes, these are typically contraindicated for the space in which the relevant electrical field is to be sensed, and even a high humidity in this region may be problematic for reliable sensing. One solution is to fabricate a sensor which operates at <1.23 V (hydrolysis potential of water), and provide a current supply to the charged element that replenishes the drained charge. Note that this sensor may act as a conductive sensor, in which current flow split between the electrodes is dependent on position. However, in some cases, the attractive force between the electrode and charged element may still be relevant, since regardless of current flow, the force is dependent on the charge and distance.
An alternate is to provide an analyte in a fluid space with a wall, and have the charged element mounted outside of the fluid space on the opposite side of the wall. Changes in the fluid space that alter electrical or thermodynamic factors may be sensed through the wall, and reflected in a change in electrical (charge) or mechanical property of the charged element(s). For example, a glucose sensor may be implemented by an immobilized glucose oxidase enzyme in a fluid space. Glucose oxidase catalyzes the conversion of glucose to gluconolactone, FAD is reduced to FADHZ, which is oxidized back to FAD by a redox mediator, which is then oxidized by an electrode reaction. (Of course, this potential may be measured directly). The electrode, in this case is coupled to the charged element, and the charge on the charged element is dependent on the glucose oxidation. If the charged element is induced to move, the amplitude of the signal will be dependent on the charge induced on the charged element by the glucose oxidation. Other enzyme-coupled reactions may be similarly sensed. One advantage of this embodiment is that it achieves electrical isolation of the aqueous medium and the electronics. Another advantage is that it is potentially responsive to intervening conditions and superposed effects. For example, if two enzymes engage in competing or parallel reactions, outputs of their reaction can sum or difference.
The charged element may be induced to motion directly by a sensed effect, or coupled with another mechanical element and indirectly induced to move. Likewise, a modulation of motion by a sensed effect may be a direct effect of the sensing interaction, or indirectly through an intervening element.
An imaging sensor, e.g., a spatial array of elements whose displacement or vibration is modulated by illumination by ultraviolet, visible, infrared, far infrared, terahertz radiation, etc., and an optical system which projects an image on the array for sensing, may be implemented. Long wavelength sensing, which is relatively difficult with semiconductor CCD or photodiode imagers, are particularly attractive applications. It is noted that the sensing electrodes are designed to have an electrical field which is aligned with the elongated axis of the moving element over its range of movement, so that a pull-in effect is avoided; however, this can be implemented to permit a “back side” illumination, i.e., the image is projected onto the array (or single element sensor) through the electrode side of the device. Vibration of the moving elements may be induced by providing a time-varying electrical field around the moving element, for example my modulating the sensing electrodes or providing an additional “drive” electrode system. In any case, where the electric field is modulated, the electronics would generally filter or compensate for the modulation, while demodulating the imposed signal.
A system employing the sensor may be a cellphone (smartphone) or other consumer electronic device, automobile or component thereof, flying object or drone, telephone, computer, display device, military munition, toy, or the like. The sensor can replace traditional types of capacitive sensors in a variety of applications, and the advantages permit new applications.
Various sensors which may be modified to employ the present technology, and uses of such sensors are known. See, U.S. Pat. Nos. 6,199,575; 6,621,134; 6,670,809; 6,749,568; 6,848,317; 6,889,555; 6,926,670; 6,935,165; 6,994,672; 7,036,372; 7,046,002; 7,073,397; 7,077,010; 7,078,796; 7,093,494; 7,109,859; 7,143,652; 7,164,117; 7,169,106; 7,204,162; 7,205,173; 7,260,980; 7,260,993; 7,340,941; 7,368,312; 7,397,421; 7,402,449; 7,425,749; 7,451,647; 7,474,872; 7,518,493; 7,518,504; 7,539,532; 7,539,533; 7,543,502; 7,558,622; 7,562,573; 7,663,502; 7,677,099; 7,689,159; 7,694,346; 7,732,302; 7,733,224; 7,748,272; 7,775,215; 7,775,966; 7,784,344; 7,786,738; 7,795,695; 7,810,394; 7,849,745; 7,878,075; 7,915,891; 7,923,999; 7,950,281; 7,977,635; 7,984,648; 8,000,789; 8,016,744; 8,020,440; 8,037,757; 8,061,201; 8,103,333; 8,108,036; 8,118,751; 8,121,673; 8,121,687; 8,129,802; 8,130,986; 8,136,385; 8,143,576; 8,146,424; 8,171,794; 8,187,795; 8,215,168; 8,235,055; 8,268,630; 8,278,919; 8,323,188; 8,323,189; 8,328,718; 8,338,896; 8,344,322; 8,347,717; 8,352,030; 8,368,154; 8,371,166; 8,390,916; 8,397,579; 8,418,556; 8,425,415; 8,427,177; 8,434,160; 8,434,161; 8,449,471; 8,461,988; 8,464,571; 8,467,133; 8,472,120; 8,475,368; 8,477,425; 8,477,983; 8,482,859; 8,488,246; 8,500,636; 8,516,905; 8,525,673; 8,525,687; 8,531,291; 8,534,127; 8,542,365; 8,578,775; 8,615,374; 8,646,308; 8,652,038; 8,669,814; 8,677,821; 8,680,991; 8,684,253; 8,684,900; 8,684,922; 8,708,903; 8,713,711; 8,717,046; 8,719,960; 8,727,978; 8,742,944; 8,747,313; 8,747,336; 8,750,971; 8,764,651; 8,787,600; 8,814,691; 8,831,705; 8,833,171; 8,833,175; 8,845,557; 8,848,197; 8,850,893; 8,875,578; 8,878,528; 8,924,166; 8,939,154; 8,963,262; 8,964,298; 8,968,195; 9,000,833; 9,007,119; 9,020,766; 9,028,405; 9,034,764; 9,046,547; 9,052,194; 9,052,335; 9,060,683; 9,074,985; 9,086,302; 9,094,027; 9,096,424; 9,097,890; 9,097,891; 9,107,586; 9,118,338; 9,128,136; 9,128,281; 9,129,295; 9,134,534; 9,151,723; 9,159,710; 9,182,596; 9,190,937; 9,194,704; 9,199,201; 9,204,796; 9,215,980; 9,222,867; 9,223,134; 9,228,916; 9,229,227; 9,237,211; 9,238,580; 9,250,113; 9,252,707; 9,285,589; 9,291,638; 9,307,319; 9,322,685; 9,329,689; 9,335,271; 9,341,843; 9,351,640; 9,359,188; 9,364,362; 9,366,862; 9,389,077; 9,389,215; 9,400,233; 9,404,954; 9,423,254; 9,441,940; 9,444,404; 9,459,100; 9,459,673; 9,465,064; 9,473,831; 9,476,975; 9,494,177; 9,518,886; 9,522,276; 9,528,831; 9,534,974; 9,541,464; 9,549,691; 9,557,345; 9,568,461; 9,575,089; 9,582,072; 9,584,931; 9,588,190; 9,596,988; 9,628,919; 9,631,996; 9,644,963; 9,651,538; 9,658,179; 9,683,844; 9,689,889; 9,695,038; 9,696,222; 9,708,176; 9,722,561; 9,733,230; 9,733,268; 9,759,917; 9,775,520; 9,778,302; 9,781,521; 9,801,542; 9,814,425; 9,820,657; 9,820,658; 9,835,647; 9,838,767; 9,839,103; 9,843,858; 9,843,862; 9,844,335; 9,846,097; 9,856,133; 9,863,769; 9,865,176; 9,866,066; 9,867,263; 9,875,406; 9,897,460; 9,897,504; 9,901,252; 9,903,718; 9,907,473; 9,910,061; 9,910,062; 9,938,133; 9,945,746; 9,945,884; 9,958,348; 9,970,958; 9,976,924; 20020151816; 20020177768; 20020193674; 20040007051; 20040119591; 20040207808; 20040260470; 20050001316; 20050001324; 20050046584; 20050066728; 20050072231; 20050104207; 20050139871; 20050199071; 20050199072; 20050265124; 20060056860; 20060081054; 20060081057; 20060107768; 20060178586; 20060205106; 20060208169; 20060211912; 20060211913; 20060211914; 20060248950; 20070023851; 20070029629; 20070089512; 20070089513; 20070125161; 20070129623; 20070209437; 20070230721; 20070241635; 20070265533; 20070273504; 20070276270; 20080001735; 20080004904; 20080021336; 20080079411; 20080081958; 20080149832; 20080163687; 20080169921; 20080188059; 20080202237; 20080281212; 20080294019; 20090022505; 20090024042; 20090049911; 20090064781; 20090064785; 20090072840; 20090078044; 20090114016; 20090133508; 20090140356; 20090227876; 20090227877; 20090255336; 20090282916; 20090318779; 20090320591; 20100039106; 20100049063; 20100083756; 20100100079; 20100132466; 20100147073; 20100186510; 20100238454; 20100242606; 20100241160; 20100251800; 20100271003; 20100275675; 20100308690; 20110010107; 20110049653; 20110061460; 20110062956; 20110073447; 20110089324; 20110100126; 20110115624; 20110120221; 20110138902; 20110181422; 20110192226; 20110192229; 20110226065; 20110254107; 20110267212; 20110295270; 20110317245; 20120004564; 20120025277; 20120032286; 20120034954; 20120043203; 20120075168; 20120092156; 20120092157; 20120095352; 20120095357; 20120133245; 20120192647; 20120194118; 20120194119; 20120194420; 20120194549; 20120194550; 20120194551; 20120194552; 20120194553; 20120200488; 20120200499; 20120200601; 20120206134; 20120206322; 20120206323; 20120206334; 20120206335; 20120206485; 20120212398; 20120212399; 20120212400; 20120212406; 20120212414; 20120212484; 20120212499; 20120218172; 20120218301; 20120235847; 20120235883; 20120235884; 20120235885; 20120235886; 20120235887; 20120235900; 20120235969; 20120236030; 20120236031; 20120242501; 20120242678; 20120242697; 20120242698; 20120245464; 20120249797; 20120291549; 20120313711; 20120330109; 20130002244; 20130009783; 20130023794; 20130023795; 20130047746; 20130050155; 20130050226; 20130050227; 20130050228; 20130069780; 20130072807; 20130080085; 20130095459; 20130104656; 20130127980; 20130133396; 20130156615; 20130170681; 20130172691; 20130172869; 20130178718; 20130186171; 20130191513; 20130197322; 20130201316; 20130201188; 20130211291; 20130215931; 20130221457; 20130226034; 20130226035; 20130226036; 20130231574; 20130263665; 20130276510; 20130278631; 20130279717; 20130297330; 20130314303; 20130317753; 20130328109; 20130330232; 20130340524; 20140011697; 20140026686; 20140031263; 20140041452; 20140047921; 20140049256; 20140053651; 20140055284; 20140063054; 20140063055; 20140077946; 20140090469; 20140094715; 20140104059; 20140111019; 20140111154; 20140121476; 20140130587; 20140142398; 20140143064; 20140163425; 20140176251; 20140188404; 20140188407; 20140192061; 20140192836; 20140194702; 20140217929; 20140225250; 20140235965; 20140249429; 20140250969; 20140253219; 20140257141; 20140260608; 20140266065; 20140266263; 20140266787; 20140296687; 20140299949; 20140306623; 20140319630; 20140321682; 20140330256; 20140352416; 20150019135; 20150068069; 20150082872; 20150096377; 20150099941; 20150105631; 20150125003; 20150125832; 20150126900; 20150141772; 20150154364; 20150163568; 20150171885; 20150176992; 20150211853; 20150220199; 20150226558; 20150250393; 20150260751; 20150268060; 20150268284; 20150269825; 20150276529; 20150309316; 20150309563; 20150323466; 20150323560; 20150323694; 20150338217; 20150351648; 20150359467; 20150374378; 20150377662; 20150377916; 20150377917; 20150377918; 20160000431; 20160000437; 20160002026; 20160003698; 20160006414; 20160030683; 20160041211; 20160066788; 20160076962; 20160130133; 20160131480; 20160137486; 20160139173; 20160140834; 20160161256; 20160176704; 20160187654; 20160202755; 20160209648; 20160213934; 20160223579; 20160231792; 20160232807; 20160235494; 20160241961; 20160274141; 20160287166; 20160305780; 20160305835; 20160305838; 20160305997; 20160310020; 20160320426; 20160327416; 20160327523; 20160334139; 20160338641; 20160341761; 20160347605; 20160349056; 20160360304; 20160360965; 20160363575; 20160370362; 20160377569; 20170003314; 20170023429; 20170025904; 20170041708; 20170051884; 20170052083; 20170074853; 20170078400; 20170086281; 20170086672; 20170121173; 20170135633; 20170142525; 20170146364; 20170152135; 20170160308; 20170164878; 20170167945; 20170167946; 20170168084; 20170168085; 20170168566; 20170191894; 20170199035; 20170201192; 20170217765; 20170223450; 20170254831; 20170257093; 20170258386; 20170258585; 20170260044; 20170265287; 20170284882; 20170295434; 20170297895; 20170318385; 20170318393; 20170331899; 20170336205; 20170343350; 20170341114; 20170347886; 20180000545; 20180002162; 20180008356; 20180008357; 20180017385; 20180034912; 20180035206; 20180035228; 20180035229; 20180035888; 20180038746; 20180080954; 20180085605; 20180086625; 20180092313; 20180108440; 20180124181; 20180124521; and 20180134544, each of which is expressly incorporated herein by reference in its entirety.
The moving element may be used in an actuation mode, for example to define a carrier excitation upon which a sensed effect is modulated, either by altering an amplitude of a defined frequency, or altering a frequency or time delay (phase) characteristic. This is especially useful to move a baseband (DC) signal into a range in which the sensor displays better properties, such as higher sensitivity, lower noise, etc.
The intentional movement of the moving element, by altering the electric field surrounding it, may be used for various purposes. In one case, a pull-in response may be desired to protect the sensor from hostile environmental conditions, and therefore the moving element intentionally displaced out of harm's way. In another case, the space in which the moving element is operating may be inhomogeneous, and the movement of the moving element allows exploration of the space.
As noted above, the sensor may be highly directional, and for example have a cardioid response pattern. By deflecting the moving element from its nominal position, information regarding the vector direction of an effect may be determined. Further, this deflection can then distinguish between excitation having directional components, and excitation or noise which is non-directional. The deflection need not be binary, and in the case of a fiber sensor, can sense two axes, using 3 or more electrodes. Other configurations with larger numbers of electrodes are possible. For example, instead of having the elongated axis of the moving element directed to a gap between electrodes (the nominal design in a two-electrode, symmetric sensor), a third electrode disposed between two lateral electrodes may smooth a gradient (i.e., linearize the transition, and therefore the response of the moving electrode)) when the two lateral electrodes are maintained at different potentials, and the central electrode is maintained at an intermediate potential.
The moving element may act as a valve or flow-control vane, for a medium surrounding the element, having a position controlled by the potentials on the electrodes.
In media where the fluid is near a turbulent flow threshold, the position of one or more elements
Deflection of the moving element, especially significant deflection, can alter an effective stiffness of the sensor, which can alter both the amplitude of a response, and a resonant frequency. Each of these may be useful in various types of sensors.
The moving electrode 22 according to a preferred embodiment examined herein is composed of a thin sheet of material that is extremely flexible in the direction normal to its plane surface. It is supported along one edge so that it can rotate or bend easily about that supporting line as illustrated in
The fixed electrodes are oriented so that they create plane surfaces that are orthogonal to the plane of the moving electrode. Orienting the fixed and moving electrodes so that their surfaces are orthogonal helps to minimize the net electrostatic force on the moving electrode because the electric field will always be normal to the surface of the conductors. With proper arrangement of the positions and orientations of these electrodes, one can cause the electrostatic forces acting on the plane surfaces of the moving electrode to effectively cancel, leaving the comparatively small force that is applied normal to the free edge.
According to an exemplary embodiment, the moving electrode consists of a thin flexible element of length L2=6.2 mm and thickness H2=5 μm shown deflected relative to the horizontal orientation by the angle α. Two vertical, fixed electrodes of length L1=L3=2.5 mm and thickness H1=H3=200 μm are shown to the right of the moving electrode. The horizontal gap between the moving electrode and the two fixed electrodes is g=300 μm. They are separated by a gap in the vertical direction of gy=50 μm and are held at the same potential.
Sensing the position of the moving electrode is achieved by dividing the fixed electrode into two surfaces, denoted by electrodes 1 and 3, which are both held at the same voltage. The charge on these two fixed electrodes will vary with the moving electrode's position. For electrodes having practical dimensions, it is found that the electrostatic forces can be made to be negligible in comparison to those associated with the electrode's elastic properties.
The two vertical, fixed electrodes of length L1 and L3 and thicknesses H1 and H3 are shown to the right of the moving electrode in
The fabricated device is represented in
To very roughly estimate the mechanical stiffness of a realizable moving electrode, the stiffness of a cantilever beam supported by a fixed boundary may be considered. Assume that this electrode is constructed of a polymer having a Young's modulus of elasticity of E=2×109 N/m2. In order for the electrode to be conductive, it is coated with a very thin layer of aluminum, which is taken to be thin enough to not add appreciable stiffness. Considering the force to be applied uniformly along the length, the equivalent mechanical stiffness per unit width may be approximated by k≈8EI/L3/2 where I=H3/2/12. Since L2=6.2×10−3 m and H2=5×10−6 m, the mechanical stiffness per unit width is k≈0.7 N/m2. While this is a very approximate estimate, the results below indicate that the effective stiffness due to electrostatic forces is significantly less than this mechanical stiffness, and will thus have negligible influence on the motion.
While the electrode configuration of
Discretizing the surface into a finite number of areas enables one to solve for the charge distribution for any given electrode geometry. Knowing the charge density for a variety of positions of the moving electrode enables the calculation of the electrostatic potential energy as a function of the electrode position. These data may then be numerically differentiated to estimate the first and second derivatives which provide the electrostatic force and effective stiffness associated with the given motion.
Because the domain is taken to be two dimensional, the results are for a unit length in the direction normal to the plane of
The total charge Qi, for i=1, 2, 3, on each of the three electrodes can be computed knowing the charge density ρ on all surfaces, Si,
Qi=∫S
The output of the sensor will be taken to be the difference in charge between electrodes 1 and 3.
The derivative of this charge difference with respect to the displacement of the tip of electrode 2 is then computed, giving the sensitivity in coulombs/meter as shown in
The overall sensor sensitivity can be expressed as a combination of the charge sensitivity, denoted by SQ in coulombs/meter, the electrical sensitivity, Se in volts/coulomb, and the mechanical sensitivity Sm in meters/pascal. The over-all sensitivity will then be:
S=SQ×Se×Sm volt/pascal (14)
In the experimental results presented below, a transimpedance, or charge amplifier is used to obtain an electronic output. This is accomplished using a general purpose operational amplifier where the gain is set primarily through the effective feedback capacitance Cf. The electrical sensitivity may then be approximated by:
The mechanical sensitivity, Sm will, of course, depend on the mechanical properties of the moving electrode 2. As a rough approximation, in a hypothetical ‘ideal’ sensor, the average motion of electrode 2 is sought to be very nearly the same as that of the air in a sound field, such as what has been demonstrated in [3]. Taking the sound field to consist of a plane wave traveling in one direction, the acoustic particle velocity is given by U=P/(ρ0c), where ρ0 is the nominal air density and c is the speed of propagation of an acoustic wave. The quantity ρ0c is the characteristic acoustic impedance of the medium [17]. Because the electrode is assumed to rotate about its fixed end, the free end, where the sensing occurs, will move with approximately twice the average displacement, which will occur at the center. For a harmonic wave at the frequency ω, the mechanical sensitivity of the displacement of the free end of the electrode in this idealized case can then be approximated by:
To obtain experimental results for the electrode system of
An electronic output was obtained through the use of transimpedance circuits connected to electrodes 1 and 3. These circuits were not optimized for performance and used a general purpose TL074 quad operational amplifier using 1 GΩ feedback resistors. Note that the impedance of such high-value resistors is often significantly influenced by parasitic capacitance, typically on the order of Cf=1 pF, in parallel with the resistor, which can dominate the impedance over a wide range of frequencies. The circuit was realized using through-hole components on a prototype circuit board, which can also influence the parasitic capacitance.
The velocity of the moving electrode was also measured using a Polytec laser vibrometer consisting of a Polytec OFV-534 compact sensor head and a Polytec OFV-5000 Vibrometer Controller. The sound pressure near the moving electrode was measured using a Bruel and Kjaer 4138 precision microphone having a ⅛-inch diameter pressure sensing diaphragm. A bias voltage of V2=400 volts was applied to electrode 2 using a M5-1000 DC-DC converter from American Power Designs.
The displacement corresponding to the velocity shown in
The estimated charge sensitivity shown in
S=SQ×Se×Sm≈(40×10−9)×1012×3×10−6≈0.12 volt/pascal (17)
The measured electrical output can be taken to be the difference in the signals shown in
The data in
In spite of the use of a rather large bias voltage, the results shown in
The observation that this thin electrode can move with a displacement that is similar to that of the air in a sound field is in line with what is predicted for the sound-induced motion of a thin, flexible wall [18]. While numerous additional effects influence the motion of the electrode examined here and it does not closely resemble the problem of predicting sound transmission through walls, it is clear that a thin, lightweight membrane can move with the air in a sound field. If we consider the incident sound to be a harmonic wave at the frequency ω, propagating normal to the plane of the membrane, one can calculate the ratio of the complex amplitude of the sound wave transmitted through the membrane, pt to that of the incident pressure, p1 [18],
Because both velocities Uw and U1 are related to the corresponding displacements by the same factor {circumflex over (ι)}ω, the ratio in equation (20) will also equal the ratio of the displacements. This ratio depends only on the factor, (ρwhω/2ρ0c). For the metalized polymer electrode used here, the density is estimated to be ρw≈1380 kg/m3 and the thickness is h≈5 μm. Over the range of frequencies shown in
The fact that the electrode is highly compliant is, of course, a major reason that its motion is easily detected by this capacitive sensing scheme. The use of a highly compliant electrode can be effective as long as the sensing configuration does not itself introduce significant electrostatic forces that would affect the motion.
The measured electrical sensitivity is shown in
Comparing
In the foregoing, it has been assumed that the moving electrode consists of a flat planar member. However, in some cases, it may be beneficial that its free edge be curved. Further, the plane of the moving member could also be oriented so that it is not parallel to the gap between the fixed electrodes. In this case, motion of the electrode will result in its overlap area with one of the fixed electrodes to increase while the overlap area with the other fixed electrode decreases. This would cause it to function much like the embodiment shown in
Reviewing
There are numerous sensing applications where it is very desirable that the moving element is driven with diminutive forces and must therefore be as lightweight and compliant as possible so that it provides the least possible resistance and subsequently responds with the largest possible displacement. In cases where the moving element is an electrode in a capacitive sensor, care must be taken to ensure that the forces associated with the electric field do not adversely affect the motion and subsequent sensor performance. The present electrode geometries minimize the electrostatic forces that actin the direction of motion.
In the electrode design examined here, the electrostatic potential energy is considered as a function of the electrode motion. If the potential energy is roughly constant as the electrode moves, the force will tend to be small since, for this conservative force, the force is equal to the derivative of the potential energy. By splitting the fixed electrode into two elements, one can retain the insensitivity of the potential energy to the electrode displacement while enabling one to sense the differences in charge on the two fixed electrodes. The result is an ability to sense the motion without imposing significant electrostatic forces that affect the motion.
In addition to designing the sensor to maintain a nearly constant potential energy for the range of motion of interest, because the electric field is orthogonal to the surface of a conductor, the fact that the moving electrode is thin and oriented orthogonally to the fixed electrodes causes the force between them to be small. By maintaining geometric symmetry about the nominal position of the moving electrode, the electrostatic forces applied normal to its surface will approximately cancel. This enables the design of moving electrodes having altogether negligible mechanical stiffness in their primary direction of motion. A negligible stiffness can be achieved by supporting the moving electrode by a hinge that has virtually no resistance to rotation or by making the moving electrode out of an extremely thin material that has negligible resistance to bending. If the material is thin enough, one could configure it to resemble a cantilevered beam, which is fully-fixed to the supporting structure and free at its other end. The mechanical restoring stiffness need only be sufficient to resist any other environmental forces that may act on it, such as gravity.
Because electrostatic forces don't affect the motion, the bias voltage applied to the moving electrode can be set to a high value which improves the overall electrical sensitivity. In the results provided here, a highly compliant moving electrode is used that readily moves in response to acoustic pressure. The electrode configuration enables the use of a relatively large bias voltage of 400 volts while having negligible effect on the electrode motion. This produces an output electrical sensitivity of approximately 0.5 volts/pascal.
Another desirable characteristic of the capacitive sensor is the assurance of stability for the entire range of possible motions and bias voltages. As shown in
The motion of the moving electrode is essentially unaffected by changes in the bias voltage while the overall electrical output sensitivity to sound is increased as expected.
The sensor may be designed as a microphone which achieves an equivalent acoustic pressure noise floor of 20 dBA, with a frequency response will be flat±3 decibels over the frequency range of 20 Hz to 20 kHz.
While a cantilevered plate-shaped element has been described above as the transducing element for the acoustic waves in air to mechanical motion of a charge, it is also possible to employ one or more fibers, which have the advantage of a high aerodynamic drag to mass ratio. According to the present technology, since the electrostatic interaction of the sensing plates and the moving element does not substantially deflect the element nor materially alter its stiffness, the technology permits sensing of the approximate particle motion in the air surrounding the fiber by viscous drag, as compared to the pressure difference induced deflection of a plate as is more typically measured. Further, the sensor is not limited to a single fiber, and therefore a plurality of fibers may be provided, either as independently moving parallel elements each interacting with the sensing electrodes, or formed into a loose mat or mesh, so that all fibers move together. See, [4, 30, 41, 42, 3]. For example, the fibers may be spider silk coated with 80 nm gold, or electro spun poly methyl methacrylate.
The operation of a viscous drag moving element can be analyzed based on differences in pressure from a plane traveling acoustic wave acting on its two plane surfaces. One may construct an approximate, qualitative model by considering the moving element to be an elastic beam. Focusing attention on response at a single frequency, ω, the beam deflection at a point along its length x, at time t, w(x, t), may be calculated by solving the following standard partial differential equation,
As the beam becomes sufficiently thin (i.e., as h and b become small), all of the terms in equation (21) become negligible in comparison to the viscous damping force, C (Ue{circumflex over (ι)}ωt−{dot over (w)}) [4] because C has a very much weaker dependence on h and b than all other terms. In addition, for an isolated fiber or beam, the effective separation distance dis approximately equal to b so the acoustic pressure difference term, the first term on the right hand side, also becomes small. Consequently, in this limiting case where the viscous term dominates, the relative motion between the fiber and the air becomes negligible leading to {dot over (w)}≈Ue{circumflex over (ι)}ωt [4]. Therefore, with suitable design of the sensing element so that viscous forces dominate, the sensing element will move with the acoustic medium.
Extremely thin, compliant materials are widely available for constructing these sensing electrodes, such as graphene [1, 2], and carbon nanotubes or nanotube yarn. Flow sensing has also been accomplished with electrospun polymer fibers [41]. These very thin structures have such low bending stiffness, however, that it is not possible to incorporate them into conventional capacitive microphone designs without having their motion be strongly influenced by the electrostatic forces which occur normal to their long axis.
A typical silicon microfabrication process to create the thin velocity-sensing film begins with a bare silicon wafer on which a one-micron oxide is grown through wet oxidation. This oxide film provides an etch stop for a through wafer etch used to create an open air space behind the film. A silicon nitride film having thickness approximately 0.5 micron is then deposited using a low pressure chemical vapor deposition (LPCVD) furnace. The silicon nitride is patterned through optical lithography to define the holes to achieve porosity and to define the electrode edges. Portions of the nitride film are made to be conductive by depositing and patterning a thin (approximately 80 nm) layer of phosphorous doped silicon using a LPCVD process. The film is then annealed to form polycrystalline silicon. A through-wafer backside reactive ion etch (RIE) is performed to expose the backside of the silicon electrode. The electrode is released by removing the thermal oxide, using buffered hydrofluoric acid. The fabrication of the sensing electrodes is performed by depositing conductive films around the perimeter of the moving electrode.
The fibers may be less and 1μ, and for example may be about 500 nm diameter.
The device according to the present technology may be used not only as a sensor, but also as an actuator. In this case, for example, we may apply a small time-varying differential voltage to electrodes which will effectively modulate the system's equilibrium position about a null position. A voltage applied to the moving element electrode may be set to a value that adjusts the electrostatic stiffness to nearly any value desired, leaving the motion to be limited only by the mechanical stiffness and mass of the moving electrode.
The use of an extremely compliant and lightweight moving electrode material, such as for example, graphene, would enable actuation with very small driving voltage. This configuration permits a wide range of adjustment of the equilibrium position as a function of small changes in the driving voltage. The response of the moving electrode to changes in voltage is linear, instead of quadratic, as might otherwise be expected for a parallel plate actuator. Further, in a 4-electrode embodiment which has three static electrodes instead of two as described above, may also be used. In this case, the additional electrode provides additional ability to adjust the effective electrostatic stiffness of the moving electrode. Note that the forces may be repulsive rather than attractive as discussed in various embodiments above.
The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Each of the following its expressly incorporated herein by reference in its entirety:
The present application is a PCT National Stage application of PCT/US2019/033855, published as WO 2019/226958, filed May 23, 2019, which claims benefit of priority from U.S. Provisional Patent Application No. 62/676,058, filed May 24, 2018, and from U.S. Provisional Patent Application No. 62/676,071, filed May 24, 2018, each of which are each expressly incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/033855 | 5/23/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/226958 | 11/28/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3931469 | Elliott et al. | Jan 1976 | A |
3935397 | West | Jan 1976 | A |
3941946 | Kawakami et al. | Mar 1976 | A |
3942029 | Kawakami et al. | Mar 1976 | A |
3944756 | Lininger | Mar 1976 | A |
3946422 | Yagi et al. | Mar 1976 | A |
3958662 | Brzezinski et al. | May 1976 | A |
3961202 | Kono et al. | Jun 1976 | A |
3980838 | Yakushiji et al. | Sep 1976 | A |
3992585 | Turner et al. | Nov 1976 | A |
4006317 | Freeman | Feb 1977 | A |
4014091 | Kodera et al. | Mar 1977 | A |
4034332 | Alais | Jul 1977 | A |
4037062 | Fergason | Jul 1977 | A |
4046974 | Baumhauer, Jr. et al. | Sep 1977 | A |
4063050 | Carlson et al. | Dec 1977 | A |
4081626 | Muggli et al. | Mar 1978 | A |
4085297 | Paglia | Apr 1978 | A |
4093884 | Dreyfus et al. | Jun 1978 | A |
4122302 | Bobb | Oct 1978 | A |
4149095 | Poirier et al. | Apr 1979 | A |
4151480 | Carlson et al. | Apr 1979 | A |
4160882 | Driver | Jul 1979 | A |
4170721 | Ishibashi et al. | Oct 1979 | A |
4188513 | Morrell et al. | Feb 1980 | A |
4207442 | Freeman | Jun 1980 | A |
4215249 | Reynard et al. | Jul 1980 | A |
4225755 | Block | Sep 1980 | A |
4246448 | Tam et al. | Jan 1981 | A |
4246449 | Biber | Jan 1981 | A |
4249043 | Morgan et al. | Feb 1981 | A |
4281221 | DelBello | Jul 1981 | A |
4288735 | Crites | Sep 1981 | A |
4289936 | Civitello | Sep 1981 | A |
4302634 | Paglia | Nov 1981 | A |
4311881 | Reynard | Jan 1982 | A |
4323736 | Strickland | Apr 1982 | A |
4329547 | Imai | May 1982 | A |
4360955 | Block | Nov 1982 | A |
4401858 | Reynard et al. | Aug 1983 | A |
4403117 | Paglia | Sep 1983 | A |
4409441 | Murray, Jr. et al. | Oct 1983 | A |
4414433 | Horie et al. | Nov 1983 | A |
4420790 | Golke et al. | Dec 1983 | A |
4429189 | Berkley et al. | Jan 1984 | A |
4429191 | Busch-Vishniac et al. | Jan 1984 | A |
4429192 | Busch-Vishniac et al. | Jan 1984 | A |
4429193 | Busch-Vishniac et al. | Jan 1984 | A |
4434327 | Busch-Vishniac et al. | Feb 1984 | A |
4436648 | Khanna et al. | Mar 1984 | A |
4439641 | Paglia | Mar 1984 | A |
4439642 | Reynard | Mar 1984 | A |
4461931 | Peters | Jul 1984 | A |
4489278 | Sawazaki | Dec 1984 | A |
4491697 | Tanaka et al. | Jan 1985 | A |
4492825 | Brzezinski et al. | Jan 1985 | A |
4515997 | Stinger, Jr. | May 1985 | A |
4524247 | Lindenberger et al. | Jun 1985 | A |
4533795 | Baumhauer, Jr. et al. | Aug 1985 | A |
4541112 | Kern | Sep 1985 | A |
4542264 | Schmidt et al. | Sep 1985 | A |
4558184 | Busch-Vishniac et al. | Dec 1985 | A |
4567445 | Berg | Jan 1986 | A |
4582961 | Frederiksen | Apr 1986 | A |
4615105 | Wada et al. | Oct 1986 | A |
4621171 | Wada et al. | Nov 1986 | A |
4764690 | Murphy et al. | Aug 1988 | A |
4767973 | Jacobsen et al. | Aug 1988 | A |
4790021 | Pribyl | Dec 1988 | A |
4796725 | Katayama | Jan 1989 | A |
4802227 | Elko et al. | Jan 1989 | A |
4849050 | Evans et al. | Jul 1989 | A |
4849071 | Evans et al. | Jul 1989 | A |
4922471 | Kuehnel | May 1990 | A |
4977590 | Milovancevic | Dec 1990 | A |
4993072 | Murphy | Feb 1991 | A |
5014322 | Yasuda et al. | May 1991 | A |
5038459 | Yasuda et al. | Aug 1991 | A |
5054081 | West | Oct 1991 | A |
5097224 | Madaffari et al. | Mar 1992 | A |
5161128 | Kenney | Nov 1992 | A |
5206914 | Fortney et al. | Apr 1993 | A |
5208789 | Ling | May 1993 | A |
5214709 | Ribic | May 1993 | A |
5335210 | Bernstein | Aug 1994 | A |
5392358 | Driver | Feb 1995 | A |
5452268 | Bernstein | Sep 1995 | A |
5471540 | Maeda | Nov 1995 | A |
5490220 | Loeppert | Feb 1996 | A |
5570428 | Madaffari et al. | Oct 1996 | A |
5573679 | Mitchell et al. | Nov 1996 | A |
5590212 | Uryu et al. | Dec 1996 | A |
5600610 | Hill et al. | Feb 1997 | A |
5712598 | Tomikawa | Jan 1998 | A |
5745438 | Hill et al. | Apr 1998 | A |
5802198 | Beavers et al. | Sep 1998 | A |
5854846 | Beavers | Dec 1998 | A |
5862239 | Kubli et al. | Jan 1999 | A |
5870482 | Loeppert | Feb 1999 | A |
5948981 | Woodruff | Sep 1999 | A |
5978491 | Papadopoulos | Nov 1999 | A |
6075867 | Bay et al. | Jun 2000 | A |
6104492 | Giles et al. | Aug 2000 | A |
6125189 | Yasuno et al. | Sep 2000 | A |
6128122 | Drake et al. | Oct 2000 | A |
6145186 | Beavers | Nov 2000 | A |
6164134 | Cargille | Dec 2000 | A |
6175636 | Norris et al. | Jan 2001 | B1 |
6178249 | Hietanen et al. | Jan 2001 | B1 |
6188772 | Norris et al. | Feb 2001 | B1 |
6199575 | Widner | Mar 2001 | B1 |
6201629 | McClelland et al. | Mar 2001 | B1 |
6201874 | Croft, III et al. | Mar 2001 | B1 |
6218883 | Takeuchi | Apr 2001 | B1 |
6243474 | Tai et al. | Jun 2001 | B1 |
6249075 | Bishop et al. | Jun 2001 | B1 |
6273544 | Silverbrook | Aug 2001 | B1 |
6304662 | Norris et al. | Oct 2001 | B1 |
6308398 | Beavers | Oct 2001 | B1 |
6309048 | Silverbrook | Oct 2001 | B1 |
6312114 | Silverbrook | Nov 2001 | B1 |
6312393 | Abreu | Nov 2001 | B1 |
6343129 | Pelrine et al. | Jan 2002 | B1 |
6353492 | McClelland et al. | Mar 2002 | B2 |
6357299 | Aigner et al. | Mar 2002 | B1 |
6360035 | Hurst, Jr. et al. | Mar 2002 | B1 |
6360601 | Challoner et al. | Mar 2002 | B1 |
6366678 | Madaffari et al. | Apr 2002 | B1 |
6376971 | Pelrine et al. | Apr 2002 | B1 |
6378989 | Silverbrook | Apr 2002 | B1 |
6393129 | Conrad et al. | May 2002 | B1 |
6408878 | Unger et al. | Jun 2002 | B2 |
6424466 | Flanders | Jul 2002 | B1 |
6427015 | Backram et al. | Jul 2002 | B1 |
6433911 | Chen et al. | Aug 2002 | B1 |
6434245 | Zimmermann | Aug 2002 | B1 |
6439689 | Silverbrook | Aug 2002 | B1 |
6439699 | Silverbrook | Aug 2002 | B1 |
6441451 | Ikeda et al. | Aug 2002 | B1 |
6443558 | Silverbrook | Sep 2002 | B1 |
6449370 | Yasuno et al. | Sep 2002 | B1 |
6450628 | Jeanmaire et al. | Sep 2002 | B1 |
6474781 | Jeanmaire | Nov 2002 | B1 |
6480645 | Peale et al. | Nov 2002 | B1 |
6481835 | Hawkins et al. | Nov 2002 | B2 |
6483924 | Kirjavainen | Nov 2002 | B1 |
6491362 | Jeanmaire | Dec 2002 | B1 |
6493288 | Khuri-Yakub et al. | Dec 2002 | B2 |
6504937 | Papadopoulos et al. | Jan 2003 | B1 |
6508546 | Silverbrook | Jan 2003 | B2 |
6510231 | Barnert | Jan 2003 | B2 |
6517197 | Hawkins et al. | Feb 2003 | B2 |
6529652 | Brener | Mar 2003 | B1 |
6531668 | Ma | Mar 2003 | B1 |
6535460 | Loeppert et al. | Mar 2003 | B2 |
6535612 | Croft, III et al. | Mar 2003 | B1 |
6538799 | McClelland et al. | Mar 2003 | B2 |
6543110 | Pelrine et al. | Apr 2003 | B1 |
6544193 | Abreu | Apr 2003 | B2 |
6545384 | Pelrine et al. | Apr 2003 | B1 |
6547371 | Silverbrook | Apr 2003 | B2 |
6549692 | Harel et al. | Apr 2003 | B1 |
6554410 | Jeanmaire et al. | Apr 2003 | B2 |
6572220 | Ross et al. | Jun 2003 | B1 |
6575566 | Jeanmaire et al. | Jun 2003 | B1 |
6580797 | Papadopoulos et al. | Jun 2003 | B1 |
6583533 | Pelrine et al. | Jun 2003 | B2 |
6584206 | Ohashi | Jun 2003 | B2 |
6588882 | Silverbrook | Jul 2003 | B2 |
6591029 | Lin et al. | Jul 2003 | B1 |
6592207 | Silverbrook | Jul 2003 | B1 |
6594057 | Drake et al. | Jul 2003 | B1 |
6598964 | Silverbrook | Jul 2003 | B2 |
6600825 | Leysieffer | Jul 2003 | B1 |
6621134 | Zurn | Sep 2003 | B1 |
6623108 | Silverbrook | Sep 2003 | B2 |
6625399 | Davis | Sep 2003 | B1 |
6628791 | Bank et al. | Sep 2003 | B1 |
6630639 | McSwiggen | Oct 2003 | B2 |
6634735 | Silverbrook | Oct 2003 | B1 |
6641273 | Staker et al. | Nov 2003 | B1 |
6642067 | Dwyer | Nov 2003 | B2 |
6644793 | Silverbrook | Nov 2003 | B2 |
6652082 | Silverbrook | Nov 2003 | B2 |
6661897 | Smith | Dec 2003 | B2 |
6664718 | Pelrine et al. | Dec 2003 | B2 |
6666548 | Sadasivan et al. | Dec 2003 | B1 |
6667189 | Wang et al. | Dec 2003 | B1 |
6670809 | Edelstein et al. | Dec 2003 | B1 |
6677176 | Wong et al. | Jan 2004 | B2 |
6698867 | Silverbrook | Mar 2004 | B2 |
6724058 | Aigner et al. | Apr 2004 | B2 |
6731766 | Yasuno et al. | May 2004 | B2 |
6733116 | Silverbrook | May 2004 | B1 |
6741709 | Kay et al. | May 2004 | B2 |
6742873 | Silverbrook | Jun 2004 | B1 |
6744896 | Tanabe et al. | Jun 2004 | B2 |
6745627 | Woodruff et al. | Jun 2004 | B1 |
6746108 | Jeanmaire | Jun 2004 | B1 |
6749568 | Fleischman et al. | Jun 2004 | B2 |
6756248 | Ikeda et al. | Jun 2004 | B2 |
6760455 | Croft, III et al. | Jul 2004 | B2 |
6768181 | Dwyer | Jul 2004 | B2 |
6781284 | Pelrine et al. | Aug 2004 | B1 |
6784500 | Lemkin | Aug 2004 | B2 |
6785393 | Lipponen et al. | Aug 2004 | B2 |
6786573 | Silverbrook | Sep 2004 | B2 |
6788794 | Corsaro et al. | Sep 2004 | B2 |
6788795 | Scheeper et al. | Sep 2004 | B2 |
6793328 | Jeanmaire | Sep 2004 | B2 |
6793753 | Unger et al. | Sep 2004 | B2 |
6798729 | Hurst, Jr. et al. | Sep 2004 | B1 |
6798796 | Hiroshi et al. | Sep 2004 | B2 |
6799835 | Silverbrook | Oct 2004 | B2 |
6804362 | Zimmermann et al. | Oct 2004 | B1 |
6805435 | Silverbrook | Oct 2004 | B2 |
6805454 | Staker et al. | Oct 2004 | B2 |
6806593 | Tai et al. | Oct 2004 | B2 |
6808253 | Silverbrook | Oct 2004 | B2 |
6812620 | Scheeper et al. | Nov 2004 | B2 |
6812624 | Pei et al. | Nov 2004 | B1 |
6818092 | Cho et al. | Nov 2004 | B2 |
6819769 | Zimmermann | Nov 2004 | B1 |
6824257 | Silverbrook | Nov 2004 | B2 |
6827428 | Silverbrook | Dec 2004 | B2 |
6827429 | Jeanmaire et al. | Dec 2004 | B2 |
6829131 | Loeb et al. | Dec 2004 | B1 |
6832828 | Silverbrook | Dec 2004 | B2 |
6842964 | Tucker et al. | Jan 2005 | B1 |
6847036 | Darling et al. | Jan 2005 | B1 |
6848181 | Silverbrook | Feb 2005 | B1 |
6848317 | Kim | Feb 2005 | B2 |
6851796 | Jeanmaire et al. | Feb 2005 | B2 |
6860590 | Silverbrook | Mar 2005 | B2 |
6863378 | Silverbrook | Mar 2005 | B2 |
6863384 | Jeanmaire | Mar 2005 | B2 |
6866369 | Silverbrook | Mar 2005 | B2 |
6870938 | Takeuchi et al. | Mar 2005 | B2 |
6870939 | Chiang et al. | Mar 2005 | B2 |
6880235 | Ma | Apr 2005 | B2 |
6880922 | Silverbrook | Apr 2005 | B2 |
6883904 | Jeanmaire et al. | Apr 2005 | B2 |
6883906 | Silverbrook | Apr 2005 | B2 |
6886915 | Silverbrook | May 2005 | B2 |
6889555 | Ganapathi | May 2005 | B1 |
6890059 | Silverbrook | May 2005 | B2 |
6891240 | Dunec et al. | May 2005 | B2 |
6899137 | Unger et al. | May 2005 | B2 |
6899416 | Silverbrook | May 2005 | B2 |
6902255 | Silverbrook | Jun 2005 | B1 |
6905195 | Silverbrook | Jun 2005 | B2 |
6905620 | Silverbrook | Jun 2005 | B2 |
6911764 | Pelrine et al. | Jun 2005 | B2 |
6913347 | Silverbrook | Jul 2005 | B2 |
6916087 | Silverbrook | Jul 2005 | B2 |
6916091 | Silverbrook | Jul 2005 | B2 |
6918655 | Silverbrook | Jul 2005 | B2 |
6921150 | Silverbrook | Jul 2005 | B2 |
6922118 | Kubena et al. | Jul 2005 | B2 |
6923526 | Silverbrook | Aug 2005 | B2 |
6926670 | Rich et al. | Aug 2005 | B2 |
6929030 | Unger et al. | Aug 2005 | B2 |
6929350 | Silverbrook | Aug 2005 | B2 |
6935165 | Bashir et al. | Aug 2005 | B2 |
6938989 | Silverbrook | Sep 2005 | B2 |
6938991 | Silverbrook | Sep 2005 | B2 |
6938994 | Silverbrook | Sep 2005 | B2 |
6940211 | Pelrine et al. | Sep 2005 | B2 |
6944308 | Gullov et al. | Sep 2005 | B2 |
6949756 | Gerlach et al. | Sep 2005 | B2 |
6955428 | Silverbrook | Oct 2005 | B2 |
6974206 | Silverbrook | Dec 2005 | B2 |
6978029 | Ikeda | Dec 2005 | B1 |
6987859 | Loeppert et al. | Jan 2006 | B2 |
6988785 | Silverbrook | Jan 2006 | B2 |
6988789 | Silverbrook | Jan 2006 | B2 |
6988790 | Silverbrook | Jan 2006 | B2 |
6991318 | Silverbrook | Jan 2006 | B2 |
6994424 | Silverbrook | Feb 2006 | B2 |
6994426 | Silverbrook | Feb 2006 | B2 |
6994430 | Silverbrook | Feb 2006 | B2 |
6994672 | Fleischman et al. | Feb 2006 | B2 |
6998278 | Silverbrook | Feb 2006 | B2 |
7001007 | Silverbrook | Feb 2006 | B2 |
7003127 | Sjursen et al. | Feb 2006 | B1 |
7004563 | Silverbrook | Feb 2006 | B2 |
7004577 | Silverbrook | Feb 2006 | B2 |
7006720 | Dunec et al. | Feb 2006 | B2 |
7014296 | Silverbrook | Mar 2006 | B2 |
7014298 | Silverbrook | Mar 2006 | B2 |
7014785 | Silverbrook | Mar 2006 | B2 |
7019955 | Loeb et al. | Mar 2006 | B2 |
7023066 | Lee et al. | Apr 2006 | B2 |
7025324 | Slocum et al. | Apr 2006 | B1 |
7028474 | Silverbrook | Apr 2006 | B2 |
7032992 | Silverbrook | Apr 2006 | B2 |
7032997 | Silverbrook | Apr 2006 | B2 |
7034432 | Pelrine et al. | Apr 2006 | B1 |
7034854 | Cruchon-Dupeyrat et al. | Apr 2006 | B2 |
7036372 | Chojnacki et al. | May 2006 | B2 |
7039202 | Takeuchi | May 2006 | B1 |
7040173 | Dehe | May 2006 | B2 |
7040338 | Unger et al. | May 2006 | B2 |
7041063 | Abreu | May 2006 | B2 |
7046002 | Edelstein | May 2006 | B1 |
7048868 | Silverbrook | May 2006 | B2 |
7049732 | Pei et al. | May 2006 | B2 |
7052114 | Silverbrook | May 2006 | B2 |
7052120 | Silverbrook | May 2006 | B2 |
7054456 | Smits et al. | May 2006 | B2 |
7054519 | Novotny | May 2006 | B1 |
7062055 | Pelrine et al. | Jun 2006 | B2 |
7064472 | Pelrine et al. | Jun 2006 | B2 |
7064883 | Payne et al. | Jun 2006 | B2 |
7066579 | Silverbrook | Jun 2006 | B2 |
7070256 | Silverbrook | Jul 2006 | B2 |
7070258 | Silverbrook | Jul 2006 | B2 |
7073397 | Ganapathi | Jul 2006 | B2 |
7073881 | Silverbrook | Jul 2006 | B2 |
7074634 | Foglietti et al. | Jul 2006 | B2 |
7077010 | Ganapathi | Jul 2006 | B2 |
7078796 | Dunn et al. | Jul 2006 | B2 |
7080893 | Silverbrook | Jul 2006 | B2 |
7080895 | Silverbrook | Jul 2006 | B2 |
7083262 | Silverbrook | Aug 2006 | B2 |
7086717 | Silverbrook | Aug 2006 | B2 |
7091715 | Nemirovsky et al. | Aug 2006 | B2 |
7093494 | Silverbrook et al. | Aug 2006 | B2 |
7095864 | Billson et al. | Aug 2006 | B1 |
7100446 | Acar et al. | Sep 2006 | B1 |
7101020 | Silverbrook | Sep 2006 | B2 |
7107665 | Horiuchi et al. | Sep 2006 | B2 |
7109859 | Peeters | Sep 2006 | B2 |
7111924 | Silverbrook | Sep 2006 | B2 |
7123111 | Brunson et al. | Oct 2006 | B2 |
7132056 | Silverbrook | Nov 2006 | B2 |
7132307 | Wang et al. | Nov 2006 | B2 |
7134740 | Silverbrook | Nov 2006 | B2 |
7142684 | Horiuchi et al. | Nov 2006 | B2 |
7143652 | Silverbrook et al. | Dec 2006 | B2 |
7144519 | Silverbrook | Dec 2006 | B2 |
7144616 | Unger et al. | Dec 2006 | B1 |
7146016 | Pedersen | Dec 2006 | B2 |
7147304 | Silverbrook | Dec 2006 | B2 |
7147307 | Silverbrook | Dec 2006 | B2 |
7152481 | Wang | Dec 2006 | B2 |
7152944 | Silverbrook | Dec 2006 | B2 |
7152961 | Silverbrook | Dec 2006 | B2 |
7152967 | Silverbrook | Dec 2006 | B2 |
7155823 | Silverbrook | Jan 2007 | B2 |
7157712 | Flanders et al. | Jan 2007 | B2 |
7158646 | Bank et al. | Jan 2007 | B2 |
7159441 | Challoner et al. | Jan 2007 | B2 |
7159968 | Silverbrook | Jan 2007 | B2 |
7160475 | Scipioni | Jan 2007 | B2 |
7164117 | Breed et al. | Jan 2007 | B2 |
7168167 | Silverbrook | Jan 2007 | B2 |
7169106 | Fleischman et al. | Jan 2007 | B2 |
7169314 | Unger et al. | Jan 2007 | B2 |
7175775 | Silverbrook | Feb 2007 | B2 |
7178899 | Silverbrook | Feb 2007 | B2 |
7182431 | Silverbrook | Feb 2007 | B2 |
7182437 | Silverbrook | Feb 2007 | B2 |
7183618 | Ishii | Feb 2007 | B2 |
7184193 | McKinnell et al. | Feb 2007 | B2 |
7188935 | Silverbrook | Mar 2007 | B2 |
7188938 | Silverbrook | Mar 2007 | B2 |
7189334 | Silverbrook | Mar 2007 | B2 |
7193256 | Renna et al. | Mar 2007 | B2 |
7194095 | Cheng | Mar 2007 | B2 |
7198346 | Silverbrook | Apr 2007 | B2 |
7199501 | Pei et al. | Apr 2007 | B2 |
7204162 | Johnson et al. | Apr 2007 | B2 |
7205173 | Brunson et al. | Apr 2007 | B2 |
7207656 | Silverbrook | Apr 2007 | B2 |
7208729 | Syms | Apr 2007 | B2 |
7208996 | Suzuki et al. | Apr 2007 | B2 |
7210764 | Silverbroo | May 2007 | B2 |
7212487 | Gibson | May 2007 | B2 |
7214298 | Spence et al. | May 2007 | B2 |
7215527 | Neumann, Jr. et al. | May 2007 | B2 |
7216671 | Unger et al. | May 2007 | B2 |
7216956 | Silverbrook | May 2007 | B2 |
7218742 | Kay et al. | May 2007 | B2 |
7219427 | Silverbrook | May 2007 | B2 |
7219982 | Silverbrook | May 2007 | B2 |
7221768 | Sjursen et al. | May 2007 | B2 |
7224106 | Pei et al. | May 2007 | B2 |
7226147 | Silverbrook | Jun 2007 | B2 |
7227687 | Trisnadi et al. | Jun 2007 | B1 |
7229154 | Silverbrook | Jun 2007 | B2 |
7233097 | Rosenthal et al. | Jun 2007 | B2 |
7233101 | Jin | Jun 2007 | B2 |
7233679 | Muthuswamy et al. | Jun 2007 | B2 |
7234795 | Silverbrook | Jun 2007 | B2 |
7249830 | Hawkins et al. | Jul 2007 | B2 |
7250128 | Unger et al. | Jul 2007 | B2 |
7256927 | Selbrede | Aug 2007 | B2 |
7258421 | Silverbrook | Aug 2007 | B2 |
7258774 | Chou et al. | Aug 2007 | B2 |
7259503 | Pei et al. | Aug 2007 | B2 |
7260980 | Adams et al. | Aug 2007 | B2 |
7260993 | Silverbrook et al. | Aug 2007 | B2 |
7264333 | Silverbrook | Sep 2007 | B2 |
7269267 | Song et al. | Sep 2007 | B2 |
7269268 | Song et al. | Sep 2007 | B2 |
7273270 | Katerberg | Sep 2007 | B2 |
7275433 | Caminada et al. | Oct 2007 | B2 |
7278713 | Silverbrook | Oct 2007 | B2 |
7282709 | Darling et al. | Oct 2007 | B2 |
7282834 | Kubena et al. | Oct 2007 | B2 |
7284430 | Acar et al. | Oct 2007 | B2 |
7284836 | Silverbrook | Oct 2007 | B2 |
7286743 | Soskind et al. | Oct 2007 | B2 |
7290859 | Silverbrook | Nov 2007 | B2 |
7292700 | Engbert et al. | Nov 2007 | B1 |
7293855 | Silverbrook | Nov 2007 | B2 |
7294503 | Quake et al. | Nov 2007 | B2 |
7295675 | Akino et al. | Nov 2007 | B2 |
7298856 | Tajima et al. | Nov 2007 | B2 |
7305096 | Su et al. | Dec 2007 | B2 |
7305880 | Caminada et al. | Dec 2007 | B2 |
7308827 | Holt et al. | Dec 2007 | B2 |
7317234 | Marsh et al. | Jan 2008 | B2 |
7320457 | Heim et al. | Jan 2008 | B2 |
7322680 | Silverbrook | Jan 2008 | B2 |
7327851 | Song | Feb 2008 | B2 |
7328975 | Silverbrook | Feb 2008 | B2 |
7329933 | Zhe et al. | Feb 2008 | B2 |
7331101 | Silverbrook | Feb 2008 | B2 |
7331659 | Silverbrook | Feb 2008 | B2 |
7334874 | Silverbrook | Feb 2008 | B2 |
7338147 | Silverbrook | Mar 2008 | B2 |
7340941 | Fruhberger et al. | Mar 2008 | B1 |
7346178 | Zhe et al. | Mar 2008 | B2 |
7347535 | Silverbrook | Mar 2008 | B2 |
7347697 | Grundy et al. | Mar 2008 | B2 |
7350901 | Silverbrook | Apr 2008 | B2 |
7350906 | Silverbrook | Apr 2008 | B2 |
7351376 | Quake et al. | Apr 2008 | B1 |
7352876 | Boor et al. | Apr 2008 | B2 |
7354787 | Dunec et al. | Apr 2008 | B2 |
7359106 | Amm et al. | Apr 2008 | B1 |
7359286 | Stuart Savoia et al. | Apr 2008 | B2 |
7360871 | Silverbrook | Apr 2008 | B2 |
7362032 | Pelrine et al. | Apr 2008 | B2 |
7362873 | Pedersen | Apr 2008 | B2 |
7368312 | Kranz et al. | May 2008 | B1 |
7368862 | Pelrine et al. | May 2008 | B2 |
7370942 | Silverbrook | May 2008 | B2 |
7375872 | Ishii | May 2008 | B2 |
7377175 | Matsubara | May 2008 | B2 |
7380339 | Silverbrook | Jun 2008 | B2 |
7380906 | Silverbrook | Jun 2008 | B2 |
7380913 | Silverbrook | Jun 2008 | B2 |
7384131 | Silverbrook | Jun 2008 | B2 |
7386136 | Ohbayashi et al. | Jun 2008 | B2 |
7387365 | Silverbrook | Jun 2008 | B2 |
7387368 | Silverbrook | Jun 2008 | B2 |
7393083 | Silverbrook | Jul 2008 | B2 |
7394182 | Pelrine et al. | Jul 2008 | B2 |
7396108 | Silverbrook | Jul 2008 | B2 |
7397421 | Smith | Jul 2008 | B2 |
7399068 | Anagnostopoulos et al. | Jul 2008 | B2 |
7400737 | Pedersen | Jul 2008 | B2 |
7401884 | Silverbrook | Jul 2008 | B2 |
7401895 | Silverbrook | Jul 2008 | B2 |
7401900 | Silverbrook | Jul 2008 | B2 |
7401906 | Hawkins et al. | Jul 2008 | B2 |
7402449 | Fukuda et al. | Jul 2008 | B2 |
7403805 | Abreu | Jul 2008 | B2 |
7410243 | Silverbrook | Aug 2008 | B2 |
7410250 | Silverbrook | Aug 2008 | B2 |
7413293 | Jeanmaire | Aug 2008 | B2 |
7416275 | Silverbrook | Aug 2008 | B2 |
7419244 | Silverbrook | Sep 2008 | B2 |
7419247 | Silverbrook | Sep 2008 | B2 |
7419250 | Silverbrook | Sep 2008 | B2 |
7421898 | Acar et al. | Sep 2008 | B2 |
7425749 | Hartzell et al. | Sep 2008 | B2 |
7431427 | Silverbrook | Oct 2008 | B2 |
7434919 | Hawkins et al. | Oct 2008 | B2 |
7441867 | Silverbrook | Oct 2008 | B2 |
7442317 | Silverbrook | Oct 2008 | B2 |
7447326 | Akino | Nov 2008 | B2 |
7447547 | Palanker | Nov 2008 | B2 |
7448728 | Silverbrook | Nov 2008 | B2 |
7448995 | Wiklof et al. | Nov 2008 | B2 |
7451647 | Matsuhisa et al. | Nov 2008 | B2 |
7457021 | Desai | Nov 2008 | B2 |
7461281 | Miyazaki | Dec 2008 | B2 |
7466835 | Stenberg et al. | Dec 2008 | B2 |
7467850 | Silverbrook | Dec 2008 | B2 |
7468575 | Pelrine et al. | Dec 2008 | B2 |
7468997 | Jayaraman | Dec 2008 | B2 |
7469834 | Schelinski et al. | Dec 2008 | B2 |
7472984 | Silverbrook | Jan 2009 | B2 |
7474872 | Nojima | Jan 2009 | B2 |
7475965 | Silverbrook | Jan 2009 | B2 |
7481111 | Caminada et al. | Jan 2009 | B2 |
7482589 | Flanders et al. | Jan 2009 | B2 |
7485100 | Garcia-Webb et al. | Feb 2009 | B2 |
7489791 | Kunnen et al. | Feb 2009 | B2 |
7493821 | Wang | Feb 2009 | B2 |
7494555 | Unger et al. | Feb 2009 | B2 |
7506966 | Silverbrook | Mar 2009 | B2 |
7517055 | Silverbrook | Apr 2009 | B2 |
7518493 | Bryzek et al. | Apr 2009 | B2 |
7518504 | Peeters | Apr 2009 | B2 |
7521257 | Adams et al. | Apr 2009 | B2 |
7524029 | Silverbrook | Apr 2009 | B2 |
7524032 | Silverbrook | Apr 2009 | B2 |
7527357 | Silverbrook | May 2009 | B2 |
7528691 | Wallis et al. | May 2009 | B2 |
7537314 | Silverbrook | May 2009 | B2 |
7537325 | Silverbrook | May 2009 | B2 |
7539532 | Tran | May 2009 | B2 |
7539533 | Tran | May 2009 | B2 |
7543502 | Niblock | Jun 2009 | B2 |
7545945 | Miles | Jun 2009 | B2 |
7549726 | Silverbrook | Jun 2009 | B2 |
7553001 | Silverbrook | Jun 2009 | B2 |
RE40860 | Billson et al. | Jul 2009 | E |
7556351 | Silverbrook | Jul 2009 | B2 |
7556352 | Silverbrook | Jul 2009 | B2 |
7556353 | Silverbrook | Jul 2009 | B2 |
7556358 | Silverbrook | Jul 2009 | B2 |
7556361 | Silverbrook | Jul 2009 | B2 |
7558622 | Tran | Jul 2009 | B2 |
7562573 | Yazdi | Jul 2009 | B2 |
7562962 | Silverbrook | Jul 2009 | B2 |
7562963 | Silverbrook | Jul 2009 | B2 |
7569926 | Carlson et al. | Aug 2009 | B2 |
7570773 | Ohbayashi et al. | Aug 2009 | B2 |
7578569 | Silverbrook | Aug 2009 | B2 |
7578582 | Silverbrook | Aug 2009 | B2 |
7579678 | Suzuki et al. | Aug 2009 | B2 |
7585047 | Silverbrook | Sep 2009 | B2 |
7585066 | Silverbrook | Sep 2009 | B2 |
7585743 | Renna et al. | Sep 2009 | B2 |
7588327 | Silverbrook | Sep 2009 | B2 |
7591539 | Silverbrook | Sep 2009 | B2 |
7591541 | Silverbrook | Sep 2009 | B2 |
7595580 | Heim | Sep 2009 | B2 |
7597435 | Silverbrook | Oct 2009 | B2 |
7601270 | Unger et al. | Oct 2009 | B1 |
7607355 | Shirasaka et al. | Oct 2009 | B2 |
7608989 | Heydt et al. | Oct 2009 | B2 |
7611220 | Silverbrook | Nov 2009 | B2 |
7615744 | Syms | Nov 2009 | B1 |
7616367 | Desai | Nov 2009 | B2 |
7620197 | Han et al. | Nov 2009 | B2 |
7622081 | Chou et al. | Nov 2009 | B2 |
7625061 | Silverbrook | Dec 2009 | B2 |
7625067 | Silverbrook | Dec 2009 | B2 |
7625068 | Silverbrook | Dec 2009 | B2 |
7628468 | Silverbrook | Dec 2009 | B2 |
7637582 | Silverbrook | Dec 2009 | B2 |
7640803 | Gutierrez et al. | Jan 2010 | B1 |
7642575 | Wong et al. | Jan 2010 | B2 |
7652752 | Fetzer et al. | Jan 2010 | B2 |
7654628 | Silverbrook | Feb 2010 | B2 |
7654642 | Silverbrook | Feb 2010 | B2 |
7654957 | Abreu | Feb 2010 | B2 |
7658473 | Silverbrook | Feb 2010 | B2 |
7661793 | Silverbrook | Feb 2010 | B2 |
7661796 | Silverbrook | Feb 2010 | B2 |
7661797 | Silverbrook | Feb 2010 | B2 |
7663502 | Breed | Feb 2010 | B2 |
7668323 | Miyazaki | Feb 2010 | B2 |
7669950 | Silverbrook | Mar 2010 | B2 |
7669951 | Silverbrook | Mar 2010 | B2 |
7669964 | Silverbrook | Mar 2010 | B2 |
7669971 | Silverbrook | Mar 2010 | B2 |
7673976 | Piatt et al. | Mar 2010 | B2 |
7677099 | Nasiri et al. | Mar 2010 | B2 |
7677685 | Silverbrook | Mar 2010 | B2 |
7677686 | Silverbrook | Mar 2010 | B2 |
7689159 | Nojima | Mar 2010 | B2 |
7694346 | Adams et al. | Apr 2010 | B2 |
7697899 | Rofougaran | Apr 2010 | B2 |
7699440 | Silverbrook | Apr 2010 | B2 |
7702118 | Park et al. | Apr 2010 | B2 |
7702124 | Niederdraenk et al. | Apr 2010 | B2 |
7703890 | Silverbrook | Apr 2010 | B2 |
7708372 | Silverbrook | May 2010 | B2 |
7708381 | Silverbrook | May 2010 | B2 |
7710371 | Mei et al. | May 2010 | B2 |
7714278 | Boyle et al. | May 2010 | B2 |
7715583 | Van Halteren et al. | May 2010 | B2 |
7717542 | Silverbrook | May 2010 | B2 |
7731334 | Silverbrook | Jun 2010 | B2 |
7731336 | Silverbrook | Jun 2010 | B2 |
7731341 | Trauernicht et al. | Jun 2010 | B2 |
7732302 | Yazdi | Jun 2010 | B2 |
7733224 | Tran | Jun 2010 | B2 |
7735963 | Silverbrook | Jun 2010 | B2 |
7735968 | Silverbrook | Jun 2010 | B2 |
7740337 | Silverbrook | Jun 2010 | B2 |
7746538 | Ishii | Jun 2010 | B2 |
7748272 | Kranz et al. | Jul 2010 | B2 |
7748827 | Silverbrook | Jul 2010 | B2 |
7753469 | Silverbrook | Jul 2010 | B2 |
7753487 | Silverbrook | Jul 2010 | B2 |
7753491 | Silverbrook | Jul 2010 | B2 |
7753504 | Silverbrook | Jul 2010 | B2 |
7754010 | Unger et al. | Jul 2010 | B2 |
7756279 | Deruginsky et al. | Jul 2010 | B2 |
7756559 | Abreu | Jul 2010 | B2 |
7758160 | Silverbrook | Jul 2010 | B2 |
7758162 | Silverbrook | Jul 2010 | B2 |
7758166 | Silverbrook | Jul 2010 | B2 |
7758171 | Brost | Jul 2010 | B2 |
7761981 | Rosenthal et al. | Jul 2010 | B2 |
7762638 | Cruchon-Dupeyrat et al. | Jul 2010 | B2 |
7766055 | Unger et al. | Aug 2010 | B2 |
7769193 | Matsuzawa | Aug 2010 | B2 |
7771025 | Silverbrook | Aug 2010 | B2 |
7771032 | Silverbrook | Aug 2010 | B2 |
7775215 | Hassler, Jr. et al. | Aug 2010 | B2 |
7775634 | Silverbrook | Aug 2010 | B2 |
7775966 | Dlugos et al. | Aug 2010 | B2 |
7780264 | Silverbrook | Aug 2010 | B2 |
7781249 | Laming et al. | Aug 2010 | B2 |
7784344 | Pavelescu et al. | Aug 2010 | B2 |
7784905 | Silverbrook | Aug 2010 | B2 |
7784910 | Silverbrook | Aug 2010 | B2 |
7786738 | Lang et al. | Aug 2010 | B2 |
7791027 | McAllister et al. | Sep 2010 | B2 |
7794050 | Silverbrook | Sep 2010 | B2 |
7795695 | Weigold et al. | Sep 2010 | B2 |
7804374 | Brown et al. | Sep 2010 | B1 |
7804968 | Akino | Sep 2010 | B2 |
7804969 | Wang et al. | Sep 2010 | B2 |
7804971 | Matsuzawa | Sep 2010 | B2 |
7805821 | Suzuki | Oct 2010 | B2 |
7809417 | Abreu | Oct 2010 | B2 |
7810394 | Yazdi | Oct 2010 | B2 |
7812418 | Hsu et al. | Oct 2010 | B2 |
7815290 | Silverbrook | Oct 2010 | B2 |
7815291 | Silverbrook | Oct 2010 | B2 |
7818871 | Shcheglov | Oct 2010 | B2 |
7822510 | Paik et al. | Oct 2010 | B2 |
7826629 | Miles et al. | Nov 2010 | B2 |
7827864 | Prandi et al. | Nov 2010 | B2 |
7829366 | Miller et al. | Nov 2010 | B2 |
7835055 | Desai | Nov 2010 | B2 |
7835533 | Yonehara et al. | Nov 2010 | B2 |
7836765 | Challoner et al. | Nov 2010 | B2 |
7848532 | Akino | Dec 2010 | B2 |
7849745 | Wang et al. | Dec 2010 | B2 |
7855095 | Miyashita et al. | Dec 2010 | B2 |
7856804 | Laming et al. | Dec 2010 | B2 |
7860258 | Azuma et al. | Dec 2010 | B2 |
7864006 | Foster et al. | Jan 2011 | B2 |
7874644 | Silverbrook | Jan 2011 | B2 |
7878075 | Johansson et al. | Feb 2011 | B2 |
7880565 | Huang | Feb 2011 | B2 |
7884467 | Huang et al. | Feb 2011 | B2 |
7888840 | Shimaoka et al. | Feb 2011 | B2 |
7889882 | Marshall | Feb 2011 | B2 |
7891773 | Silverbrook | Feb 2011 | B2 |
7893798 | Foster et al. | Feb 2011 | B2 |
7894616 | Song et al. | Feb 2011 | B2 |
7896468 | Silverbrook | Mar 2011 | B2 |
7896473 | Silverbrook | Mar 2011 | B2 |
7898159 | Heydt et al. | Mar 2011 | B2 |
7899196 | Furst et al. | Mar 2011 | B2 |
7901023 | Silverbrook | Mar 2011 | B2 |
7903831 | Song | Mar 2011 | B2 |
7905574 | Silverbrook | Mar 2011 | B2 |
7905588 | Silverbrook | Mar 2011 | B2 |
7907743 | Izuchi et al. | Mar 2011 | B2 |
7911115 | Pelrine et al. | Mar 2011 | B2 |
7912235 | Chen | Mar 2011 | B2 |
7912236 | Dehe et al. | Mar 2011 | B2 |
7914115 | Silverbrook | Mar 2011 | B2 |
7915891 | Edelstein | Mar 2011 | B2 |
7916879 | Pedersen | Mar 2011 | B2 |
7918540 | Silverbrook | Apr 2011 | B2 |
7918541 | Silverbrook | Apr 2011 | B2 |
7923064 | Pelrine et al. | Apr 2011 | B2 |
7923902 | Heim | Apr 2011 | B2 |
7923999 | Edelstein | Apr 2011 | B2 |
7925033 | Okazawa | Apr 2011 | B2 |
7925221 | Rofougaran | Apr 2011 | B2 |
7931351 | Silverbrook | Apr 2011 | B2 |
7932117 | Ueya | Apr 2011 | B2 |
7934797 | Silverbrook | May 2011 | B2 |
7934799 | Silverbrook | May 2011 | B2 |
7934808 | Silverbrook | May 2011 | B2 |
7938524 | Silverbrook | May 2011 | B2 |
7939021 | Smith et al. | May 2011 | B2 |
7939994 | Kunze et al. | May 2011 | B2 |
7940944 | Song | May 2011 | B2 |
7946671 | Silverbrook | May 2011 | B2 |
7948731 | Kinbara | May 2011 | B2 |
7949142 | Song | May 2011 | B2 |
7950281 | Hammerschmidt | May 2011 | B2 |
7950771 | Silverbrook | May 2011 | B2 |
7950773 | Silverbrook | May 2011 | B2 |
7950774 | Silverbrook | May 2011 | B2 |
7951636 | Lee et al. | May 2011 | B2 |
7953235 | Song | May 2011 | B2 |
7960208 | Carlson et al. | Jun 2011 | B2 |
7967422 | Silverbrook | Jun 2011 | B2 |
7970154 | Akino | Jun 2011 | B2 |
7971967 | Silverbrook | Jul 2011 | B2 |
7971972 | Silverbrook | Jul 2011 | B2 |
7971975 | Silverbrook | Jul 2011 | B2 |
7973278 | Syms | Jul 2011 | B2 |
7974430 | Izuchi et al. | Jul 2011 | B2 |
7976131 | Silverbrook | Jul 2011 | B2 |
7977635 | Edwards | Jul 2011 | B2 |
7984648 | Horning et al. | Jul 2011 | B2 |
7987784 | Daniel et al. | Aug 2011 | B2 |
7990539 | Li | Aug 2011 | B2 |
7992968 | Silverbrook | Aug 2011 | B2 |
8000483 | de Haan et al. | Aug 2011 | B2 |
8000789 | Denison | Aug 2011 | B2 |
8002933 | Unger et al. | Aug 2011 | B2 |
8004373 | Huang | Aug 2011 | B2 |
8005242 | Hsu et al. | Aug 2011 | B2 |
8009838 | Lee et al. | Aug 2011 | B2 |
8011757 | Silverbrook | Sep 2011 | B2 |
8016744 | Dlugos et al. | Sep 2011 | B2 |
8018301 | Huang | Sep 2011 | B2 |
8020440 | Modugno et al. | Sep 2011 | B2 |
8021614 | Huang et al. | Sep 2011 | B2 |
8022779 | Ayazi et al. | Sep 2011 | B2 |
8023667 | Lin | Sep 2011 | B2 |
8025355 | Silverbrook | Sep 2011 | B2 |
8036401 | Poulsen et al. | Oct 2011 | B2 |
8037756 | Caminada et al. | Oct 2011 | B2 |
8037757 | Johnson | Oct 2011 | B2 |
8041059 | Miyazaki | Oct 2011 | B2 |
8042264 | Rosenthal et al. | Oct 2011 | B2 |
8045733 | Zhe et al. | Oct 2011 | B2 |
8045734 | Zhe et al. | Oct 2011 | B2 |
8047633 | Silverbrook | Nov 2011 | B2 |
8047995 | Wakabayashi et al. | Nov 2011 | B2 |
8051698 | Prandi et al. | Nov 2011 | B2 |
8054566 | Heim et al. | Nov 2011 | B2 |
8057014 | Silverbrook | Nov 2011 | B2 |
8059837 | Wu | Nov 2011 | B2 |
8059838 | Wu | Nov 2011 | B2 |
8059842 | Suzuki et al. | Nov 2011 | B2 |
8061201 | Ayazi et al. | Nov 2011 | B2 |
8061795 | Silverbrook | Nov 2011 | B2 |
8064620 | Huang et al. | Nov 2011 | B2 |
8066355 | Silverbrook | Nov 2011 | B2 |
8072010 | Lutz | Dec 2011 | B2 |
8073166 | Takeuchi et al. | Dec 2011 | B2 |
8073167 | Miles | Dec 2011 | B2 |
8073179 | Wu et al. | Dec 2011 | B2 |
8079669 | Silverbrook | Dec 2011 | B2 |
8079688 | Silverbrook | Dec 2011 | B2 |
8080835 | Nakatani | Dec 2011 | B2 |
8081784 | Liou et al. | Dec 2011 | B2 |
8085956 | Jennings | Dec 2011 | B2 |
8085965 | Akino | Dec 2011 | B2 |
8087740 | Piatt et al. | Jan 2012 | B2 |
8087757 | Silverbrook | Jan 2012 | B2 |
8090125 | Zheng et al. | Jan 2012 | B2 |
8093783 | Rosenthal et al. | Jan 2012 | B2 |
8094839 | Lee et al. | Jan 2012 | B2 |
8094841 | Trusov et al. | Jan 2012 | B2 |
8094844 | Sung | Jan 2012 | B2 |
8098853 | Tanaka et al. | Jan 2012 | B2 |
8098855 | Lee et al. | Jan 2012 | B2 |
8103039 | van Halteren et al. | Jan 2012 | B2 |
8103333 | Tran | Jan 2012 | B2 |
8104354 | Hsu et al. | Jan 2012 | B2 |
8104497 | Unger et al. | Jan 2012 | B2 |
8104515 | Unger et al. | Jan 2012 | B2 |
8104878 | Montz et al. | Jan 2012 | B2 |
8107651 | Liou et al. | Jan 2012 | B2 |
8108036 | Tran | Jan 2012 | B2 |
8110813 | Baars et al. | Feb 2012 | B2 |
8111847 | Lee et al. | Feb 2012 | B2 |
8111871 | Zhang et al. | Feb 2012 | B2 |
8114700 | Miyashita et al. | Feb 2012 | B2 |
8118751 | Dobak, III | Feb 2012 | B2 |
8121673 | Tran | Feb 2012 | B2 |
8121687 | Jensen et al. | Feb 2012 | B2 |
8124218 | Unger et al. | Feb 2012 | B2 |
8126166 | Song | Feb 2012 | B2 |
8126167 | Hirade et al. | Feb 2012 | B2 |
8126171 | Sekino et al. | Feb 2012 | B2 |
8129176 | Quake et al. | Mar 2012 | B2 |
8129802 | Fukuda et al. | Mar 2012 | B2 |
8130986 | White et al. | Mar 2012 | B2 |
8134375 | Boom | Mar 2012 | B2 |
8136385 | Adams et al. | Mar 2012 | B2 |
8138034 | Han et al. | Mar 2012 | B2 |
8139762 | Kuroda et al. | Mar 2012 | B2 |
8139790 | Wu | Mar 2012 | B2 |
8139794 | Chen et al. | Mar 2012 | B2 |
8143576 | Edwards | Mar 2012 | B2 |
8146424 | Johnson et al. | Apr 2012 | B2 |
8164588 | Lauxtermann et al. | Apr 2012 | B2 |
8165323 | Zhou | Apr 2012 | B2 |
8167406 | Panchawagh et al. | May 2012 | B2 |
8170237 | Shajaan et al. | May 2012 | B2 |
8171794 | Spahlinger | May 2012 | B2 |
8175293 | Suvanto | May 2012 | B2 |
8175294 | Jansen | May 2012 | B2 |
8183739 | Heim | May 2012 | B2 |
8184832 | Harman | May 2012 | B2 |
8187795 | Jain et al. | May 2012 | B2 |
8188557 | Rombach et al. | May 2012 | B2 |
8193869 | Brown et al. | Jun 2012 | B1 |
8194908 | Akino | Jun 2012 | B2 |
8196282 | Chen et al. | Jun 2012 | B2 |
8199939 | Suvanto et al. | Jun 2012 | B2 |
8215168 | Merz et al. | Jul 2012 | B2 |
8218794 | Pahl | Jul 2012 | B2 |
8220318 | Degertekin | Jul 2012 | B2 |
8220487 | Unger et al. | Jul 2012 | B2 |
8226199 | Hawkins et al. | Jul 2012 | B2 |
8226217 | Montz et al. | Jul 2012 | B2 |
8226236 | Williams et al. | Jul 2012 | B2 |
8229140 | Jennings | Jul 2012 | B2 |
8231207 | Montz et al. | Jul 2012 | B2 |
8235055 | Mintchev et al. | Aug 2012 | B2 |
8242840 | Van Veldhoven | Aug 2012 | B2 |
8243962 | Qiao | Aug 2012 | B2 |
8243966 | Lin et al. | Aug 2012 | B2 |
8251495 | Silverbrook | Aug 2012 | B2 |
8252539 | Quake et al. | Aug 2012 | B2 |
8254598 | Holzmann | Aug 2012 | B2 |
8257666 | Quake et al. | Sep 2012 | B2 |
8259963 | Stenberg et al. | Sep 2012 | B2 |
8263336 | Rothberg et al. | Sep 2012 | B2 |
8264307 | Foster et al. | Sep 2012 | B2 |
8265287 | Kageyama | Sep 2012 | B2 |
8268630 | Fedder et al. | Sep 2012 | B2 |
8278919 | Fischer et al. | Oct 2012 | B2 |
8282181 | Silverbrook | Oct 2012 | B2 |
8282202 | Irving et al. | Oct 2012 | B2 |
8284967 | Yang et al. | Oct 2012 | B2 |
8288211 | Foster et al. | Oct 2012 | B2 |
8295514 | Song | Oct 2012 | B2 |
8295528 | Rombach et al. | Oct 2012 | B2 |
8300858 | Nakaya et al. | Oct 2012 | B2 |
8300860 | Chiang et al. | Oct 2012 | B2 |
8319177 | Boyle et al. | Nov 2012 | B2 |
8322213 | Trusov et al. | Dec 2012 | B2 |
8323188 | Tran | Dec 2012 | B2 |
8323189 | Tran et al. | Dec 2012 | B2 |
8323982 | LeBoeuf et al. | Dec 2012 | B2 |
8327521 | Dirksen et al. | Dec 2012 | B2 |
8327711 | Kasai et al. | Dec 2012 | B2 |
8328718 | Tran | Dec 2012 | B2 |
8333112 | Schwartz et al. | Dec 2012 | B2 |
8335328 | Holzmann | Dec 2012 | B2 |
8336990 | Silverbrook | Dec 2012 | B2 |
8338896 | Kanemoto | Dec 2012 | B2 |
8339014 | Kandori et al. | Dec 2012 | B2 |
8344322 | Edwards | Jan 2013 | B2 |
8345898 | Reining | Jan 2013 | B2 |
8345910 | Chae et al. | Jan 2013 | B2 |
8347717 | Seeger et al. | Jan 2013 | B2 |
8352030 | Denison | Jan 2013 | B2 |
8367426 | Adams | Feb 2013 | B2 |
8368154 | Trusov et al. | Feb 2013 | B2 |
8369545 | Lee | Feb 2013 | B2 |
8369552 | Engbert et al. | Feb 2013 | B2 |
8371166 | Robert | Feb 2013 | B2 |
8374363 | Onishi | Feb 2013 | B2 |
8376513 | Silverbrook | Feb 2013 | B2 |
8379890 | Kuo et al. | Feb 2013 | B2 |
8382258 | Xie et al. | Feb 2013 | B2 |
8382259 | Panchawagh et al. | Feb 2013 | B2 |
8385570 | Chiang et al. | Feb 2013 | B2 |
8385586 | Liou et al. | Feb 2013 | B2 |
8389349 | Zhou | Mar 2013 | B2 |
8390916 | Sampsell | Mar 2013 | B2 |
8391517 | Avenson et al. | Mar 2013 | B2 |
8391520 | Liou et al. | Mar 2013 | B2 |
8393714 | Silverbrook | Mar 2013 | B2 |
8397579 | Niblock | Mar 2013 | B2 |
8398210 | Baumer et al. | Mar 2013 | B2 |
8398221 | Xie et al. | Mar 2013 | B2 |
8398222 | Gao et al. | Mar 2013 | B2 |
8401217 | Shams et al. | Mar 2013 | B2 |
8401513 | Langereis et al. | Mar 2013 | B2 |
8405449 | Muza | Mar 2013 | B2 |
8406437 | Johansen et al. | Mar 2013 | B2 |
8411882 | Lee et al. | Apr 2013 | B2 |
8416973 | Medley et al. | Apr 2013 | B2 |
8418556 | Chen et al. | Apr 2013 | B2 |
8419176 | Dockery et al. | Apr 2013 | B2 |
8425415 | Tran | Apr 2013 | B2 |
8427177 | Jeong et al. | Apr 2013 | B2 |
8427249 | Swanson et al. | Apr 2013 | B1 |
8427657 | Milanovi | Apr 2013 | B2 |
8433084 | Conti et al. | Apr 2013 | B2 |
8434160 | Adams et al. | Apr 2013 | B1 |
8434161 | Adams et al. | Apr 2013 | B1 |
8438710 | Li | May 2013 | B2 |
8440093 | Nassef et al. | May 2013 | B1 |
8444260 | Gao et al. | May 2013 | B2 |
8445210 | Quake et al. | May 2013 | B2 |
8447049 | Shajaan et al. | May 2013 | B2 |
8448326 | Sinclair | May 2013 | B2 |
8449471 | Tran | May 2013 | B2 |
8451068 | Asamura et al. | May 2013 | B2 |
8455570 | Lindstrom et al. | Jun 2013 | B2 |
8456958 | Felix et al. | Jun 2013 | B2 |
8459787 | Sowinski et al. | Jun 2013 | B2 |
8461936 | Vermeeren et al. | Jun 2013 | B2 |
8461988 | Tran | Jun 2013 | B2 |
8464571 | Sparks et al. | Jun 2013 | B1 |
8465129 | Panchawagh et al. | Jun 2013 | B2 |
8465142 | Irving et al. | Jun 2013 | B2 |
8467133 | Miller | Jun 2013 | B2 |
8467550 | Akino | Jun 2013 | B2 |
8467559 | Zhe | Jun 2013 | B2 |
8468665 | Chen | Jun 2013 | B2 |
8468939 | Daniel et al. | Jun 2013 | B2 |
8469496 | Panchawagh et al. | Jun 2013 | B2 |
8472120 | Border et al. | Jun 2013 | B2 |
8475368 | Tran et al. | Jul 2013 | B2 |
8477425 | Border et al. | Jul 2013 | B2 |
8477983 | Weigold et al. | Jul 2013 | B2 |
8480224 | Irving et al. | Jul 2013 | B2 |
8482300 | Trumper et al. | Jul 2013 | B2 |
8482859 | Border et al. | Jul 2013 | B2 |
8485654 | Sowinski et al. | Jul 2013 | B2 |
8488246 | Border et al. | Jul 2013 | B2 |
8488973 | Avenson et al. | Jul 2013 | B2 |
8497149 | Laming et al. | Jul 2013 | B2 |
8500636 | Tran | Aug 2013 | B2 |
8502329 | Hsieh et al. | Aug 2013 | B2 |
8503702 | Kao et al. | Aug 2013 | B2 |
8506039 | Katerberg et al. | Aug 2013 | B2 |
8508109 | Pelrine et al. | Aug 2013 | B2 |
8509459 | Isvan | Aug 2013 | B1 |
8515100 | Shajaan et al. | Aug 2013 | B2 |
8516905 | Nakamura et al. | Aug 2013 | B2 |
8517516 | Katerberg et al. | Aug 2013 | B2 |
8519492 | Song | Aug 2013 | B2 |
8523327 | Vaeth et al. | Sep 2013 | B2 |
8523328 | Ellinger et al. | Sep 2013 | B2 |
8525673 | Tran | Sep 2013 | B2 |
8525687 | Tran | Sep 2013 | B2 |
8526656 | Tanaka et al. | Sep 2013 | B2 |
8529021 | Baumer et al. | Sep 2013 | B2 |
8530854 | Derzon et al. | Sep 2013 | B1 |
8531291 | Tran | Sep 2013 | B2 |
8534127 | Seeger et al. | Sep 2013 | B2 |
8534818 | Mehta et al. | Sep 2013 | B2 |
8542365 | Pruessner et al. | Sep 2013 | B2 |
8542850 | Wang et al. | Sep 2013 | B2 |
8542852 | Kageyama | Sep 2013 | B2 |
8542853 | Dehe et al. | Sep 2013 | B2 |
8546170 | Traynor et al. | Oct 2013 | B2 |
8548178 | Miles | Oct 2013 | B2 |
8550119 | Unger et al. | Oct 2013 | B2 |
8553913 | Akino | Oct 2013 | B2 |
8556428 | Williams et al. | Oct 2013 | B2 |
8559660 | Chiang et al. | Oct 2013 | B2 |
8562120 | Xie et al. | Oct 2013 | B2 |
8562565 | Fonacier et al. | Oct 2013 | B2 |
8565452 | Coronato et al. | Oct 2013 | B2 |
8565454 | Kelloniemi et al. | Oct 2013 | B2 |
8578775 | Hayner et al. | Nov 2013 | B2 |
8580597 | Ollier et al. | Nov 2013 | B2 |
8582787 | David et al. | Nov 2013 | B2 |
8585189 | Marcus et al. | Nov 2013 | B1 |
8585971 | Huang et al. | Nov 2013 | B2 |
8586918 | Brucker et al. | Nov 2013 | B2 |
8588433 | Saulespurens et al. | Nov 2013 | B2 |
8588438 | Tseng et al. | Nov 2013 | B2 |
8588451 | Matsunaga | Nov 2013 | B2 |
8590136 | Yang et al. | Nov 2013 | B2 |
8592153 | Bustillo et al. | Nov 2013 | B1 |
8592154 | Rearick | Nov 2013 | B2 |
8592215 | Quake et al. | Nov 2013 | B2 |
8594349 | Chen et al. | Nov 2013 | B2 |
8600083 | Chiang et al. | Dec 2013 | B2 |
8602531 | Ellinger et al. | Dec 2013 | B2 |
8602535 | Panchawagh et al. | Dec 2013 | B2 |
8604411 | Wieland et al. | Dec 2013 | B2 |
8605919 | Awamura et al. | Dec 2013 | B2 |
8611566 | Pahl et al. | Dec 2013 | B2 |
8615374 | Discenzo | Dec 2013 | B1 |
8618718 | Qu et al. | Dec 2013 | B2 |
8625809 | Josefsson et al. | Jan 2014 | B2 |
8625823 | Buck | Jan 2014 | B2 |
8625824 | Chen et al. | Jan 2014 | B2 |
8625825 | Lee | Jan 2014 | B2 |
8627511 | Polesel | Jan 2014 | B2 |
8629393 | Kirkpatrick et al. | Jan 2014 | B1 |
8630429 | Daley | Jan 2014 | B2 |
8630430 | Akino | Jan 2014 | B2 |
8632162 | Vaeth et al. | Jan 2014 | B2 |
8633955 | Marcus et al. | Jan 2014 | B2 |
8637945 | Reichenbach et al. | Jan 2014 | B2 |
8638249 | Kropfitsch et al. | Jan 2014 | B2 |
8641175 | Panchawagh et al. | Feb 2014 | B2 |
8643129 | Laming et al. | Feb 2014 | B2 |
8643382 | Steele et al. | Feb 2014 | B2 |
8644529 | Ejaz et al. | Feb 2014 | B2 |
8646308 | Mueck | Feb 2014 | B2 |
8646882 | Marcus et al. | Feb 2014 | B2 |
8646883 | Marcus et al. | Feb 2014 | B2 |
8650955 | Swanson et al. | Feb 2014 | B2 |
8651632 | Marcus et al. | Feb 2014 | B2 |
8651633 | Marcus et al. | Feb 2014 | B2 |
8652038 | Tran et al. | Feb 2014 | B2 |
8652409 | LeBoeuf et al. | Feb 2014 | B2 |
8656958 | Unger et al. | Feb 2014 | B2 |
8657419 | Panchawagh et al. | Feb 2014 | B2 |
8658367 | Quake et al. | Feb 2014 | B2 |
8658368 | Quake et al. | Feb 2014 | B2 |
8659631 | Marcus et al. | Feb 2014 | B2 |
8664733 | Rombach | Mar 2014 | B2 |
8666094 | Matsuzawa | Mar 2014 | B2 |
8666095 | Hanzlik et al. | Mar 2014 | B2 |
8666097 | Ichikawa et al. | Mar 2014 | B2 |
8668312 | Xie et al. | Mar 2014 | B2 |
8668313 | Xie et al. | Mar 2014 | B2 |
8669771 | Trumper et al. | Mar 2014 | B2 |
8669814 | Muguet | Mar 2014 | B2 |
8670581 | Harman | Mar 2014 | B2 |
8673732 | Hsieh et al. | Mar 2014 | B2 |
8675895 | Hovesten et al. | Mar 2014 | B2 |
8677821 | Ayazi et al. | Mar 2014 | B2 |
8680991 | Tran | Mar 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8684483 | Grace et al. | Apr 2014 | B2 |
8684900 | Tran | Apr 2014 | B2 |
8684922 | Tran | Apr 2014 | B2 |
8686519 | Langereis et al. | Apr 2014 | B2 |
8686802 | Brown et al. | Apr 2014 | B1 |
8692340 | Ata et al. | Apr 2014 | B1 |
8695640 | Unger et al. | Apr 2014 | B2 |
8696094 | Marcus et al. | Apr 2014 | B2 |
8698212 | Milgrew | Apr 2014 | B2 |
8698255 | Reichenbach et al. | Apr 2014 | B2 |
8698256 | Traynor et al. | Apr 2014 | B2 |
8699726 | Steele et al. | Apr 2014 | B2 |
8699728 | Kasai et al. | Apr 2014 | B2 |
8699740 | Chiang et al. | Apr 2014 | B2 |
8705767 | Hiensch | Apr 2014 | B2 |
8705775 | Sheplak et al. | Apr 2014 | B2 |
8708903 | Tran | Apr 2014 | B2 |
8710601 | Huang et al. | Apr 2014 | B2 |
8713711 | Adams et al. | Apr 2014 | B2 |
8714676 | Grace et al. | May 2014 | B2 |
8717046 | Jensen et al. | May 2014 | B2 |
8717395 | Marcus et al. | May 2014 | B2 |
8718297 | Norris | May 2014 | B1 |
8719960 | King | May 2014 | B2 |
8723277 | Dehe et al. | May 2014 | B2 |
8724832 | Stephanou et al. | May 2014 | B2 |
8727978 | Tran et al. | May 2014 | B2 |
8731220 | Zhang et al. | May 2014 | B2 |
8736081 | Foster et al. | May 2014 | B2 |
8737646 | Wismar | May 2014 | B2 |
8742469 | Milgrew | Jun 2014 | B2 |
8742517 | Langereis et al. | Jun 2014 | B2 |
8742770 | Trumper et al. | Jun 2014 | B2 |
8742944 | Mitchell et al. | Jun 2014 | B2 |
8744117 | Daley | Jun 2014 | B2 |
8746039 | Adams et al. | Jun 2014 | B2 |
8746048 | Agache et al. | Jun 2014 | B2 |
8747313 | Tran et al. | Jun 2014 | B2 |
8747336 | Tran | Jun 2014 | B2 |
8748947 | Milgrew | Jun 2014 | B2 |
8750971 | Tran | Jun 2014 | B2 |
8755539 | Huang et al. | Jun 2014 | B2 |
8755541 | Liu et al. | Jun 2014 | B2 |
8755556 | Cohen et al. | Jun 2014 | B2 |
8758253 | Sano et al. | Jun 2014 | B2 |
8760031 | Chang | Jun 2014 | B2 |
8764651 | Tran | Jul 2014 | B2 |
8766327 | Milgrew | Jul 2014 | B2 |
8767980 | Statham | Jul 2014 | B2 |
8770722 | Panchawagh et al. | Jul 2014 | B2 |
8774428 | Jaar et al. | Jul 2014 | B2 |
8774885 | Abreu | Jul 2014 | B2 |
8776573 | Rearick et al. | Jul 2014 | B2 |
8783113 | Robert et al. | Jul 2014 | B2 |
8783804 | Panchawagh et al. | Jul 2014 | B2 |
8784549 | Bermel et al. | Jul 2014 | B2 |
8787117 | Kandori | Jul 2014 | B2 |
8787600 | Conti et al. | Jul 2014 | B2 |
8787601 | Suzuki et al. | Jul 2014 | B2 |
8790567 | Uchida et al. | Jul 2014 | B2 |
8791971 | Marcus et al. | Jul 2014 | B2 |
8792658 | Baliga et al. | Jul 2014 | B2 |
8793811 | Prater et al. | Jul 2014 | B1 |
8800369 | Caminada et al. | Aug 2014 | B2 |
8802568 | Mayer et al. | Aug 2014 | B2 |
8803261 | Traynor et al. | Aug 2014 | B2 |
8804982 | Michel et al. | Aug 2014 | B2 |
8806751 | Xie et al. | Aug 2014 | B2 |
8811635 | Sridharan et al. | Aug 2014 | B2 |
8814691 | Haddick et al. | Aug 2014 | B2 |
8818007 | Robert | Aug 2014 | B2 |
8822205 | Milgrew | Sep 2014 | B2 |
8822906 | Yuan et al. | Sep 2014 | B2 |
8824706 | Stephanou et al. | Sep 2014 | B2 |
8824707 | Bachman et al. | Sep 2014 | B2 |
8824713 | Engbert et al. | Sep 2014 | B2 |
8831246 | Josefsson | Sep 2014 | B2 |
8831705 | Dobak | Sep 2014 | B2 |
8833171 | Besling et al. | Sep 2014 | B2 |
8833175 | Chandrasekharan et al. | Sep 2014 | B2 |
8836111 | Conti et al. | Sep 2014 | B2 |
8837754 | Formosa et al. | Sep 2014 | B2 |
8842858 | Lillelund | Sep 2014 | B2 |
8844340 | Agache | Sep 2014 | B2 |
8845557 | Giuffrida et al. | Sep 2014 | B1 |
8845914 | Nassef et al. | Sep 2014 | B2 |
8846183 | Unger et al. | Sep 2014 | B2 |
8847148 | Kirkpatrick et al. | Sep 2014 | B2 |
8847289 | Wang | Sep 2014 | B2 |
8848197 | Pruessner et al. | Sep 2014 | B2 |
8848950 | Shimura | Sep 2014 | B2 |
8850893 | Seppa et al. | Oct 2014 | B2 |
8855335 | Henriksen | Oct 2014 | B2 |
8855337 | van Lippen et al. | Oct 2014 | B2 |
8860154 | Wang | Oct 2014 | B2 |
8861764 | Tanaka et al. | Oct 2014 | B2 |
8873777 | Yoshino | Oct 2014 | B2 |
8875576 | Swanson et al. | Nov 2014 | B2 |
8875578 | Smith | Nov 2014 | B2 |
8878528 | Quevy | Nov 2014 | B2 |
8885853 | Yamashita et al. | Nov 2014 | B2 |
8897465 | Muza | Nov 2014 | B2 |
8912580 | Milgrew | Dec 2014 | B2 |
8913762 | Steele et al. | Dec 2014 | B2 |
8914089 | Abreu | Dec 2014 | B2 |
8916395 | Adiga et al. | Dec 2014 | B2 |
8921957 | Zhang et al. | Dec 2014 | B1 |
8924166 | Von Herzen et al. | Dec 2014 | B2 |
8928203 | Kandori et al. | Jan 2015 | B2 |
8929584 | Zoellin et al. | Jan 2015 | B2 |
8932677 | Marcus et al. | Jan 2015 | B2 |
8936353 | Panchawagh et al. | Jan 2015 | B2 |
8936354 | Panchawagh et al. | Jan 2015 | B2 |
8939154 | Mintchev et al. | Jan 2015 | B2 |
8939551 | Panchawagh et al. | Jan 2015 | B2 |
8942389 | Sridharan et al. | Jan 2015 | B2 |
8942394 | Conti et al. | Jan 2015 | B2 |
8953414 | Kandori | Feb 2015 | B2 |
8958574 | Fukuzawa et al. | Feb 2015 | B2 |
8958581 | Ito et al. | Feb 2015 | B2 |
8962368 | Wang | Feb 2015 | B2 |
8963262 | Bulovic et al. | Feb 2015 | B2 |
8964298 | Haddick et al. | Feb 2015 | B2 |
8965008 | Nystrom | Feb 2015 | B2 |
8965013 | Eriksson et al. | Feb 2015 | B2 |
8965027 | Bolognia et al. | Feb 2015 | B2 |
8968195 | Tran | Mar 2015 | B2 |
8975791 | Leonov | Mar 2015 | B2 |
8975984 | Huang | Mar 2015 | B2 |
8976997 | Hecht et al. | Mar 2015 | B1 |
8983090 | Kim et al. | Mar 2015 | B2 |
8983097 | Dehe et al. | Mar 2015 | B2 |
8983099 | Takano et al. | Mar 2015 | B2 |
8988911 | Norris | Mar 2015 | B2 |
8991986 | Sowinski et al. | Mar 2015 | B2 |
8992858 | Chou et al. | Mar 2015 | B2 |
8994076 | Milgrew et al. | Mar 2015 | B2 |
8994954 | Atia et al. | Mar 2015 | B2 |
8995690 | Hammerschmidt et al. | Mar 2015 | B2 |
9000833 | Caffee et al. | Apr 2015 | B2 |
9001622 | Perry | Apr 2015 | B2 |
9002037 | Dehe et al. | Apr 2015 | B2 |
9002043 | Norris et al. | Apr 2015 | B2 |
9007119 | Caffee et al. | Apr 2015 | B2 |
9008332 | Wang et al. | Apr 2015 | B2 |
9008336 | Akino | Apr 2015 | B2 |
9008344 | Melanson et al. | Apr 2015 | B2 |
9010909 | Nelson et al. | Apr 2015 | B2 |
9017537 | Adiga et al. | Apr 2015 | B2 |
9020766 | Von Herzen et al. | Apr 2015 | B2 |
9028405 | Tran | May 2015 | B2 |
9031266 | Dehe et al. | May 2015 | B2 |
9034764 | O'Brien | May 2015 | B2 |
9042578 | Dunser | May 2015 | B2 |
9046547 | Westberg et al. | Jun 2015 | B2 |
9052194 | Seeger et al. | Jun 2015 | B2 |
9052335 | Coronato et al. | Jun 2015 | B2 |
9056760 | Feiertag et al. | Jun 2015 | B2 |
9059630 | Gueorguiev | Jun 2015 | B2 |
9060683 | Tran | Jun 2015 | B2 |
9061318 | Rothberg et al. | Jun 2015 | B2 |
9071694 | Klinghult | Jun 2015 | B2 |
9072429 | Kandori et al. | Jul 2015 | B2 |
9074985 | Lebental et al. | Jul 2015 | B2 |
9078069 | Bharatan et al. | Jul 2015 | B2 |
9083286 | Kropfitsch et al. | Jul 2015 | B2 |
9083288 | Thomsen et al. | Jul 2015 | B2 |
9084366 | Pahl | Jul 2015 | B2 |
9085012 | Machida et al. | Jul 2015 | B2 |
9086302 | Franke | Jul 2015 | B2 |
9094027 | Tao et al. | Jul 2015 | B2 |
9094110 | Perry | Jul 2015 | B2 |
9094111 | Perry | Jul 2015 | B2 |
9094112 | Perry | Jul 2015 | B2 |
9094764 | Rosener | Jul 2015 | B2 |
9096424 | Conti et al. | Aug 2015 | B2 |
9097890 | Miller et al. | Aug 2015 | B2 |
9097891 | Border et al. | Aug 2015 | B2 |
9103761 | Nassef et al. | Aug 2015 | B2 |
9107008 | Leitner | Aug 2015 | B2 |
9107586 | Tran | Aug 2015 | B2 |
9111548 | Nandy et al. | Aug 2015 | B2 |
9113260 | Norris | Aug 2015 | B2 |
9113263 | Furst et al. | Aug 2015 | B2 |
9118338 | Juang et al. | Aug 2015 | B2 |
9124220 | Muza et al. | Sep 2015 | B2 |
9128136 | Wurzinger et al. | Sep 2015 | B2 |
9128281 | Osterhout et al. | Sep 2015 | B2 |
9129295 | Border et al. | Sep 2015 | B2 |
9131319 | Zoellin et al. | Sep 2015 | B2 |
9133016 | Rombach | Sep 2015 | B2 |
9134534 | Border et al. | Sep 2015 | B2 |
9139418 | Zoellin et al. | Sep 2015 | B2 |
9143869 | Daley et al. | Sep 2015 | B2 |
9143870 | Liu et al. | Sep 2015 | B2 |
9143876 | Kropfitsch et al. | Sep 2015 | B2 |
9146109 | Magnoni et al. | Sep 2015 | B2 |
9148712 | Dehe | Sep 2015 | B2 |
9148726 | Dehe | Sep 2015 | B2 |
9148729 | Josefsson | Sep 2015 | B2 |
9148730 | Takano | Sep 2015 | B2 |
9151723 | Vasan et al. | Oct 2015 | B2 |
9151949 | Hofmann et al. | Oct 2015 | B2 |
9154886 | Chen et al. | Oct 2015 | B2 |
9159710 | Lal et al. | Oct 2015 | B2 |
9161113 | Fenton et al. | Oct 2015 | B1 |
9162878 | Gudeman et al. | Oct 2015 | B2 |
9167354 | Nowak | Oct 2015 | B2 |
9170164 | Naegele-Preissmann et al. | Oct 2015 | B2 |
9174222 | Huang et al. | Nov 2015 | B2 |
9174438 | Xie et al. | Nov 2015 | B2 |
9179221 | Barzen et al. | Nov 2015 | B2 |
9181080 | Dehe et al. | Nov 2015 | B2 |
9181086 | Miles et al. | Nov 2015 | B1 |
9182454 | Williams et al. | Nov 2015 | B1 |
9182596 | Border et al. | Nov 2015 | B2 |
9190937 | Lin et al. | Nov 2015 | B2 |
9194704 | Lin et al. | Nov 2015 | B2 |
9197967 | Mortensen | Nov 2015 | B2 |
9199201 | Puleo et al. | Dec 2015 | B2 |
9200887 | Potsaid et al. | Dec 2015 | B2 |
9204224 | Hosoe | Dec 2015 | B2 |
9204796 | Tran | Dec 2015 | B2 |
9209746 | Phan Le et al. | Dec 2015 | B2 |
9210516 | Herzum et al. | Dec 2015 | B2 |
9212046 | Zinn | Dec 2015 | B2 |
9214151 | Perry | Dec 2015 | B2 |
9215532 | Melanson et al. | Dec 2015 | B2 |
9215980 | Tran et al. | Dec 2015 | B2 |
9216897 | Chan et al. | Dec 2015 | B2 |
9217641 | Caminada et al. | Dec 2015 | B2 |
9219963 | Yang et al. | Dec 2015 | B2 |
9221675 | Hu et al. | Dec 2015 | B2 |
9222867 | Norling et al. | Dec 2015 | B2 |
9223134 | Miller et al. | Dec 2015 | B2 |
9226079 | Sciutti et al. | Dec 2015 | B2 |
9228916 | Valdevit et al. | Jan 2016 | B2 |
9229227 | Border et al. | Jan 2016 | B2 |
9232317 | Norris | Jan 2016 | B2 |
9233395 | Kandori et al. | Jan 2016 | B2 |
9234797 | Newman et al. | Jan 2016 | B1 |
9236837 | Kropfitsch et al. | Jan 2016 | B2 |
9237211 | Tabe | Jan 2016 | B2 |
9238250 | Kandori et al. | Jan 2016 | B2 |
9238580 | Alagarsamy et al. | Jan 2016 | B2 |
9241205 | Fukuoka et al. | Jan 2016 | B2 |
9242275 | Rothberg et al. | Jan 2016 | B2 |
9247331 | Suvanto | Jan 2016 | B2 |
9250113 | Bashir et al. | Feb 2016 | B2 |
9250142 | Fukuzawa et al. | Feb 2016 | B2 |
9252707 | Seth et al. | Feb 2016 | B2 |
9253579 | Formosa | Feb 2016 | B2 |
9258651 | Norris et al. | Feb 2016 | B2 |
9258660 | Zeleznik | Feb 2016 | B2 |
9264815 | Wang et al. | Feb 2016 | B2 |
9266713 | Johansen et al. | Feb 2016 | B2 |
9267923 | Urey et al. | Feb 2016 | B2 |
9270238 | Lee et al. | Feb 2016 | B2 |
9270281 | Wojciechowski et al. | Feb 2016 | B1 |
9271067 | Suvanto et al. | Feb 2016 | B2 |
9277327 | Terazono et al. | Mar 2016 | B2 |
9277329 | Schelling et al. | Mar 2016 | B2 |
9281744 | Kropfitsch | Mar 2016 | B2 |
9282389 | Khenkin et al. | Mar 2016 | B1 |
9282415 | Chang | Mar 2016 | B2 |
9285589 | Osterhout et al. | Mar 2016 | B2 |
9287834 | Lasseuguette et al. | Mar 2016 | B2 |
9288583 | Nakano et al. | Mar 2016 | B2 |
9290375 | Rothberg et al. | Mar 2016 | B2 |
9291638 | Merrill, Jr. et al. | Mar 2016 | B2 |
9294847 | Harman | Mar 2016 | B2 |
9301036 | Akino | Mar 2016 | B2 |
9301055 | Honkakoski et al. | Mar 2016 | B2 |
9307319 | Reimann et al. | Apr 2016 | B2 |
9319765 | Ravnkilde | Apr 2016 | B2 |
9319772 | Chen et al. | Apr 2016 | B2 |
9321626 | Shaw et al. | Apr 2016 | B2 |
9322685 | Ray | Apr 2016 | B2 |
9327967 | Huang | May 2016 | B2 |
9329689 | Osterhout et al. | May 2016 | B2 |
9332332 | Bolognia et al. | May 2016 | B2 |
9332342 | Kanaya et al. | May 2016 | B2 |
9332345 | Melanson et al. | May 2016 | B1 |
9335271 | Pruessner et al. | May 2016 | B2 |
9337722 | Josefsson | May 2016 | B2 |
9338557 | Nakamura | May 2016 | B2 |
9338559 | Yang et al. | May 2016 | B2 |
9340413 | Merassi et al. | May 2016 | B2 |
9341843 | Border et al. | May 2016 | B2 |
9342179 | Fuji et al. | May 2016 | B2 |
9344805 | Felberer et al. | May 2016 | B2 |
9344807 | Uchida | May 2016 | B2 |
9344808 | Chan et al. | May 2016 | B2 |
9344809 | Muza et al. | May 2016 | B2 |
9344810 | Okita | May 2016 | B2 |
9350305 | David et al. | May 2016 | B2 |
9351062 | Inoda et al. | May 2016 | B2 |
9351074 | Kim | May 2016 | B2 |
9351083 | Hecht et al. | May 2016 | B2 |
9351640 | Tran | May 2016 | B2 |
9357294 | Rombach et al. | May 2016 | B2 |
9357296 | Josefsson et al. | May 2016 | B2 |
9359188 | Bharatan | Jun 2016 | B1 |
9363610 | Traynor et al. | Jun 2016 | B2 |
9364362 | Berkcan et al. | Jun 2016 | B2 |
9366862 | Haddick et al. | Jun 2016 | B2 |
9369804 | Buck et al. | Jun 2016 | B2 |
9369810 | Kamitani et al. | Jun 2016 | B2 |
9372154 | Prater | Jun 2016 | B2 |
9382109 | Johansen et al. | Jul 2016 | B2 |
9389077 | Comi et al. | Jul 2016 | B2 |
9389079 | Lee et al. | Jul 2016 | B2 |
9389215 | Von Herzen et al. | Jul 2016 | B2 |
9392359 | Akino | Jul 2016 | B2 |
9395317 | Cannon et al. | Jul 2016 | B2 |
9400233 | Lin et al. | Jul 2016 | B2 |
9402137 | Hsu et al. | Jul 2016 | B2 |
9403670 | Schelling et al. | Aug 2016 | B2 |
9404954 | Roy et al. | Aug 2016 | B2 |
9407991 | Melanson et al. | Aug 2016 | B2 |
9408555 | Akingba et al. | Aug 2016 | B2 |
9411000 | Van der Plas et al. | Aug 2016 | B2 |
9413317 | Kropfitsch et al. | Aug 2016 | B2 |
9414175 | Doller | Aug 2016 | B2 |
9419562 | Melanson et al. | Aug 2016 | B1 |
9420365 | Xu | Aug 2016 | B2 |
9420380 | Inoue et al. | Aug 2016 | B2 |
9420391 | Wiesbauer et al. | Aug 2016 | B2 |
9423254 | Waters et al. | Aug 2016 | B2 |
9426563 | Gasparini et al. | Aug 2016 | B2 |
9428379 | Ata et al. | Aug 2016 | B2 |
9438979 | Dehe | Sep 2016 | B2 |
9439002 | Berger et al. | Sep 2016 | B2 |
9441940 | Sumant et al. | Sep 2016 | B2 |
9444404 | Opris et al. | Sep 2016 | B2 |
9444928 | Iyer et al. | Sep 2016 | B1 |
9445173 | Wiesbauer et al. | Sep 2016 | B2 |
9445188 | Okita | Sep 2016 | B2 |
9448069 | El-Gamal et al. | Sep 2016 | B2 |
9451359 | Mucha et al. | Sep 2016 | B2 |
9455671 | Kropfitsch et al. | Sep 2016 | B2 |
9456283 | Chiang et al. | Sep 2016 | B2 |
9459100 | Balachandran et al. | Oct 2016 | B2 |
9459673 | Richter et al. | Oct 2016 | B2 |
9462364 | Uchida et al. | Oct 2016 | B2 |
9462395 | Nicollini et al. | Oct 2016 | B2 |
9465064 | Roy et al. | Oct 2016 | B2 |
9466277 | Myers | Oct 2016 | B1 |
9467774 | Hammerschmidt et al. | Oct 2016 | B2 |
9470710 | Wygant et al. | Oct 2016 | B2 |
9470910 | Fenton et al. | Oct 2016 | B2 |
9473831 | Von Herzen et al. | Oct 2016 | B2 |
9476975 | Viikari et al. | Oct 2016 | B2 |
9479875 | Hall et al. | Oct 2016 | B2 |
9488541 | Fukuzawa et al. | Nov 2016 | B2 |
9491531 | Wang | Nov 2016 | B2 |
9494477 | Wiesbauer et al. | Nov 2016 | B2 |
9497552 | Akiyama et al. | Nov 2016 | B2 |
9499395 | Rothberg et al. | Nov 2016 | B2 |
9502019 | Muza et al. | Nov 2016 | B2 |
9503814 | Schultz et al. | Nov 2016 | B2 |
9503820 | Hall et al. | Nov 2016 | B2 |
9503821 | Atkins et al. | Nov 2016 | B2 |
9503823 | Barzen et al. | Nov 2016 | B2 |
9508823 | Mayer et al. | Nov 2016 | B2 |
9510108 | Han et al. | Nov 2016 | B2 |
9510121 | Xu et al. | Nov 2016 | B2 |
9515676 | Sugnet et al. | Dec 2016 | B2 |
9516415 | Nielsen | Dec 2016 | B2 |
9516420 | Kim et al. | Dec 2016 | B2 |
9516425 | Daley et al. | Dec 2016 | B2 |
9516428 | Dehe et al. | Dec 2016 | B2 |
9518884 | Tsai | Dec 2016 | B2 |
9518886 | Baldo et al. | Dec 2016 | B2 |
9520505 | Nakatani | Dec 2016 | B2 |
9521492 | Okita | Dec 2016 | B2 |
9522276 | Shen et al. | Dec 2016 | B2 |
9525925 | Wurzinger et al. | Dec 2016 | B2 |
9528831 | Entringer et al. | Dec 2016 | B2 |
9534974 | Vaiana et al. | Jan 2017 | B2 |
9535137 | van Beek et al. | Jan 2017 | B2 |
9537359 | Perry | Jan 2017 | B2 |
9538273 | Akino | Jan 2017 | B2 |
9540226 | Klein et al. | Jan 2017 | B2 |
9541464 | Kuisma | Jan 2017 | B2 |
9544672 | Nawrocki | Jan 2017 | B2 |
9544697 | Uchida | Jan 2017 | B2 |
9548632 | Perry | Jan 2017 | B2 |
9548655 | Ersoy et al. | Jan 2017 | B2 |
9549691 | Tran | Jan 2017 | B2 |
9554212 | Sheplak et al. | Jan 2017 | B2 |
9554213 | Miles et al. | Jan 2017 | B2 |
9557345 | Maeda et al. | Jan 2017 | B2 |
9559647 | Nielsen | Jan 2017 | B2 |
9560454 | Kasai | Jan 2017 | B2 |
9568461 | Von Herzen et al. | Feb 2017 | B2 |
9571931 | Melanson et al. | Feb 2017 | B1 |
9575089 | Cazzaniga et al. | Feb 2017 | B1 |
9575116 | Steele et al. | Feb 2017 | B2 |
9578424 | Sridharan | Feb 2017 | B2 |
9582072 | Connor | Feb 2017 | B2 |
9584924 | Akino | Feb 2017 | B2 |
9584931 | Kohl et al. | Feb 2017 | B2 |
9584941 | Dehe | Feb 2017 | B2 |
9588190 | Smith et al. | Mar 2017 | B2 |
9590570 | Akino | Mar 2017 | B2 |
9591408 | Dehe et al. | Mar 2017 | B2 |
9591417 | Shams et al. | Mar 2017 | B2 |
9596988 | Irazoqui et al. | Mar 2017 | B2 |
9596995 | Fuji et al. | Mar 2017 | B2 |
9602921 | Zeleznik et al. | Mar 2017 | B2 |
9602924 | Josefsson | Mar 2017 | B2 |
9609429 | Reining | Mar 2017 | B2 |
9609432 | Andersen | Mar 2017 | B2 |
9609764 | Won et al. | Mar 2017 | B2 |
9611135 | Klein | Apr 2017 | B1 |
9611139 | Kuisma | Apr 2017 | B2 |
9615167 | Akino | Apr 2017 | B2 |
9618475 | Rothberg et al. | Apr 2017 | B2 |
9618533 | Waters et al. | Apr 2017 | B2 |
9628886 | Dehe et al. | Apr 2017 | B2 |
9628909 | Melanson et al. | Apr 2017 | B2 |
9628919 | Conti et al. | Apr 2017 | B2 |
9628920 | Bach et al. | Apr 2017 | B2 |
9631996 | Wiesbauer et al. | Apr 2017 | B2 |
9634628 | Nicollini et al. | Apr 2017 | B2 |
9635460 | Schultz et al. | Apr 2017 | B2 |
9638617 | Birkholz et al. | May 2017 | B2 |
9641949 | Massoner | May 2017 | B2 |
9644963 | Lee et al. | May 2017 | B2 |
9645166 | Waters et al. | May 2017 | B2 |
9648433 | Doller | May 2017 | B1 |
9651538 | Von Herzen et al. | May 2017 | B2 |
9653254 | Zeidler et al. | May 2017 | B2 |
9654071 | David et al. | May 2017 | B2 |
9658179 | Rajaraman et al. | May 2017 | B2 |
9658247 | Yang et al. | May 2017 | B2 |
9661411 | Han et al. | May 2017 | B1 |
9661423 | Hecht et al. | May 2017 | B2 |
9667173 | Kappus et al. | May 2017 | B1 |
9668035 | McCall | May 2017 | B2 |
9668047 | Park et al. | May 2017 | B2 |
9668056 | Dehe et al. | May 2017 | B2 |
9668062 | Ikeda et al. | May 2017 | B2 |
9673768 | Perrott | Jun 2017 | B2 |
9673785 | Herzum et al. | Jun 2017 | B2 |
9674627 | Hsu et al. | Jun 2017 | B2 |
9676615 | Miao | Jun 2017 | B2 |
9676617 | Huang | Jun 2017 | B2 |
9680414 | Chen et al. | Jun 2017 | B1 |
9681229 | Rombach et al. | Jun 2017 | B2 |
9681243 | Guo et al. | Jun 2017 | B2 |
9683844 | Seeger et al. | Jun 2017 | B2 |
9685254 | Kokubo et al. | Jun 2017 | B2 |
9686617 | Doller et al. | Jun 2017 | B2 |
9686618 | Pompei | Jun 2017 | B2 |
9689889 | Casiraghi et al. | Jun 2017 | B1 |
9692372 | Atkins et al. | Jun 2017 | B2 |
9693135 | Haas-Christensen et al. | Jun 2017 | B2 |
9695038 | Cargill et al. | Jul 2017 | B2 |
9696222 | Sumant et al. | Jul 2017 | B2 |
9696375 | Aaltonen et al. | Jul 2017 | B2 |
9702992 | Avenson et al. | Jul 2017 | B2 |
9706294 | Kopetz et al. | Jul 2017 | B2 |
9706312 | Nicollini | Jul 2017 | B2 |
9706618 | Furuya et al. | Jul 2017 | B2 |
9708174 | Ziglioli | Jul 2017 | B2 |
9708176 | Thompson et al. | Jul 2017 | B2 |
9712923 | Furst et al. | Jul 2017 | B2 |
9716945 | Lesso et al. | Jul 2017 | B2 |
9719847 | Kandori | Aug 2017 | B2 |
9722561 | Josefsson | Aug 2017 | B2 |
9722563 | Kropfitsch et al. | Aug 2017 | B2 |
9723423 | Uchida | Aug 2017 | B2 |
9729014 | Perry | Aug 2017 | B2 |
9729114 | Astgimath | Aug 2017 | B2 |
9729988 | Kropfitsch et al. | Aug 2017 | B2 |
9733230 | Von Herzen et al. | Aug 2017 | B2 |
9733268 | Membretti et al. | Aug 2017 | B2 |
9736586 | Akino | Aug 2017 | B2 |
9736594 | Khenkin et al. | Aug 2017 | B2 |
9738514 | Rothberg et al. | Aug 2017 | B2 |
9740003 | Potsaid et al. | Aug 2017 | B2 |
9743167 | Nielsen et al. | Aug 2017 | B2 |
9743191 | Pal et al. | Aug 2017 | B2 |
9743196 | Kropfitsch | Aug 2017 | B2 |
9743203 | Zeleznik | Aug 2017 | B2 |
9756159 | Park | Sep 2017 | B2 |
9756430 | Traynor et al. | Sep 2017 | B2 |
9759917 | Osterhout et al. | Sep 2017 | B2 |
9762188 | Muza et al. | Sep 2017 | B2 |
9769573 | Hecht et al. | Sep 2017 | B2 |
9774276 | Kandori et al. | Sep 2017 | B2 |
9774969 | Matsumoto | Sep 2017 | B2 |
9775520 | Tran | Oct 2017 | B2 |
9778282 | Yang et al. | Oct 2017 | B2 |
9778302 | Wurzinger et al. | Oct 2017 | B2 |
9780435 | McAllister | Oct 2017 | B2 |
9781518 | Schober et al. | Oct 2017 | B2 |
9781521 | Kofod-Hansen et al. | Oct 2017 | B2 |
9787142 | Perry | Oct 2017 | B2 |
9790087 | Fukuzawa et al. | Oct 2017 | B2 |
9791341 | Fuji et al. | Oct 2017 | B2 |
9793764 | Perry | Oct 2017 | B2 |
9794661 | Watson et al. | Oct 2017 | B2 |
9794711 | Sheplak et al. | Oct 2017 | B2 |
9799488 | Kirkpatrick et al. | Oct 2017 | B2 |
9800019 | Atia et al. | Oct 2017 | B2 |
9800212 | Barbieri et al. | Oct 2017 | B2 |
9800980 | Palmer et al. | Oct 2017 | B2 |
9801542 | Tran et al. | Oct 2017 | B2 |
9804264 | Villeneuve et al. | Oct 2017 | B2 |
9809444 | Klein | Nov 2017 | B2 |
9809448 | Lim et al. | Nov 2017 | B2 |
9809451 | Chan et al. | Nov 2017 | B2 |
9810775 | Welford et al. | Nov 2017 | B1 |
9810786 | Welford et al. | Nov 2017 | B1 |
9812838 | Villeneuve et al. | Nov 2017 | B2 |
9812906 | Perry | Nov 2017 | B2 |
9813831 | Thomsen | Nov 2017 | B1 |
9814425 | Tran | Nov 2017 | B2 |
9815685 | Chang et al. | Nov 2017 | B2 |
9820056 | Ngo et al. | Nov 2017 | B2 |
9820657 | Tran | Nov 2017 | B2 |
9820658 | Tran | Nov 2017 | B2 |
9823353 | Eichenholz et al. | Nov 2017 | B2 |
9825492 | Perry | Nov 2017 | B2 |
9828236 | Dirksen et al. | Nov 2017 | B2 |
9828237 | Walther et al. | Nov 2017 | B2 |
9831723 | Perry | Nov 2017 | B2 |
9832573 | Hall et al. | Nov 2017 | B2 |
9835647 | Opris et al. | Dec 2017 | B2 |
9838767 | Northemann | Dec 2017 | B2 |
9839103 | Avrahamy | Dec 2017 | B2 |
9843858 | Karunasiri et al. | Dec 2017 | B1 |
9843862 | Barzen | Dec 2017 | B2 |
9844335 | Stein et al. | Dec 2017 | B2 |
9846097 | Naumann | Dec 2017 | B2 |
9853201 | Grosh et al. | Dec 2017 | B2 |
9854360 | Conso | Dec 2017 | B2 |
9854367 | Park | Dec 2017 | B2 |
9856133 | Boillot et al. | Jan 2018 | B2 |
9857468 | Eichenholz et al. | Jan 2018 | B1 |
9860649 | Berger et al. | Jan 2018 | B2 |
9863769 | Anac et al. | Jan 2018 | B2 |
9864846 | Sugnet et al. | Jan 2018 | B2 |
9865176 | Tran | Jan 2018 | B2 |
9866066 | Arnold et al. | Jan 2018 | B2 |
9866938 | Popper et al. | Jan 2018 | B2 |
9866959 | van Nieuwkerk et al. | Jan 2018 | B2 |
9866972 | Veneri et al. | Jan 2018 | B2 |
9867263 | Avrahamy | Jan 2018 | B2 |
9869754 | Campbell et al. | Jan 2018 | B1 |
9874635 | Eichenholz et al. | Jan 2018 | B1 |
9875406 | Haddick et al. | Jan 2018 | B2 |
9877106 | Nicollini et al. | Jan 2018 | B2 |
9878901 | Geen et al. | Jan 2018 | B2 |
9893691 | Akino | Feb 2018 | B2 |
9894437 | Pawlowski et al. | Feb 2018 | B2 |
9897460 | Coronato et al. | Feb 2018 | B2 |
9897504 | Wiesbauer et al. | Feb 2018 | B2 |
9897530 | Durack et al. | Feb 2018 | B2 |
9900707 | Thomsen | Feb 2018 | B1 |
9901252 | Tran | Feb 2018 | B2 |
9903718 | Thompson et al. | Feb 2018 | B2 |
9905992 | Welford et al. | Feb 2018 | B1 |
9906869 | Miles et al. | Feb 2018 | B2 |
9907473 | Tran | Mar 2018 | B2 |
9910061 | Waters et al. | Mar 2018 | B2 |
9910062 | Waters et al. | Mar 2018 | B2 |
9915520 | Cable et al. | Mar 2018 | B2 |
9919913 | Pan et al. | Mar 2018 | B2 |
9921114 | Fuji et al. | Mar 2018 | B2 |
9927393 | Rearick et al. | Mar 2018 | B2 |
9929603 | Perry | Mar 2018 | B2 |
9930451 | Muza et al. | Mar 2018 | B2 |
9936304 | Bach et al. | Apr 2018 | B2 |
9938133 | Kautzsch et al. | Apr 2018 | B2 |
9941817 | Takezaki et al. | Apr 2018 | B2 |
9942666 | Yoshino et al. | Apr 2018 | B2 |
9944514 | Rothberg et al. | Apr 2018 | B2 |
9944981 | Rothberg et al. | Apr 2018 | B2 |
9945746 | Wiesbauer et al. | Apr 2018 | B2 |
9945884 | Froemel et al. | Apr 2018 | B2 |
9947858 | Fujisawa et al. | Apr 2018 | B2 |
9949023 | Astgimath et al. | Apr 2018 | B2 |
9949025 | Frazier | Apr 2018 | B2 |
9949037 | Chau | Apr 2018 | B2 |
9953787 | Gudeman et al. | Apr 2018 | B2 |
9955269 | Doller et al. | Apr 2018 | B2 |
9955273 | Rocca et al. | Apr 2018 | B2 |
9956562 | Huang et al. | May 2018 | B2 |
9958348 | Classen et al. | May 2018 | B2 |
9958414 | Rothberg et al. | May 2018 | B2 |
9958415 | Rothberg et al. | May 2018 | B2 |
9958545 | Eichenholz et al. | May 2018 | B2 |
9961440 | Gabai et al. | May 2018 | B2 |
9961451 | Nicollini et al. | May 2018 | B2 |
9966090 | Thomas | May 2018 | B2 |
9966966 | Czaplewski et al. | May 2018 | B2 |
9967677 | Wiesbauer et al. | May 2018 | B2 |
9967678 | Akino | May 2018 | B2 |
9967679 | Krumbein et al. | May 2018 | B2 |
9970958 | Castellano et al. | May 2018 | B2 |
9976924 | Straeussnigg et al. | May 2018 | B2 |
20010002865 | Lipponen et al. | Jun 2001 | A1 |
20010005032 | Aigner et al. | Jun 2001 | A1 |
20010021058 | McClelland et al. | Sep 2001 | A1 |
20010022682 | McClelland et al. | Sep 2001 | A1 |
20010029983 | Unger et al. | Oct 2001 | A1 |
20010033670 | Tai et al. | Oct 2001 | A1 |
20010033796 | Unger et al. | Oct 2001 | A1 |
20010045525 | Gerlach et al. | Nov 2001 | A1 |
20010046306 | Bernert | Nov 2001 | A1 |
20010054778 | Unger et al. | Dec 2001 | A1 |
20020024569 | Silverbrook | Feb 2002 | A1 |
20020029814 | Unger et al. | Mar 2002 | A1 |
20020033863 | Silverbrook | Mar 2002 | A1 |
20020034312 | Ikeda | Mar 2002 | A1 |
20020036674 | Silverbrook | Mar 2002 | A1 |
20020048220 | Khuri-Yakub et al. | Apr 2002 | A1 |
20020049389 | Abreu | Apr 2002 | A1 |
20020067663 | Loeppert et al. | Jun 2002 | A1 |
20020068370 | Dwyer | Jun 2002 | A1 |
20020076069 | Norris et al. | Jun 2002 | A1 |
20020076076 | Kay et al. | Jun 2002 | A1 |
20020093038 | Ikeda et al. | Jul 2002 | A1 |
20020097300 | Silverbrook | Jul 2002 | A1 |
20020101474 | Hawkins et al. | Aug 2002 | A1 |
20020118850 | Yeh et al. | Aug 2002 | A1 |
20020122102 | Jeanmaire et al. | Sep 2002 | A1 |
20020122561 | Pelrine et al. | Sep 2002 | A1 |
20020127736 | Chou et al. | Sep 2002 | A1 |
20020127760 | Yeh et al. | Sep 2002 | A1 |
20020130931 | Hawkins et al. | Sep 2002 | A1 |
20020141606 | Schweder et al. | Oct 2002 | A1 |
20020144738 | Unger et al. | Oct 2002 | A1 |
20020151816 | Rich et al. | Oct 2002 | A1 |
20020171716 | Jeanmaire | Nov 2002 | A1 |
20020172387 | Horiuchi et al. | Nov 2002 | A1 |
20020177768 | Fleischman et al. | Nov 2002 | A1 |
20020193674 | Fleischman et al. | Dec 2002 | A1 |
20030016275 | Jeanmaire et al. | Jan 2003 | A1 |
20030016839 | Loeppert et al. | Jan 2003 | A1 |
20030019833 | Unger et al. | Jan 2003 | A1 |
20030020784 | Silverbrook | Jan 2003 | A1 |
20030020786 | Silverbrook | Jan 2003 | A1 |
20030021425 | Cheng | Jan 2003 | A1 |
20030021432 | Scheeper et al. | Jan 2003 | A1 |
20030025758 | Silverbrook | Feb 2003 | A1 |
20030025761 | Silverbrook | Feb 2003 | A1 |
20030033850 | Challoner et al. | Feb 2003 | A1 |
20030034536 | Scheeper et al. | Feb 2003 | A1 |
20030042117 | Ma | Mar 2003 | A1 |
20030057068 | McSwiggen | Mar 2003 | A1 |
20030063166 | Jeanmaire et al. | Apr 2003 | A1 |
20030063762 | Tajima et al. | Apr 2003 | A1 |
20030068055 | Tanabe et al. | Apr 2003 | A1 |
20030071686 | Lemkin | Apr 2003 | A1 |
20030081082 | Jeanmaire et al. | May 2003 | A1 |
20030103106 | Silverbrook | Jun 2003 | A1 |
20030118203 | Raicevich | Jun 2003 | A1 |
20030123683 | Raicevich | Jul 2003 | A1 |
20030128847 | Smith | Jul 2003 | A1 |
20030132824 | Ma | Jul 2003 | A1 |
20030132985 | Silverbrook | Jul 2003 | A1 |
20030132995 | Silverbrook | Jul 2003 | A1 |
20030133588 | Pedersen | Jul 2003 | A1 |
20030137021 | Wong et al. | Jul 2003 | A1 |
20030137567 | Silverbrook | Jul 2003 | A1 |
20030139687 | Abreu | Jul 2003 | A1 |
20030142175 | Silverbrook | Jul 2003 | A1 |
20030142934 | Pan et al. | Jul 2003 | A1 |
20030146957 | Jeanmaire | Aug 2003 | A1 |
20030174190 | Jeanmaire | Sep 2003 | A1 |
20030174850 | Gullov et al. | Sep 2003 | A1 |
20030179791 | Hiroshi et al. | Sep 2003 | A1 |
20030196489 | Dwyer | Oct 2003 | A1 |
20030202055 | Jeanmaire et al. | Oct 2003 | A1 |
20030202735 | Dunec | Oct 2003 | A1 |
20030202738 | Dunec | Oct 2003 | A1 |
20030210799 | Gabriel et al. | Nov 2003 | A1 |
20040001263 | Staker et al. | Jan 2004 | A1 |
20040007051 | Bashir et al. | Jan 2004 | A1 |
20040031150 | Silverbrook | Feb 2004 | A1 |
20040032440 | Silverbrook | Feb 2004 | A1 |
20040039297 | Abreu | Feb 2004 | A1 |
20040039298 | Abreu | Feb 2004 | A1 |
20040051759 | Silverbrook | Mar 2004 | A1 |
20040056923 | Silverbrook | Mar 2004 | A1 |
20040056924 | Silverbrook | Mar 2004 | A1 |
20040060355 | Nemirovsky et al. | Apr 2004 | A1 |
20040062405 | Corsaro et al. | Apr 2004 | A1 |
20040075715 | Silverbrook | Apr 2004 | A1 |
20040075718 | Silverbrook | Apr 2004 | A1 |
20040079724 | Silverbrook | Apr 2004 | A1 |
20040080556 | Silverbrook | Apr 2004 | A1 |
20040085159 | Kubena et al. | May 2004 | A1 |
20040088851 | Horiuchi et al. | May 2004 | A1 |
20040092121 | Silverbrook | May 2004 | A1 |
20040094506 | Silverbrook | May 2004 | A1 |
20040095434 | Silverbrook | May 2004 | A1 |
20040095441 | Jeanmaire | May 2004 | A1 |
20040099636 | Scipioni | May 2004 | A1 |
20040100529 | Silverbrook | May 2004 | A1 |
20040113153 | Wong et al. | Jun 2004 | A1 |
20040113983 | Silverbrook | Jun 2004 | A1 |
20040118808 | Silverbrook | Jun 2004 | A1 |
20040119591 | Peeters | Jun 2004 | A1 |
20040119784 | Silverbrook | Jun 2004 | A1 |
20040160495 | Silverbrook | Aug 2004 | A1 |
20040169697 | Silverbrook | Sep 2004 | A1 |
20040169701 | Silverbrook | Sep 2004 | A1 |
20040179705 | Wang et al. | Sep 2004 | A1 |
20040179706 | van Oerle | Sep 2004 | A1 |
20040179709 | Niederdraenk et al. | Sep 2004 | A1 |
20040184633 | Kay et al. | Sep 2004 | A1 |
20040207687 | Silverbrook | Oct 2004 | A1 |
20040207689 | Silverbrook | Oct 2004 | A1 |
20040207690 | Silverbrook | Oct 2004 | A1 |
20040207691 | Silverbrook | Oct 2004 | A1 |
20040207808 | Fleischman et al. | Oct 2004 | A1 |
20040218016 | Silverbrook | Nov 2004 | A1 |
20040218022 | Silverbrook | Nov 2004 | A1 |
20040237626 | Challoner et al. | Dec 2004 | A1 |
20040246305 | Silverbrook | Dec 2004 | A1 |
20040246308 | Silverbrook | Dec 2004 | A1 |
20040246311 | Silverbrook | Dec 2004 | A1 |
20040252858 | Boor et al. | Dec 2004 | A1 |
20040257400 | Silverbrook | Dec 2004 | A1 |
20040260470 | Rast | Dec 2004 | A1 |
20040263551 | Silverbrook | Dec 2004 | A1 |
20040263577 | Silverbrook | Dec 2004 | A1 |
20050001316 | Dean et al. | Jan 2005 | A1 |
20050001324 | Dunn et al. | Jan 2005 | A1 |
20050002536 | Gorelik et al. | Jan 2005 | A1 |
20050005421 | Wang et al. | Jan 2005 | A1 |
20050009197 | Adams et al. | Jan 2005 | A1 |
20050013455 | Loeb et al. | Jan 2005 | A1 |
20050016951 | Silverbrook | Jan 2005 | A1 |
20050018015 | Silverbrook | Jan 2005 | A1 |
20050018016 | Silverbrook | Jan 2005 | A1 |
20050018017 | Silverbrook | Jan 2005 | A1 |
20050020926 | Wiklof et al. | Jan 2005 | A1 |
20050024434 | Silverbrook | Feb 2005 | A1 |
20050024435 | Silverbrook | Feb 2005 | A1 |
20050024436 | Silverbrook | Feb 2005 | A1 |
20050024437 | Silverbrook | Feb 2005 | A1 |
20050024443 | Silverbrook | Feb 2005 | A1 |
20050030338 | Silverbrook | Feb 2005 | A1 |
20050030339 | Silverbrook | Feb 2005 | A1 |
20050030342 | Silverbrook | Feb 2005 | A1 |
20050030343 | Silverbrook | Feb 2005 | A1 |
20050035983 | Cruchon-Dupeyrat et al. | Feb 2005 | A1 |
20050036002 | Silverbrook | Feb 2005 | A1 |
20050037532 | Silverbrook | Feb 2005 | A1 |
20050039453 | Silverbrook | Feb 2005 | A1 |
20050041052 | Silverbrook | Feb 2005 | A1 |
20050041055 | Silverbrook | Feb 2005 | A1 |
20050041063 | Silverbrook | Feb 2005 | A1 |
20050046584 | Breed | Mar 2005 | A1 |
20050046663 | Silverbrook | Mar 2005 | A1 |
20050046673 | Silverbrook | Mar 2005 | A1 |
20050052497 | Silverbrook | Mar 2005 | A1 |
20050052514 | Silverbrook | Mar 2005 | A1 |
20050057628 | Silverbrook | Mar 2005 | A1 |
20050058298 | Smith | Mar 2005 | A1 |
20050061770 | Neumann, Jr. et al. | Mar 2005 | A1 |
20050066728 | Chojnacki et al. | Mar 2005 | A1 |
20050068612 | Wilson et al. | Mar 2005 | A1 |
20050069164 | Muthuswamy et al. | Mar 2005 | A1 |
20050072231 | Chojnacki et al. | Apr 2005 | A1 |
20050083377 | Silverbrook | Apr 2005 | A1 |
20050093933 | Silverbrook | May 2005 | A1 |
20050093934 | Silverbrook | May 2005 | A1 |
20050094832 | Song et al. | May 2005 | A1 |
20050097742 | Silverbrook | May 2005 | A1 |
20050099465 | Silverbrook | May 2005 | A1 |
20050099466 | Silverbrook | May 2005 | A1 |
20050104207 | Dean et al. | May 2005 | A1 |
20050104675 | Brunson et al. | May 2005 | A1 |
20050104922 | Silverbrook | May 2005 | A1 |
20050109730 | Silverbrook | May 2005 | A1 |
20050110832 | Silverbrook | May 2005 | A1 |
20050112882 | Unger et al. | May 2005 | A1 |
20050116990 | Silverbrook | Jun 2005 | A1 |
20050123155 | Song et al. | Jun 2005 | A1 |
20050128247 | Silverbrook | Jun 2005 | A1 |
20050128249 | Silverbrook | Jun 2005 | A1 |
20050131490 | Palanker | Jun 2005 | A1 |
20050134648 | Silverbrook | Jun 2005 | A1 |
20050134649 | Silverbrook | Jun 2005 | A1 |
20050139871 | Brunson et al. | Jun 2005 | A1 |
20050140726 | Silverbrook | Jun 2005 | A1 |
20050140728 | Silverbrook | Jun 2005 | A1 |
20050144781 | Silverbrook | Jul 2005 | A1 |
20050144782 | Silverbrook | Jul 2005 | A1 |
20050146559 | Silverbrook | Jul 2005 | A1 |
20050146562 | Silverbrook | Jul 2005 | A1 |
20050146563 | Silverbrook | Jul 2005 | A1 |
20050146566 | Silverbrook | Jul 2005 | A1 |
20050147017 | Gibson | Jul 2005 | A1 |
20050157042 | Silverbrook | Jul 2005 | A1 |
20050157081 | Silverbrook | Jul 2005 | A1 |
20050157082 | Silverbrook | Jul 2005 | A1 |
20050166980 | Unger et al. | Aug 2005 | A1 |
20050167508 | Syms et al. | Aug 2005 | A1 |
20050167769 | Dunec et al. | Aug 2005 | A1 |
20050168532 | Silverbrook | Aug 2005 | A1 |
20050168533 | Silverbrook | Aug 2005 | A1 |
20050174375 | Silverbrook | Aug 2005 | A1 |
20050174394 | Silverbrook | Aug 2005 | A1 |
20050185021 | Silverbrook | Aug 2005 | A1 |
20050189316 | Silverbrook | Sep 2005 | A1 |
20050189317 | Silverbrook | Sep 2005 | A1 |
20050196010 | Park et al. | Sep 2005 | A1 |
20050199047 | Adams et al. | Sep 2005 | A1 |
20050199071 | Ganapathi | Sep 2005 | A1 |
20050199072 | Ganapathi | Sep 2005 | A1 |
20050200659 | Silverbrook | Sep 2005 | A1 |
20050206684 | Silverbrook | Sep 2005 | A1 |
20050207596 | Beretta et al. | Sep 2005 | A1 |
20050215089 | Grundy et al. | Sep 2005 | A1 |
20050225601 | Siverbrrook | Oct 2005 | A1 |
20050225602 | Silverbrook | Oct 2005 | A1 |
20050225604 | Silverbrook | Oct 2005 | A1 |
20050226742 | Unger et al. | Oct 2005 | A1 |
20050231560 | Silverbrook | Oct 2005 | A1 |
20050237743 | Payne et al. | Oct 2005 | A1 |
20050242058 | Silverbrook | Nov 2005 | A1 |
20050243134 | Silverbrook | Nov 2005 | A1 |
20050248620 | Silverbrook | Nov 2005 | A1 |
20050253897 | Silverbrook | Nov 2005 | A1 |
20050254671 | Akino | Nov 2005 | A1 |
20050254679 | Akino | Nov 2005 | A1 |
20050259835 | Akino | Nov 2005 | A1 |
20050262947 | Dehe | Dec 2005 | A1 |
20050264607 | Silverbrook | Dec 2005 | A1 |
20050264612 | Silverbrook | Dec 2005 | A1 |
20050265124 | Smith | Dec 2005 | A1 |
20050269901 | Kubena et al. | Dec 2005 | A1 |
20050270335 | Silverbrook | Dec 2005 | A1 |
20050270338 | Silverbrook | Dec 2005 | A1 |
20050274888 | Darling et al. | Dec 2005 | A1 |
20050275690 | Silverbrook | Dec 2005 | A1 |
20050275691 | Silverbrook | Dec 2005 | A1 |
20050279090 | Silverbrook | Dec 2005 | A1 |
20050285901 | Nelson et al. | Dec 2005 | A1 |
20060007266 | Silverbrook | Jan 2006 | A1 |
20060007514 | Desai | Jan 2006 | A1 |
20060008097 | Stenberg et al. | Jan 2006 | A1 |
20060008098 | Tu | Jan 2006 | A1 |
20060017772 | Silverbrook | Jan 2006 | A1 |
20060018005 | Ishii | Jan 2006 | A1 |
20060032308 | Acar et al. | Feb 2006 | A1 |
20060032309 | Caminada et al. | Feb 2006 | A1 |
20060033588 | Caminada et al. | Feb 2006 | A1 |
20060033785 | Silverbrook | Feb 2006 | A1 |
20060034006 | Ishii | Feb 2006 | A1 |
20060054228 | Unger et al. | Mar 2006 | A1 |
20060056860 | Nojima | Mar 2006 | A1 |
20060061628 | Silverbrook | Mar 2006 | A1 |
20060072187 | McKinnell et al. | Apr 2006 | A1 |
20060072770 | Miyazaki | Apr 2006 | A1 |
20060077235 | Silverbrook | Apr 2006 | A1 |
20060078137 | Su et al. | Apr 2006 | A1 |
20060078148 | Akino | Apr 2006 | A1 |
20060081054 | Silverbrook et al. | Apr 2006 | A1 |
20060081057 | Silverbrook et al. | Apr 2006 | A1 |
20060092220 | Silverbrook | May 2006 | A1 |
20060093170 | Zhe et al. | May 2006 | A1 |
20060093171 | Zhe et al. | May 2006 | A1 |
20060093753 | Nickel | May 2006 | A1 |
20060098047 | Silverbrook | May 2006 | A1 |
20060107768 | Johnson et al. | May 2006 | A1 |
20060109310 | Silverbrook | May 2006 | A1 |
20060109313 | Silverbrook | May 2006 | A1 |
20060119661 | Silverbrook | Jun 2006 | A1 |
20060131163 | Mei et al. | Jun 2006 | A1 |
20060152551 | Silverbrook | Jul 2006 | A1 |
20060158662 | Schelinski et al. | Jul 2006 | A1 |
20060158666 | Schelinski et al. | Jul 2006 | A1 |
20060177083 | Sjursen et al. | Aug 2006 | A1 |
20060178586 | Dobak | Aug 2006 | A1 |
20060196266 | Holt et al. | Sep 2006 | A1 |
20060197810 | Anagnostopoulos et al. | Sep 2006 | A1 |
20060202933 | Pasch et al. | Sep 2006 | A1 |
20060205106 | Fukuda et al. | Sep 2006 | A1 |
20060208169 | Breed et al. | Sep 2006 | A1 |
20060210106 | Pedersen | Sep 2006 | A1 |
20060211912 | Dlugos et al. | Sep 2006 | A1 |
20060211913 | Dlugos et al. | Sep 2006 | A1 |
20060211914 | Hassler et al. | Sep 2006 | A1 |
20060215858 | Pedersen | Sep 2006 | A1 |
20060227156 | Silverbrook | Oct 2006 | A1 |
20060227167 | Silverbrook | Oct 2006 | A1 |
20060227168 | Silverbrook | Oct 2006 | A1 |
20060227984 | Sinclair | Oct 2006 | A1 |
20060230835 | Wang | Oct 2006 | A1 |
20060233400 | Ohbayashi et al. | Oct 2006 | A1 |
20060233401 | Wang | Oct 2006 | A1 |
20060233498 | Soskind et al. | Oct 2006 | A1 |
20060238571 | Silverbrook | Oct 2006 | A1 |
20060248950 | Silverbrook et al. | Nov 2006 | A1 |
20060250448 | Silverbrook | Nov 2006 | A1 |
20060256981 | Song et al. | Nov 2006 | A1 |
20060268048 | Silverbrook | Nov 2006 | A1 |
20060268064 | Silverbrook | Nov 2006 | A1 |
20060274119 | Silverbrook | Dec 2006 | A1 |
20060274121 | Silverbrook | Dec 2006 | A1 |
20060280319 | Wang et al. | Dec 2006 | A1 |
20060284516 | Shimaoka et al. | Dec 2006 | A1 |
20060285707 | Izuchi et al. | Dec 2006 | A1 |
20070002009 | Pasch et al. | Jan 2007 | A1 |
20070003082 | Pedersen | Jan 2007 | A1 |
20070008386 | Silverbrook | Jan 2007 | A1 |
20070008390 | Cruchon-Dupeyrat et al. | Jan 2007 | A1 |
20070009111 | Stenberg et al. | Jan 2007 | A1 |
20070016074 | Abreu | Jan 2007 | A1 |
20070023851 | Hartzell et al. | Feb 2007 | A1 |
20070024840 | Fetzer et al. | Feb 2007 | A1 |
20070029629 | Yazdi | Feb 2007 | A1 |
20070030315 | Silverbrook | Feb 2007 | A1 |
20070030321 | Silverbrook | Feb 2007 | A1 |
20070034005 | Acar et al. | Feb 2007 | A1 |
20070034013 | Moon et al. | Feb 2007 | A1 |
20070046759 | Silverbrook | Mar 2007 | A1 |
20070048887 | Erlach et al. | Mar 2007 | A1 |
20070048898 | Carlson et al. | Mar 2007 | A1 |
20070052766 | Trauernicht et al. | Mar 2007 | A1 |
20070056377 | Matsubara | Mar 2007 | A1 |
20070057603 | Azuma et al. | Mar 2007 | A1 |
20070058825 | Suzuki et al. | Mar 2007 | A1 |
20070058826 | Sawamoto et al. | Mar 2007 | A1 |
20070059494 | Unger et al. | Mar 2007 | A1 |
20070064034 | Hawkins et al. | Mar 2007 | A1 |
20070064037 | Hawkins et al. | Mar 2007 | A1 |
20070064066 | Piatt et al. | Mar 2007 | A1 |
20070064067 | Katerberg | Mar 2007 | A1 |
20070070133 | Silverbrook | Mar 2007 | A1 |
20070070161 | Silverbrook | Mar 2007 | A1 |
20070075956 | Satou et al. | Apr 2007 | A1 |
20070076904 | Deruginsky et al. | Apr 2007 | A1 |
20070080695 | Morrell et al. | Apr 2007 | A1 |
20070081031 | Silverbrook | Apr 2007 | A1 |
20070089512 | Matsuhisa et al. | Apr 2007 | A1 |
20070089513 | Rosenau et al. | Apr 2007 | A1 |
20070108541 | Wong et al. | May 2007 | A1 |
20070109345 | Silverbrook | May 2007 | A1 |
20070113664 | Wang | May 2007 | A1 |
20070115316 | Silverbrook | May 2007 | A1 |
20070115440 | Wiklof | May 2007 | A1 |
20070116305 | Okazawa | May 2007 | A1 |
20070119258 | Yee | May 2007 | A1 |
20070120891 | Silverbrook | May 2007 | A9 |
20070121967 | Sjursen et al. | May 2007 | A1 |
20070121972 | Suzuki et al. | May 2007 | A1 |
20070125161 | Bryzek et al. | Jun 2007 | A1 |
20070129623 | Fleischman et al. | Jun 2007 | A1 |
20070140514 | Pedersen | Jun 2007 | A1 |
20070142718 | Abreu | Jun 2007 | A1 |
20070146432 | Silverbrook | Jun 2007 | A1 |
20070153058 | Silverbrook | Jul 2007 | A1 |
20070154040 | Chen | Jul 2007 | A1 |
20070160248 | Sung | Jul 2007 | A1 |
20070176967 | Silverbrook | Aug 2007 | A1 |
20070176968 | Silverbrook | Aug 2007 | A1 |
20070176971 | Silverbrook | Aug 2007 | A1 |
20070182002 | Huang et al. | Aug 2007 | A1 |
20070182784 | Silverbrook | Aug 2007 | A1 |
20070182785 | Silverbrook | Aug 2007 | A1 |
20070183643 | Jayaraman | Aug 2007 | A1 |
20070188554 | Silverbrook | Aug 2007 | A1 |
20070188556 | Silverbrook | Aug 2007 | A1 |
20070188557 | Silverbrook | Aug 2007 | A1 |
20070188570 | Silverbrook | Aug 2007 | A1 |
20070189559 | Haan et al. | Aug 2007 | A1 |
20070193354 | Felix et al. | Aug 2007 | A1 |
20070194239 | McAllister et al. | Aug 2007 | A1 |
20070201709 | Suzuki et al. | Aug 2007 | A1 |
20070201710 | Suzuki et al. | Aug 2007 | A1 |
20070209437 | Xue et al. | Sep 2007 | A1 |
20070211102 | Silverbrook | Sep 2007 | A1 |
20070211112 | Silverbrook | Sep 2007 | A1 |
20070222807 | Silverbrook | Sep 2007 | A1 |
20070222819 | Silverbrook | Sep 2007 | A1 |
20070222821 | Silverbrook | Sep 2007 | A1 |
20070222826 | Hawkins et al. | Sep 2007 | A1 |
20070230721 | White et al. | Oct 2007 | A1 |
20070236313 | Wallis et al. | Oct 2007 | A1 |
20070241635 | Hunter et al. | Oct 2007 | A1 |
20070242844 | Harman | Oct 2007 | A1 |
20070257966 | Silverbrook | Nov 2007 | A1 |
20070257971 | Jeanmaire | Nov 2007 | A1 |
20070265533 | Tran | Nov 2007 | A1 |
20070268327 | Silverbrook | Nov 2007 | A9 |
20070268343 | Silverbrook | Nov 2007 | A1 |
20070273504 | Tran | Nov 2007 | A1 |
20070274544 | Takeuchi et al. | Nov 2007 | A1 |
20070276270 | Tran | Nov 2007 | A1 |
20070284682 | Laming et al. | Dec 2007 | A1 |
20070286438 | Hirade et al. | Dec 2007 | A1 |
20070287923 | Adkins et al. | Dec 2007 | A1 |
20070289382 | Caminada et al. | Dec 2007 | A1 |
20070291070 | Silverbrook | Dec 2007 | A9 |
20070291091 | Silverbrook | Dec 2007 | A9 |
20070296765 | Silverbrook | Dec 2007 | A9 |
20070297631 | Miles | Dec 2007 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080006093 | Ueya | Jan 2008 | A1 |
20080007693 | Williams et al. | Jan 2008 | A1 |
20080012913 | Silverbrook | Jan 2008 | A1 |
20080012923 | Silverbrook | Jan 2008 | A1 |
20080019543 | Suzuki et al. | Jan 2008 | A1 |
20080021336 | Dobak | Jan 2008 | A1 |
20080024556 | Silverbrook | Jan 2008 | A9 |
20080030544 | Silverbrook | Feb 2008 | A1 |
20080031476 | Wang et al. | Feb 2008 | A1 |
20080036821 | Silverbrook | Feb 2008 | A1 |
20080042223 | Liao et al. | Feb 2008 | A1 |
20080047128 | Suzuki | Feb 2008 | A1 |
20080050283 | Chou et al. | Feb 2008 | A1 |
20080075193 | Rofougaran | Mar 2008 | A1 |
20080075306 | Poulsen et al. | Mar 2008 | A1 |
20080079444 | Denison | Apr 2008 | A1 |
20080079760 | Silverbrook | Apr 2008 | A1 |
20080081958 | Denison et al. | Apr 2008 | A1 |
20080083961 | Suzuki et al. | Apr 2008 | A1 |
20080089536 | Josefsson | Apr 2008 | A1 |
20080094432 | Silverbrook | Apr 2008 | A1 |
20080104825 | Dehe et al. | May 2008 | A1 |
20080111853 | Silverbrook | May 2008 | A1 |
20080111863 | Silverbrook | May 2008 | A1 |
20080117258 | Silverbrook | May 2008 | A1 |
20080123242 | Zhou | May 2008 | A1 |
20080123876 | Sato et al. | May 2008 | A1 |
20080123878 | Zhe et al. | May 2008 | A1 |
20080129800 | Silverbrook | Jun 2008 | A1 |
20080129809 | Silverbrook | Jun 2008 | A1 |
20080141884 | Daniel et al. | Jun 2008 | A1 |
20080149832 | Zorn | Jun 2008 | A1 |
20080163687 | Kranz et al. | Jul 2008 | A1 |
20080164888 | Suzuki et al. | Jul 2008 | A1 |
20080165226 | Silverbrook | Jul 2008 | A1 |
20080169921 | Peeters | Jul 2008 | A1 |
20080173365 | Unger et al. | Jul 2008 | A1 |
20080175418 | Zhang et al. | Jul 2008 | A1 |
20080180778 | Ishii | Jul 2008 | A1 |
20080188059 | Yazdi | Aug 2008 | A1 |
20080190198 | Prandi et al. | Aug 2008 | A1 |
20080190200 | Caminada et al. | Aug 2008 | A1 |
20080190203 | Sugimori | Aug 2008 | A1 |
20080191132 | Boyle et al. | Aug 2008 | A1 |
20080192096 | Silverbrook | Aug 2008 | A1 |
20080192962 | Halteren | Aug 2008 | A1 |
20080202237 | Hammerschmidt | Aug 2008 | A1 |
20080203560 | Suzuki | Aug 2008 | A1 |
20080204379 | Perez-Noguera | Aug 2008 | A1 |
20080204514 | Silverbrook | Aug 2008 | A1 |
20080204518 | Silverbrook | Aug 2008 | A1 |
20080204519 | Silverbrook | Aug 2008 | A1 |
20080205668 | Torii et al. | Aug 2008 | A1 |
20080210319 | Unger et al. | Sep 2008 | A1 |
20080210320 | Unger et al. | Sep 2008 | A1 |
20080210321 | Unger et al. | Sep 2008 | A1 |
20080210322 | Unger et al. | Sep 2008 | A1 |
20080211876 | Silverbrook | Sep 2008 | A1 |
20080211877 | Silverbrook | Sep 2008 | A1 |
20080211879 | Silverbrook | Sep 2008 | A1 |
20080212807 | Wang | Sep 2008 | A1 |
20080220216 | Unger et al. | Sep 2008 | A1 |
20080220535 | LeBoeuf et al. | Sep 2008 | A1 |
20080229840 | Shirasaka et al. | Sep 2008 | A1 |
20080231669 | Brost | Sep 2008 | A1 |
20080236669 | Unger et al. | Oct 2008 | A1 |
20080246817 | Silverbrook | Oct 2008 | A1 |
20080247573 | Pedersen | Oct 2008 | A1 |
20080252691 | Silverbrook | Oct 2008 | A9 |
20080266341 | Silverbrook | Oct 2008 | A1 |
20080266356 | Silverbrook | Oct 2008 | A1 |
20080266361 | Silverbrook | Oct 2008 | A1 |
20080273059 | Silverbrook | Nov 2008 | A1 |
20080277005 | Unger et al. | Nov 2008 | A1 |
20080277007 | Unger et al. | Nov 2008 | A1 |
20080277258 | Foster et al. | Nov 2008 | A1 |
20080278268 | Foster et al. | Nov 2008 | A1 |
20080278559 | Silverbrook | Nov 2008 | A1 |
20080281212 | Nunez et al. | Nov 2008 | A1 |
20080285784 | Huang et al. | Nov 2008 | A1 |
20080289710 | Unger et al. | Nov 2008 | A1 |
20080294019 | Tran | Nov 2008 | A1 |
20080303866 | Silverbrook | Dec 2008 | A1 |
20080303871 | Silverbrook | Dec 2008 | A1 |
20080309693 | Silverbrook | Dec 2008 | A1 |
20080309694 | Silverbrook | Dec 2008 | A1 |
20080309695 | Silverbrook | Dec 2008 | A1 |
20080309696 | Silverbrook | Dec 2008 | A1 |
20080309697 | Silverbrook | Dec 2008 | A1 |
20080309699 | Silverbrook | Dec 2008 | A1 |
20080309720 | Silverbrook | Dec 2008 | A1 |
20080309721 | Silverbrook | Dec 2008 | A1 |
20080309722 | Silverbrook | Dec 2008 | A1 |
20080316240 | Silverbrook | Dec 2008 | A1 |
20080316241 | Silverbrook | Dec 2008 | A1 |
20080316242 | Silverbrook | Dec 2008 | A1 |
20080316262 | Silverbrook | Dec 2008 | A1 |
20080316271 | Silverbrook | Dec 2008 | A1 |
20080316276 | Silverbrook | Dec 2008 | A1 |
20080318349 | Erlach et al. | Dec 2008 | A1 |
20090002470 | Silverbrook | Jan 2009 | A1 |
20090003629 | Shajaan et al. | Jan 2009 | A1 |
20090003630 | Kuroda et al. | Jan 2009 | A1 |
20090016550 | Qiao | Jan 2009 | A1 |
20090022341 | Shams et al. | Jan 2009 | A1 |
20090022505 | Nojima | Jan 2009 | A1 |
20090024042 | Nunez et al. | Jan 2009 | A1 |
20090027448 | Silverbrook | Jan 2009 | A1 |
20090027459 | Hawkins et al. | Jan 2009 | A1 |
20090036761 | Abreu | Feb 2009 | A1 |
20090049911 | Fukuda et al. | Feb 2009 | A1 |
20090050989 | Nakatani | Feb 2009 | A1 |
20090060230 | Kutilainen et al. | Mar 2009 | A1 |
20090060232 | Hirade et al. | Mar 2009 | A1 |
20090064781 | Ayazi et al. | Mar 2009 | A1 |
20090064785 | Fukuda et al. | Mar 2009 | A1 |
20090067659 | Wang et al. | Mar 2009 | A1 |
20090072840 | Lang et al. | Mar 2009 | A1 |
20090078044 | Wang et al. | Mar 2009 | A1 |
20090085975 | Silverbrook | Apr 2009 | A1 |
20090087002 | Nakaya et al. | Apr 2009 | A1 |
20090087009 | van Halteren et al. | Apr 2009 | A1 |
20090090190 | Ueya | Apr 2009 | A1 |
20090091601 | Silverbrook | Apr 2009 | A1 |
20090091603 | Silverbrook | Apr 2009 | A1 |
20090114016 | Nasiri et al. | May 2009 | A1 |
20090121156 | Mahoney et al. | May 2009 | A1 |
20090122116 | Silverbrook | May 2009 | A1 |
20090124029 | Silverbrook | May 2009 | A1 |
20090128604 | Silverbrook | May 2009 | A1 |
20090130783 | Miyashita et al. | May 2009 | A1 |
20090133508 | Johansson et al. | May 2009 | A1 |
20090136064 | Suzuki et al. | May 2009 | A1 |
20090140356 | Yazdi | Jun 2009 | A1 |
20090151422 | Unger et al. | Jun 2009 | A1 |
20090153619 | Silverbrook | Jun 2009 | A1 |
20090153936 | Desai | Jun 2009 | A1 |
20090154729 | Jennings | Jun 2009 | A1 |
20090160910 | Silverbrook | Jun 2009 | A1 |
20090161886 | Tanaka et al. | Jun 2009 | A1 |
20090161890 | Lin | Jun 2009 | A1 |
20090169035 | Rombach et al. | Jul 2009 | A1 |
20090174014 | Kunze et al. | Jul 2009 | A1 |
20090174885 | Li | Jul 2009 | A1 |
20090185007 | Silverbrook | Jul 2009 | A1 |
20090185700 | Suzuki | Jul 2009 | A1 |
20090189953 | Silverbrook | Jul 2009 | A1 |
20090190782 | Suzuki et al. | Jul 2009 | A1 |
20090195598 | Silverbrook | Aug 2009 | A1 |
20090195614 | Silverbrook | Aug 2009 | A1 |
20090201339 | Silverbrook | Aug 2009 | A1 |
20090202083 | Kageyama | Aug 2009 | A1 |
20090208037 | Zhe | Aug 2009 | A1 |
20090213186 | Silverbrook | Aug 2009 | A1 |
20090213191 | Silverbrook | Aug 2009 | A1 |
20090214049 | Lee et al. | Aug 2009 | A1 |
20090214061 | Johansen et al. | Aug 2009 | A1 |
20090214062 | Reining | Aug 2009 | A1 |
20090218642 | Miller et al. | Sep 2009 | A1 |
20090227876 | Tran | Sep 2009 | A1 |
20090227877 | Tran | Sep 2009 | A1 |
20090229020 | Adams et al. | Sep 2009 | A1 |
20090232336 | Pahl | Sep 2009 | A1 |
20090237433 | Silverbrook | Sep 2009 | A1 |
20090237450 | Silverbrook | Sep 2009 | A1 |
20090237456 | Silverbrook | Sep 2009 | A1 |
20090237461 | Silverbrook | Sep 2009 | A1 |
20090243058 | Shirasaka | Oct 2009 | A1 |
20090244193 | Silverbrook | Oct 2009 | A1 |
20090244194 | Silverbrook | Oct 2009 | A1 |
20090252351 | Rosener | Oct 2009 | A1 |
20090255336 | Horning et al. | Oct 2009 | A1 |
20090256890 | Silverbrook | Oct 2009 | A1 |
20090261244 | Syms | Oct 2009 | A1 |
20090262958 | Miles | Oct 2009 | A1 |
20090278217 | Laming et al. | Nov 2009 | A1 |
20090278897 | Silverbrook | Nov 2009 | A1 |
20090282916 | Modugno et al. | Nov 2009 | A1 |
20090285414 | Wu | Nov 2009 | A1 |
20090289606 | Lauxtermann et al. | Nov 2009 | A1 |
20090289979 | Silverbrook | Nov 2009 | A1 |
20090295861 | Trauernicht et al. | Dec 2009 | A1 |
20090301193 | Schwartz et al. | Dec 2009 | A1 |
20090303290 | Silverbrook | Dec 2009 | A1 |
20090303297 | Silverbrook | Dec 2009 | A1 |
20090303303 | Silverbrook | Dec 2009 | A1 |
20090309909 | Silverbrook | Dec 2009 | A1 |
20090316935 | Furst et al. | Dec 2009 | A1 |
20090318779 | Tran | Dec 2009 | A1 |
20090320591 | Johnson | Dec 2009 | A1 |
20090322812 | Silverbrook | Dec 2009 | A1 |
20100000289 | Prandi et al. | Jan 2010 | A1 |
20100003772 | Carlson et al. | Jan 2010 | A1 |
20100013501 | Van Den Boom | Jan 2010 | A1 |
20100024546 | Challoner et al. | Feb 2010 | A1 |
20100024560 | Shcheglov | Feb 2010 | A1 |
20100026765 | Silverbrook | Feb 2010 | A1 |
20100039106 | Edelstein | Feb 2010 | A1 |
20100039478 | Silverbrook | Feb 2010 | A1 |
20100049063 | Dobak | Feb 2010 | A1 |
20100050415 | Desai | Mar 2010 | A1 |
20100053268 | Silverbrook | Mar 2010 | A1 |
20100053274 | Silverbrook | Mar 2010 | A1 |
20100053275 | Silverbrook | Mar 2010 | A1 |
20100053276 | Silverbrook | Mar 2010 | A1 |
20100072561 | Lee et al. | Mar 2010 | A1 |
20100073441 | Silverbrook | Mar 2010 | A1 |
20100078564 | McAllister et al. | Apr 2010 | A1 |
20100083756 | Merz et al. | Apr 2010 | A1 |
20100084721 | Wu et al. | Apr 2010 | A1 |
20100098284 | Conklin et al. | Apr 2010 | A1 |
20100100079 | Berkcan et al. | Apr 2010 | A1 |
20100110129 | Silverbrook | May 2010 | A1 |
20100110130 | Silverbrook | May 2010 | A1 |
20100118071 | Piatt et al. | May 2010 | A1 |
20100119088 | Sheplak et al. | May 2010 | A1 |
20100132466 | Spahlinger | Jun 2010 | A1 |
20100137143 | Rothberg et al. | Jun 2010 | A1 |
20100142742 | Tanaka et al. | Jun 2010 | A1 |
20100142744 | Rombach et al. | Jun 2010 | A1 |
20100145180 | Abreu | Jun 2010 | A1 |
20100147073 | Johnson et al. | Jun 2010 | A1 |
20100149268 | Silverbrook | Jun 2010 | A1 |
20100149274 | Silverbrook | Jun 2010 | A1 |
20100155864 | Laming et al. | Jun 2010 | A1 |
20100155883 | Wenzler et al. | Jun 2010 | A1 |
20100158279 | Conti et al. | Jun 2010 | A1 |
20100158280 | Coronato et al. | Jun 2010 | A1 |
20100166227 | Pennock | Jul 2010 | A1 |
20100166228 | Steele et al. | Jul 2010 | A1 |
20100175767 | Unger et al. | Jul 2010 | A1 |
20100177846 | Rofougaran | Jul 2010 | A1 |
20100177922 | Park et al. | Jul 2010 | A1 |
20100186510 | Robert | Jul 2010 | A1 |
20100187105 | Unger et al. | Jul 2010 | A1 |
20100194374 | Trumper et al. | Aug 2010 | A1 |
20100200782 | Unger et al. | Aug 2010 | A1 |
20100201750 | Silverbrook | Aug 2010 | A1 |
20100208000 | Silverbrook | Aug 2010 | A1 |
20100208919 | Park et al. | Aug 2010 | A1 |
20100212432 | Kasai et al. | Aug 2010 | A1 |
20100213791 | Kandori et al. | Aug 2010 | A1 |
20100219839 | Steele et al. | Sep 2010 | A1 |
20100231645 | Silverbrook | Sep 2010 | A1 |
20100238454 | Pruessner et al. | Sep 2010 | A1 |
20100242606 | Kanemoto | Sep 2010 | A1 |
20100242765 | Cruchon-Dupeyrat et al. | Sep 2010 | A1 |
20100244160 | Kanemoto | Sep 2010 | A1 |
20100251800 | Mueck | Oct 2010 | A1 |
20100253332 | Trumper et al. | Oct 2010 | A1 |
20100253745 | Silverbrook | Oct 2010 | A1 |
20100254561 | Kimura et al. | Oct 2010 | A1 |
20100265298 | Silverbrook | Oct 2010 | A1 |
20100267164 | Adams et al. | Oct 2010 | A1 |
20100271003 | Jensen et al. | Oct 2010 | A1 |
20100275675 | Seppa et al. | Nov 2010 | A1 |
20100276588 | Syms | Nov 2010 | A1 |
20100276606 | Baars et al. | Nov 2010 | A1 |
20100277229 | Lee et al. | Nov 2010 | A1 |
20100277549 | Silverbrook | Nov 2010 | A1 |
20100284553 | Conti et al. | Nov 2010 | A1 |
20100295887 | Silverbrook | Nov 2010 | A1 |
20100301398 | Rothberg et al. | Dec 2010 | A1 |
20100302292 | Dockery et al. | Dec 2010 | A1 |
20100308690 | Currano et al. | Dec 2010 | A1 |
20100308930 | Ayazi et al. | Dec 2010 | A1 |
20100313657 | Trusov et al. | Dec 2010 | A1 |
20100315272 | Steele et al. | Dec 2010 | A1 |
20100328836 | Kinbara | Dec 2010 | A1 |
20100329487 | David et al. | Dec 2010 | A1 |
20110003614 | Langereis et al. | Jan 2011 | A1 |
20110006196 | Boyle et al. | Jan 2011 | A1 |
20110010107 | Fedder et al. | Jan 2011 | A1 |
20110019845 | Kelloniemi et al. | Jan 2011 | A1 |
20110024923 | Foster et al. | Feb 2011 | A1 |
20110025350 | Clark | Feb 2011 | A1 |
20110025780 | Panchawagh et al. | Feb 2011 | A1 |
20110026739 | Thomsen et al. | Feb 2011 | A1 |
20110028807 | Abreu | Feb 2011 | A1 |
20110037796 | Silverbrook | Feb 2011 | A1 |
20110037797 | Silverbrook | Feb 2011 | A1 |
20110037809 | Silverbrook | Feb 2011 | A1 |
20110038493 | Li | Feb 2011 | A1 |
20110038497 | Chae et al. | Feb 2011 | A1 |
20110040161 | Abreu | Feb 2011 | A1 |
20110045616 | Miyashita et al. | Feb 2011 | A1 |
20110049653 | Kanemoto | Mar 2011 | A1 |
20110061460 | Seeger et al. | Mar 2011 | A1 |
20110062956 | Edelstein | Mar 2011 | A1 |
20110073447 | Edwards | Mar 2011 | A1 |
20110073967 | Chen et al. | Mar 2011 | A1 |
20110075865 | Yang et al. | Mar 2011 | A1 |
20110089324 | Edwards | Apr 2011 | A1 |
20110089504 | Traynor et al. | Apr 2011 | A1 |
20110090009 | Van Veldhoven | Apr 2011 | A1 |
20110090288 | Silverbrook | Apr 2011 | A1 |
20110100126 | Jeong et al. | May 2011 | A1 |
20110108838 | Kageyama | May 2011 | A1 |
20110109675 | Montz et al. | May 2011 | A1 |
20110109677 | Montz et al. | May 2011 | A1 |
20110109705 | Montz et al. | May 2011 | A1 |
20110110536 | Hovesten et al. | May 2011 | A1 |
20110115624 | Tran | May 2011 | A1 |
20110120221 | Yoda | May 2011 | A1 |
20110123043 | Felberer et al. | May 2011 | A1 |
20110131794 | Chen | Jun 2011 | A1 |
20110135122 | Awamura et al. | Jun 2011 | A1 |
20110138891 | Agache et al. | Jun 2011 | A1 |
20110138902 | White et al. | Jun 2011 | A1 |
20110154905 | Hsu et al. | Jun 2011 | A1 |
20110155548 | Foster et al. | Jun 2011 | A1 |
20110163615 | Leonov | Jul 2011 | A1 |
20110164081 | Silverbrook | Jul 2011 | A1 |
20110167908 | Agache | Jul 2011 | A1 |
20110170108 | Degertekin | Jul 2011 | A1 |
20110170714 | Hanzlik et al. | Jul 2011 | A1 |
20110170735 | Dehe et al. | Jul 2011 | A1 |
20110181422 | Tran | Jul 2011 | A1 |
20110182150 | Cohen et al. | Jul 2011 | A1 |
20110192226 | Hayner et al. | Aug 2011 | A1 |
20110192229 | Chen et al. | Aug 2011 | A1 |
20110194711 | Avenson et al. | Aug 2011 | A1 |
20110194857 | Avenson et al. | Aug 2011 | A1 |
20110200212 | Wismar | Aug 2011 | A1 |
20110204018 | Vaeth et al. | Aug 2011 | A1 |
20110205306 | Vaeth et al. | Aug 2011 | A1 |
20110205319 | Vaeth et al. | Aug 2011 | A1 |
20110222713 | Akino | Sep 2011 | A1 |
20110226065 | Lebental et al. | Sep 2011 | A1 |
20110227448 | Kandori et al. | Sep 2011 | A1 |
20110228954 | Saulespurens et al. | Sep 2011 | A1 |
20110228957 | Statham | Sep 2011 | A1 |
20110248320 | Rothberg et al. | Oct 2011 | A1 |
20110254107 | Bulovic et al. | Oct 2011 | A1 |
20110255228 | Kimura et al. | Oct 2011 | A1 |
20110258851 | Xie et al. | Oct 2011 | A1 |
20110261123 | Mehta et al. | Oct 2011 | A1 |
20110261124 | Baumer et al. | Oct 2011 | A1 |
20110261125 | Xie et al. | Oct 2011 | A1 |
20110261126 | Faisst et al. | Oct 2011 | A1 |
20110267212 | Denison | Nov 2011 | A1 |
20110271857 | Daniel et al. | Nov 2011 | A1 |
20110275522 | Rothberg et al. | Nov 2011 | A1 |
20110281737 | Rothberg et al. | Nov 2011 | A1 |
20110281741 | Rothberg et al. | Nov 2011 | A1 |
20110295270 | Giordano et al. | Dec 2011 | A1 |
20110303994 | Jenkins et al. | Dec 2011 | A1 |
20110317245 | Sampsell | Dec 2011 | A1 |
20120004564 | Daniel | Jan 2012 | A1 |
20120006114 | Caminada et al. | Jan 2012 | A1 |
20120009713 | Ollier et al. | Jan 2012 | A1 |
20120013392 | Rothberg et al. | Jan 2012 | A1 |
20120014543 | Chiang et al. | Jan 2012 | A1 |
20120017693 | Robert et al. | Jan 2012 | A1 |
20120025277 | Franke | Feb 2012 | A1 |
20120026251 | Xie et al. | Feb 2012 | A1 |
20120026252 | Xie et al. | Feb 2012 | A1 |
20120026253 | Xie et al. | Feb 2012 | A1 |
20120026259 | Gao et al. | Feb 2012 | A1 |
20120026260 | Gao et al. | Feb 2012 | A1 |
20120026261 | Xie et al. | Feb 2012 | A1 |
20120032286 | Trusov et al. | Feb 2012 | A1 |
20120032747 | Vermeeren et al. | Feb 2012 | A1 |
20120033832 | van Lippen et al. | Feb 2012 | A1 |
20120034954 | Tabe | Feb 2012 | A1 |
20120038695 | Silverbrook | Feb 2012 | A1 |
20120043203 | Lin et al. | Feb 2012 | A1 |
20120043974 | van den Boom et al. | Feb 2012 | A1 |
20120045615 | Kirkpatrick et al. | Feb 2012 | A1 |
20120056282 | Van Lippen et al. | Mar 2012 | A1 |
20120056952 | Silverbrook | Mar 2012 | A1 |
20120068776 | Asamura et al. | Mar 2012 | A1 |
20120075168 | Osterhout et al. | Mar 2012 | A1 |
20120076322 | Kimura et al. | Mar 2012 | A1 |
20120076329 | Miles | Mar 2012 | A1 |
20120086307 | Kandori et al. | Apr 2012 | A1 |
20120091374 | Unger et al. | Apr 2012 | A1 |
20120091544 | Reichenbach et al. | Apr 2012 | A1 |
20120091545 | Reichenbach et al. | Apr 2012 | A1 |
20120092156 | Tran | Apr 2012 | A1 |
20120092157 | Tran | Apr 2012 | A1 |
20120095352 | Tran | Apr 2012 | A1 |
20120095357 | Tran | Apr 2012 | A1 |
20120099753 | van der Avoort et al. | Apr 2012 | A1 |
20120104898 | Qu et al. | May 2012 | A1 |
20120105535 | Sowinski et al. | May 2012 | A1 |
20120105548 | Irving et al. | May 2012 | A1 |
20120105549 | Irving et al. | May 2012 | A1 |
20120105550 | Irving et al. | May 2012 | A1 |
20120105553 | Sowinski et al. | May 2012 | A1 |
20120106769 | Jennings | May 2012 | A1 |
20120112056 | Brucker et al. | May 2012 | A1 |
20120121106 | Henriksen | May 2012 | A1 |
20120133005 | Langeries et al. | May 2012 | A1 |
20120133245 | Edwards | May 2012 | A1 |
20120140956 | Poulsen | Jun 2012 | A1 |
20120153771 | Formosa et al. | Jun 2012 | A1 |
20120168605 | Milanovic | Jul 2012 | A1 |
20120170777 | Akino | Jul 2012 | A1 |
20120172256 | Adams et al. | Jul 2012 | A1 |
20120187983 | Lin et al. | Jul 2012 | A1 |
20120192647 | Ayazi et al. | Aug 2012 | A1 |
20120194107 | Kandori et al. | Aug 2012 | A1 |
20120194418 | Osterhout et al. | Aug 2012 | A1 |
20120194419 | Osterhout et al. | Aug 2012 | A1 |
20120194420 | Osterhout et al. | Aug 2012 | A1 |
20120194549 | Osterhout et al. | Aug 2012 | A1 |
20120194550 | Osterhout et al. | Aug 2012 | A1 |
20120194551 | Osterhout et al. | Aug 2012 | A1 |
20120194552 | Osterhout et al. | Aug 2012 | A1 |
20120194553 | Osterhout et al. | Aug 2012 | A1 |
20120200488 | Osterhout et al. | Aug 2012 | A1 |
20120200499 | Osterhout et al. | Aug 2012 | A1 |
20120200601 | Osterhout et al. | Aug 2012 | A1 |
20120206134 | Fischer et al. | Aug 2012 | A1 |
20120206322 | Osterhout et al. | Aug 2012 | A1 |
20120206323 | Osterhout et al. | Aug 2012 | A1 |
20120206334 | Osterhout et al. | Aug 2012 | A1 |
20120206335 | Osterhout et al. | Aug 2012 | A1 |
20120206485 | Osterhout et al. | Aug 2012 | A1 |
20120212398 | Border et al. | Aug 2012 | A1 |
20120212399 | Border et al. | Aug 2012 | A1 |
20120212400 | Border et al. | Aug 2012 | A1 |
20120212406 | Osterhout et al. | Aug 2012 | A1 |
20120212414 | Osterhout et al. | Aug 2012 | A1 |
20120212484 | Haddick et al. | Aug 2012 | A1 |
20120212499 | Haddick et al. | Aug 2012 | A1 |
20120213390 | Akino | Aug 2012 | A1 |
20120217171 | Wurzinger et al. | Aug 2012 | A1 |
20120218172 | Border et al. | Aug 2012 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20120223770 | Muza | Sep 2012 | A1 |
20120224722 | Nystrom | Sep 2012 | A1 |
20120224726 | Pahl et al. | Sep 2012 | A1 |
20120227498 | Kandori et al. | Sep 2012 | A1 |
20120230522 | Nowak | Sep 2012 | A1 |
20120235847 | Viikari et al. | Sep 2012 | A1 |
20120235883 | Border et al. | Sep 2012 | A1 |
20120235884 | Miller et al. | Sep 2012 | A1 |
20120235885 | Miller et al. | Sep 2012 | A1 |
20120235886 | Border et al. | Sep 2012 | A1 |
20120235887 | Border et al. | Sep 2012 | A1 |
20120235900 | Border et al. | Sep 2012 | A1 |
20120235969 | Burns et al. | Sep 2012 | A1 |
20120236030 | Border et al. | Sep 2012 | A1 |
20120236031 | Haddick et al. | Sep 2012 | A1 |
20120242501 | Tran et al. | Sep 2012 | A1 |
20120242678 | Border et al. | Sep 2012 | A1 |
20120242697 | Border et al. | Sep 2012 | A1 |
20120242698 | Haddick et al. | Sep 2012 | A1 |
20120245464 | Tran | Sep 2012 | A1 |
20120249797 | Haddick et al. | Oct 2012 | A1 |
20120250897 | Michel et al. | Oct 2012 | A1 |
20120250910 | Shajaan et al. | Oct 2012 | A1 |
20120260500 | Zhou | Oct 2012 | A1 |
20120261274 | Rearick et al. | Oct 2012 | A1 |
20120265474 | Rearick et al. | Oct 2012 | A1 |
20120268525 | Baumer et al. | Oct 2012 | A1 |
20120268527 | Ellinger et al. | Oct 2012 | A1 |
20120268528 | Ellinger et al. | Oct 2012 | A1 |
20120268529 | Baumer et al. | Oct 2012 | A1 |
20120268530 | Katerberg et al. | Oct 2012 | A1 |
20120268531 | Katerberg et al. | Oct 2012 | A1 |
20120269363 | Suvanto | Oct 2012 | A1 |
20120291549 | Seeger et al. | Nov 2012 | A1 |
20120294464 | Zhang et al. | Nov 2012 | A1 |
20120299130 | Langereis et al. | Nov 2012 | A1 |
20120299998 | Panchawagh et al. | Nov 2012 | A1 |
20120299999 | Panchawagh et al. | Nov 2012 | A1 |
20120300000 | Panchawagh et al. | Nov 2012 | A1 |
20120300001 | Panchawagh et al. | Nov 2012 | A1 |
20120304341 | Polesel | Nov 2012 | A1 |
20120307211 | Hofmann et al. | Dec 2012 | A1 |
20120313711 | Muguet | Dec 2012 | A1 |
20120319174 | Wang | Dec 2012 | A1 |
20120319303 | Foster et al. | Dec 2012 | A1 |
20120321111 | Lillelund | Dec 2012 | A1 |
20120325683 | Milgrew | Dec 2012 | A1 |
20120326213 | Bustillo et al. | Dec 2012 | A1 |
20120326249 | Rombach | Dec 2012 | A1 |
20120326767 | Milgrew | Dec 2012 | A1 |
20120327368 | Williams et al. | Dec 2012 | A1 |
20120328132 | Wang | Dec 2012 | A1 |
20120328834 | Unger et al. | Dec 2012 | A1 |
20120329043 | Milgrew | Dec 2012 | A1 |
20120329044 | Milgrew | Dec 2012 | A1 |
20120329192 | Bustillo et al. | Dec 2012 | A1 |
20120330109 | Tran | Dec 2012 | A1 |
20130001653 | Milgrew et al. | Jan 2013 | A1 |
20130002244 | Quevy | Jan 2013 | A1 |
20130004948 | Milgrew | Jan 2013 | A1 |
20130004949 | Rearick | Jan 2013 | A1 |
20130009214 | Bustillo et al. | Jan 2013 | A1 |
20130009783 | Tran | Jan 2013 | A1 |
20130010990 | Sridharan et al. | Jan 2013 | A1 |
20130010996 | Kim et al. | Jan 2013 | A1 |
20130016859 | Buck | Jan 2013 | A1 |
20130017642 | Milgrew et al. | Jan 2013 | A1 |
20130023794 | Stein et al. | Jan 2013 | A1 |
20130023795 | Stein et al. | Jan 2013 | A1 |
20130025368 | Donadel et al. | Jan 2013 | A1 |
20130028450 | Cortese et al. | Jan 2013 | A1 |
20130028459 | Wang | Jan 2013 | A1 |
20130032936 | Formosa | Feb 2013 | A1 |
20130044899 | Barber et al. | Feb 2013 | A1 |
20130047746 | Nakamura et al. | Feb 2013 | A1 |
20130050155 | Petersen et al. | Feb 2013 | A1 |
20130050226 | Shenoy et al. | Feb 2013 | A1 |
20130050227 | Petersen et al. | Feb 2013 | A1 |
20130050228 | Petersen et al. | Feb 2013 | A1 |
20130051582 | Kropfitsch et al. | Feb 2013 | A1 |
20130051583 | Gueorguiev | Feb 2013 | A1 |
20130051586 | Stephanou et al. | Feb 2013 | A1 |
20130051587 | Stephanou et al. | Feb 2013 | A1 |
20130059396 | LeBoeuf et al. | Mar 2013 | A1 |
20130062710 | Dehe | Mar 2013 | A1 |
20130064035 | Kandori | Mar 2013 | A1 |
20130068131 | Bermel et al. | Mar 2013 | A1 |
20130069780 | Tran et al. | Mar 2013 | A1 |
20130070031 | Nelson et al. | Mar 2013 | A1 |
20130070940 | Khenkin et al. | Mar 2013 | A1 |
20130071915 | Bustillo et al. | Mar 2013 | A1 |
20130072614 | Lindstrom et al. | Mar 2013 | A1 |
20130072807 | Tran | Mar 2013 | A1 |
20130080085 | Von Herzen et al. | Mar 2013 | A1 |
20130089222 | Akino | Apr 2013 | A1 |
20130095459 | Tran | Apr 2013 | A1 |
20130104656 | Smith | May 2013 | A1 |
20130108074 | Reining | May 2013 | A1 |
20130109990 | Akingba et al. | May 2013 | A1 |
20130119243 | Yuan et al. | May 2013 | A1 |
20130119492 | Feiertag et al. | May 2013 | A1 |
20130121523 | Pahl | May 2013 | A1 |
20130127980 | Haddick et al. | May 2013 | A1 |
20130129117 | Thomsen et al. | May 2013 | A1 |
20130129119 | Miyatake et al. | May 2013 | A1 |
20130129133 | Inoda et al. | May 2013 | A1 |
20130133396 | Coronato et al. | May 2013 | A1 |
20130139285 | Adams | May 2013 | A1 |
20130156234 | Daley | Jun 2013 | A1 |
20130156615 | Puleo et al. | Jun 2013 | A1 |
20130160554 | Chen et al. | Jun 2013 | A1 |
20130170673 | Shajaan et al. | Jul 2013 | A1 |
20130170681 | Kohl et al. | Jul 2013 | A1 |
20130172691 | Tran | Jul 2013 | A1 |
20130172869 | Bonfeld | Jul 2013 | A1 |
20130177180 | Bharatan et al. | Jul 2013 | A1 |
20130178718 | Tran et al. | Jul 2013 | A1 |
20130180333 | Swanson et al. | Jul 2013 | A1 |
20130186171 | Merrill, Jr. et al. | Jul 2013 | A1 |
20130191513 | Kamen et al. | Jul 2013 | A1 |
20130195291 | Josefsson | Aug 2013 | A1 |
20130197322 | Tran | Aug 2013 | A1 |
20130199730 | Gudeman et al. | Aug 2013 | A1 |
20130201316 | Binder et al. | Aug 2013 | A1 |
20130204488 | Von Herzen et al. | Aug 2013 | A1 |
20130208915 | Hammerschmidt et al. | Aug 2013 | A1 |
20130210128 | Rothberg et al. | Aug 2013 | A1 |
20130210182 | Rothberg et al. | Aug 2013 | A1 |
20130211291 | Tran | Aug 2013 | A1 |
20130215931 | Vaiana et al. | Aug 2013 | A1 |
20130217004 | Rothberg et al. | Aug 2013 | A1 |
20130221453 | Dehe et al. | Aug 2013 | A1 |
20130221457 | Conti et al. | Aug 2013 | A1 |
20130223023 | Dehe et al. | Aug 2013 | A1 |
20130223654 | Dehe et al. | Aug 2013 | A1 |
20130226034 | Stein et al. | Aug 2013 | A1 |
20130226035 | Stein et al. | Aug 2013 | A1 |
20130226036 | Stein et al. | Aug 2013 | A1 |
20130230183 | Eriksson et al. | Sep 2013 | A1 |
20130231574 | Tran | Sep 2013 | A1 |
20130231870 | Sugnet et al. | Sep 2013 | A1 |
20130233078 | Sinclair | Sep 2013 | A1 |
20130235101 | Grace et al. | Sep 2013 | A1 |
20130235102 | Grace et al. | Sep 2013 | A1 |
20130247669 | Swanson et al. | Sep 2013 | A1 |
20130249982 | Marcus et al. | Sep 2013 | A1 |
20130249983 | Marcus et al. | Sep 2013 | A1 |
20130249984 | Marcus et al. | Sep 2013 | A1 |
20130249985 | Marcus et al. | Sep 2013 | A1 |
20130252234 | Nassef et al. | Sep 2013 | A1 |
20130256816 | Traynor et al. | Oct 2013 | A1 |
20130257991 | Panchawagh et al. | Oct 2013 | A1 |
20130257992 | Panchawagh et al. | Oct 2013 | A1 |
20130257994 | Panchawagh et al. | Oct 2013 | A1 |
20130257996 | Panchawagh et al. | Oct 2013 | A1 |
20130257997 | Panchawagh et al. | Oct 2013 | A1 |
20130258002 | Panchawagh et al. | Oct 2013 | A1 |
20130263665 | Opris et al. | Oct 2013 | A1 |
20130271123 | Trumper et al. | Oct 2013 | A1 |
20130271307 | Kropfitsch et al. | Oct 2013 | A1 |
20130276510 | Valdevit et al. | Oct 2013 | A1 |
20130277776 | Herzum et al. | Oct 2013 | A1 |
20130278631 | Border et al. | Oct 2013 | A1 |
20130278677 | Vaeth et al. | Oct 2013 | A1 |
20130278689 | Sowinski et al. | Oct 2013 | A1 |
20130279717 | Reimann et al. | Oct 2013 | A1 |
20130279738 | Daley | Oct 2013 | A1 |
20130280831 | Vaeth et al. | Oct 2013 | A1 |
20130286108 | Xie et al. | Oct 2013 | A1 |
20130286109 | Xie et al. | Oct 2013 | A1 |
20130287231 | Kropfitsch | Oct 2013 | A1 |
20130297330 | Kamen et al. | Nov 2013 | A1 |
20130302785 | Nassef et al. | Nov 2013 | A1 |
20130302932 | Bustillo et al. | Nov 2013 | A1 |
20130314303 | Osterhout et al. | Nov 2013 | A1 |
20130317753 | Kamen et al. | Nov 2013 | A1 |
20130328109 | Lal et al. | Dec 2013 | A1 |
20130328976 | Marcus et al. | Dec 2013 | A1 |
20130328977 | Marcus et al. | Dec 2013 | A1 |
20130330232 | Pruessner et al. | Dec 2013 | A1 |
20130330475 | Marcus et al. | Dec 2013 | A1 |
20130334627 | Conti et al. | Dec 2013 | A1 |
20130340524 | Maeda et al. | Dec 2013 | A1 |
20130342597 | Panchawagh et al. | Dec 2013 | A1 |
20140000344 | Birkholz et al. | Jan 2014 | A1 |
20140003609 | Rombach et al. | Jan 2014 | A1 |
20140009523 | Marcus et al. | Jan 2014 | A1 |
20140010384 | Kanaya et al. | Jan 2014 | A1 |
20140011697 | Vasan et al. | Jan 2014 | A1 |
20140013581 | Chiang et al. | Jan 2014 | A1 |
20140015878 | Marcus et al. | Jan 2014 | A1 |
20140015879 | Marcus et al. | Jan 2014 | A1 |
20140015880 | Marcus et al. | Jan 2014 | A1 |
20140015893 | Marcus et al. | Jan 2014 | A1 |
20140015901 | Marcus et al. | Jan 2014 | A1 |
20140021343 | Kirkpatrick et al. | Jan 2014 | A1 |
20140026686 | Bashir et al. | Jan 2014 | A1 |
20140028997 | Cable et al. | Jan 2014 | A1 |
20140031263 | Norling et al. | Jan 2014 | A1 |
20140037113 | David et al. | Feb 2014 | A1 |
20140037121 | Mortensen | Feb 2014 | A1 |
20140038335 | Merassi et al. | Feb 2014 | A1 |
20140041452 | Westberg et al. | Feb 2014 | A1 |
20140047921 | Seeger et al. | Feb 2014 | A1 |
20140049256 | Smith et al. | Feb 2014 | A1 |
20140053651 | Besling et al. | Feb 2014 | A1 |
20140055284 | Tran et al. | Feb 2014 | A1 |
20140062619 | Montanya Silvestre et al. | Mar 2014 | A1 |
20140063054 | Osterhout et al. | Mar 2014 | A1 |
20140063055 | Osterhout et al. | Mar 2014 | A1 |
20140072150 | Liu et al. | Mar 2014 | A1 |
20140072152 | Yang et al. | Mar 2014 | A1 |
20140077946 | Tran | Mar 2014 | A1 |
20140079277 | Dehe et al. | Mar 2014 | A1 |
20140084390 | Mayer et al. | Mar 2014 | A1 |
20140086433 | Josefsson | Mar 2014 | A1 |
20140090469 | Comi et al. | Apr 2014 | A1 |
20140090884 | Kobayashi et al. | Apr 2014 | A1 |
20140093881 | Sugnet et al. | Apr 2014 | A1 |
20140094715 | Stein et al. | Apr 2014 | A1 |
20140104059 | Tran | Apr 2014 | A1 |
20140104618 | Potsaid et al. | Apr 2014 | A1 |
20140105428 | Zoellin et al. | Apr 2014 | A1 |
20140109680 | Tsai | Apr 2014 | A1 |
20140111019 | Roy et al. | Apr 2014 | A1 |
20140111154 | Roy et al. | Apr 2014 | A1 |
20140113828 | Gilbert et al. | Apr 2014 | A1 |
20140119573 | Kropfitsch et al. | May 2014 | A1 |
20140121476 | Tran et al. | May 2014 | A1 |
20140126762 | Zoellin et al. | May 2014 | A1 |
20140130587 | Von Herzen et al. | May 2014 | A1 |
20140132294 | Steele et al. | May 2014 | A1 |
20140133685 | Liu et al. | May 2014 | A1 |
20140137668 | Fukuzawa et al. | May 2014 | A1 |
20140140538 | Kropfitsch et al. | May 2014 | A1 |
20140140560 | Melanson et al. | May 2014 | A1 |
20140142398 | Patil et al. | May 2014 | A1 |
20140143064 | Tran | May 2014 | A1 |
20140144230 | Magnoni et al. | May 2014 | A1 |
20140145276 | Rombach | May 2014 | A1 |
20140147337 | Urey et al. | May 2014 | A1 |
20140159748 | Cannon et al. | Jun 2014 | A1 |
20140159826 | Phan Le et al. | Jun 2014 | A1 |
20140163425 | Tran | Jun 2014 | A1 |
20140176251 | Seth et al. | Jun 2014 | A1 |
20140176958 | Flanders et al. | Jun 2014 | A1 |
20140185054 | Atia et al. | Jul 2014 | A1 |
20140188404 | Von Herzen et al. | Jul 2014 | A1 |
20140188407 | Von Herzen et al. | Jul 2014 | A1 |
20140191344 | Traynor et al. | Jul 2014 | A1 |
20140192061 | Payne et al. | Jul 2014 | A1 |
20140192836 | Neilson | Jul 2014 | A1 |
20140194301 | Milgrew | Jul 2014 | A1 |
20140194302 | Milgrew | Jul 2014 | A1 |
20140194303 | Milgrew | Jul 2014 | A1 |
20140194702 | Tran | Jul 2014 | A1 |
20140212917 | Durack et al. | Jul 2014 | A1 |
20140217929 | Lin et al. | Aug 2014 | A1 |
20140220621 | Durack et al. | Aug 2014 | A1 |
20140224971 | Hong | Aug 2014 | A1 |
20140225205 | Zoellin et al. | Aug 2014 | A1 |
20140225250 | Montanya Silvestre et al. | Aug 2014 | A1 |
20140226846 | Sheplak et al. | Aug 2014 | A1 |
20140230547 | El-Gamal et al. | Aug 2014 | A1 |
20140233784 | Norris | Aug 2014 | A1 |
20140235452 | Rothberg et al. | Aug 2014 | A1 |
20140235463 | Rothberg et al. | Aug 2014 | A1 |
20140235965 | Tran | Aug 2014 | A1 |
20140239352 | Wang | Aug 2014 | A1 |
20140247954 | Hall | Sep 2014 | A1 |
20140249429 | Tran | Sep 2014 | A1 |
20140250969 | Alagarsamy et al. | Sep 2014 | A1 |
20140251017 | Kandori | Sep 2014 | A1 |
20140253219 | Caffee et al. | Sep 2014 | A1 |
20140257141 | Giuffrida et al. | Sep 2014 | A1 |
20140260608 | Lin et al. | Sep 2014 | A1 |
20140262972 | Adiga et al. | Sep 2014 | A1 |
20140264652 | Cagdaser et al. | Sep 2014 | A1 |
20140265720 | El-Gamal et al. | Sep 2014 | A1 |
20140266065 | Von Herzen et al. | Sep 2014 | A1 |
20140266260 | Wurzinger et al. | Sep 2014 | A1 |
20140266263 | Wurzinger et al. | Sep 2014 | A1 |
20140266787 | Tran | Sep 2014 | A1 |
20140270204 | Zeleznik | Sep 2014 | A1 |
20140270271 | Dehe et al. | Sep 2014 | A1 |
20140270273 | Muza et al. | Sep 2014 | A1 |
20140270312 | Melanson et al. | Sep 2014 | A1 |
20140273408 | Adiga et al. | Sep 2014 | A1 |
20140286509 | Sciutti et al. | Sep 2014 | A1 |
20140287958 | Adams et al. | Sep 2014 | A1 |
20140291781 | Shaw et al. | Oct 2014 | A1 |
20140294218 | Suvanto et al. | Oct 2014 | A1 |
20140296687 | Irazoqui et al. | Oct 2014 | A1 |
20140299949 | Conti et al. | Oct 2014 | A1 |
20140301167 | Kandori | Oct 2014 | A1 |
20140301571 | Melanson et al. | Oct 2014 | A1 |
20140301572 | Melanson et al. | Oct 2014 | A1 |
20140306623 | Caffee et al. | Oct 2014 | A1 |
20140307885 | Schultz et al. | Oct 2014 | A1 |
20140307909 | Yang et al. | Oct 2014 | A1 |
20140308770 | Mayer et al. | Oct 2014 | A1 |
20140318395 | Jenninger et al. | Oct 2014 | A1 |
20140319630 | Conti et al. | Oct 2014 | A1 |
20140321682 | Kofod-Hansen et al. | Oct 2014 | A1 |
20140322489 | Unger et al. | Oct 2014 | A1 |
20140324376 | Rearick et al. | Oct 2014 | A1 |
20140330256 | Hyde et al. | Nov 2014 | A1 |
20140331367 | Lal et al. | Nov 2014 | A1 |
20140341402 | Traynor et al. | Nov 2014 | A1 |
20140352446 | Kuisma | Dec 2014 | A1 |
20140360272 | Kandori | Dec 2014 | A1 |
20140363678 | Kirkpatrick et al. | Dec 2014 | A1 |
20140369530 | Fuji et al. | Dec 2014 | A1 |
20140372057 | Van der Plas et al. | Dec 2014 | A1 |
20140376749 | Nielsen | Dec 2014 | A1 |
20150001647 | Dehe et al. | Jan 2015 | A1 |
20150003643 | Terazono et al. | Jan 2015 | A1 |
20150003646 | Kamitani et al. | Jan 2015 | A1 |
20150003660 | Melanson et al. | Jan 2015 | A9 |
20150010174 | Fukuoka et al. | Jan 2015 | A1 |
20150014797 | Schelling et al. | Jan 2015 | A1 |
20150016635 | Haas-Christensen et al. | Jan 2015 | A1 |
20150019135 | Kacyvenski et al. | Jan 2015 | A1 |
20150023529 | Barzen et al. | Jan 2015 | A1 |
20150029490 | Horibe et al. | Jan 2015 | A1 |
20150031160 | Wang | Jan 2015 | A1 |
20150035091 | Ziglioli | Feb 2015 | A1 |
20150043002 | Kuznetsov et al. | Feb 2015 | A1 |
20150049886 | Daley et al. | Feb 2015 | A1 |
20150055799 | Nandy et al. | Feb 2015 | A1 |
20150061458 | Kageyama | Mar 2015 | A1 |
20150063608 | Schelling et al. | Mar 2015 | A1 |
20150065837 | Abreu | Mar 2015 | A1 |
20150068069 | Tran et al. | Mar 2015 | A1 |
20150071466 | Lasseuguette et al. | Mar 2015 | A1 |
20150078587 | Dehe et al. | Mar 2015 | A1 |
20150078589 | Uchida | Mar 2015 | A1 |
20150078592 | Uchida | Mar 2015 | A1 |
20150082872 | Von Herzen et al. | Mar 2015 | A1 |
20150082917 | Fuji et al. | Mar 2015 | A1 |
20150085249 | Abreu | Mar 2015 | A1 |
20150088008 | Fuji et al. | Mar 2015 | A1 |
20150091477 | Kandori et al. | Apr 2015 | A1 |
20150096377 | Membretti et al. | Apr 2015 | A1 |
20150099941 | Tran | Apr 2015 | A1 |
20150102435 | Zinn | Apr 2015 | A1 |
20150105631 | Tran et al. | Apr 2015 | A1 |
20150110333 | Norris | Apr 2015 | A1 |
20150125003 | Wiesbauer et al. | May 2015 | A1 |
20150125832 | Tran | May 2015 | A1 |
20150126900 | Walraevens et al. | May 2015 | A1 |
20150131820 | Veneri et al. | May 2015 | A1 |
20150137834 | Steiner | May 2015 | A1 |
20150139453 | Akino | May 2015 | A1 |
20150141772 | LeBoeuf et al. | May 2015 | A1 |
20150143905 | Kuisma | May 2015 | A1 |
20150154364 | Biasi et al. | Jun 2015 | A1 |
20150162883 | Nielsen | Jun 2015 | A1 |
20150163568 | Von Herzen et al. | Jun 2015 | A1 |
20150163594 | Andersen | Jun 2015 | A1 |
20150166332 | Billiot | Jun 2015 | A1 |
20150168344 | Milgrew | Jun 2015 | A1 |
20150171595 | Atia et al. | Jun 2015 | A1 |
20150171885 | Juang et al. | Jun 2015 | A1 |
20150176992 | Entringer et al. | Jun 2015 | A1 |
20150177272 | Clark | Jun 2015 | A1 |
20150181352 | Astgimath et al. | Jun 2015 | A1 |
20150183633 | Unger et al. | Jul 2015 | A1 |
20150189443 | Wang et al. | Jul 2015 | A1 |
20150189446 | Wang et al. | Jul 2015 | A1 |
20150202656 | Takahashi et al. | Jul 2015 | A1 |
20150208176 | Melanson et al. | Jul 2015 | A1 |
20150211853 | Anac et al. | Jul 2015 | A1 |
20150213996 | Kirkpatrick et al. | Jul 2015 | A1 |
20150220199 | Wang et al. | Aug 2015 | A1 |
20150226558 | Seeger et al. | Aug 2015 | A1 |
20150228265 | Muza et al. | Aug 2015 | A1 |
20150230010 | Suvanto et al. | Aug 2015 | A1 |
20150230027 | Inoue et al. | Aug 2015 | A1 |
20150245123 | Uchida et al. | Aug 2015 | A1 |
20150250393 | Tran | Sep 2015 | A1 |
20150256913 | Dehe | Sep 2015 | A1 |
20150256914 | Wiesbauer et al. | Sep 2015 | A1 |
20150260751 | Han et al. | Sep 2015 | A1 |
20150264465 | Bharatan et al. | Sep 2015 | A1 |
20150264498 | Shams et al. | Sep 2015 | A1 |
20150266726 | Gudeman et al. | Sep 2015 | A1 |
20150268060 | Coronato et al. | Sep 2015 | A1 |
20150268284 | Opris et al. | Sep 2015 | A1 |
20150269825 | Tran | Sep 2015 | A1 |
20150271586 | Fukuzawa et al. | Sep 2015 | A1 |
20150276089 | Unger et al. | Oct 2015 | A1 |
20150276529 | Wiesbauer et al. | Oct 2015 | A1 |
20150289046 | Dehe et al. | Oct 2015 | A1 |
20150293243 | Avenson et al. | Oct 2015 | A1 |
20150294838 | Kirkpatrick et al. | Oct 2015 | A1 |
20150296303 | Nakamura | Oct 2015 | A1 |
20150304741 | McCall | Oct 2015 | A1 |
20150304777 | Xu et al. | Oct 2015 | A1 |
20150308829 | Caminada et al. | Oct 2015 | A1 |
20150309316 | Osterhout et al. | Oct 2015 | A1 |
20150309563 | Connor | Oct 2015 | A1 |
20150311870 | Kropfitsch et al. | Oct 2015 | A1 |
20150318829 | Astgimath | Nov 2015 | A1 |
20150319538 | Sridharan | Nov 2015 | A1 |
20150323466 | Pruessner et al. | Nov 2015 | A1 |
20150323560 | Castellano et al. | Nov 2015 | A1 |
20150323694 | Roy et al. | Nov 2015 | A1 |
20150326978 | Daley et al. | Nov 2015 | A1 |
20150336790 | Geen et al. | Nov 2015 | A1 |
20150338217 | Balachandran et al. | Nov 2015 | A1 |
20150341720 | Akino | Nov 2015 | A1 |
20150341721 | Akino | Nov 2015 | A1 |
20150350760 | Nandy et al. | Dec 2015 | A1 |
20150351648 | Harvey et al. | Dec 2015 | A1 |
20150359467 | Tran | Dec 2015 | A1 |
20150373446 | Chen et al. | Dec 2015 | A1 |
20150374378 | Giordano et al. | Dec 2015 | A1 |
20150377622 | Waters et al. | Dec 2015 | A1 |
20150377623 | Waters et al. | Dec 2015 | A1 |
20150377662 | Ray | Dec 2015 | A1 |
20150377916 | Waters et al. | Dec 2015 | A1 |
20150377917 | Waters et al. | Dec 2015 | A1 |
20150377918 | Waters et al. | Dec 2015 | A1 |
20150380636 | Fujisawa et al. | Dec 2015 | A1 |
20150381078 | Massoner | Dec 2015 | A1 |
20150381782 | Park | Dec 2015 | A1 |
20150382091 | Kim et al. | Dec 2015 | A1 |
20160000431 | Giordano et al. | Jan 2016 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160002026 | Chodavarapu et al. | Jan 2016 | A1 |
20160003698 | Wiesbauer et al. | Jan 2016 | A1 |
20160003868 | Prater | Jan 2016 | A1 |
20160006414 | Chodavarapu et al. | Jan 2016 | A1 |
20160014521 | Kim et al. | Jan 2016 | A1 |
20160014528 | Kasai | Jan 2016 | A1 |
20160014529 | Hecht et al. | Jan 2016 | A1 |
20160029110 | Xu | Jan 2016 | A1 |
20160029126 | Buck et al. | Jan 2016 | A1 |
20160029129 | Nicollini et al. | Jan 2016 | A1 |
20160030683 | Taylor et al. | Feb 2016 | A1 |
20160033448 | Milgrew | Feb 2016 | A1 |
20160035314 | Pan | Feb 2016 | A1 |
20160037257 | Josefsson | Feb 2016 | A1 |
20160037263 | Pal et al. | Feb 2016 | A1 |
20160041211 | Wurzinger et al. | Feb 2016 | A1 |
20160044396 | Wang | Feb 2016 | A1 |
20160050475 | Khenkin et al. | Feb 2016 | A1 |
20160054400 | van Beek et al. | Feb 2016 | A1 |
20160057532 | Melanson et al. | Feb 2016 | A1 |
20160061772 | Rothberg et al. | Mar 2016 | A1 |
20160062112 | Potsaid et al. | Mar 2016 | A1 |
20160065152 | Kropfitsch et al. | Mar 2016 | A1 |
20160066099 | Dehe et al. | Mar 2016 | A1 |
20160066788 | Tran et al. | Mar 2016 | A1 |
20160069686 | Lee et al. | Mar 2016 | A1 |
20160072472 | Fedder et al. | Mar 2016 | A1 |
20160073212 | Zeleznik | Mar 2016 | A1 |
20160076962 | Baldo et al. | Mar 2016 | A1 |
20160079953 | Wenzler et al. | Mar 2016 | A1 |
20160087551 | Kandori et al. | Mar 2016 | A1 |
20160087606 | Herzum et al. | Mar 2016 | A1 |
20160091378 | Tsai et al. | Mar 2016 | A1 |
20160091479 | Nassef et al. | Mar 2016 | A1 |
20160103174 | Aaltonen et al. | Apr 2016 | A1 |
20160105748 | Pal et al. | Apr 2016 | A1 |
20160107884 | Formosa | Apr 2016 | A1 |
20160111954 | Bach et al. | Apr 2016 | A1 |
20160130133 | Boillot et al. | May 2016 | A1 |
20160131480 | Gregory et al. | May 2016 | A1 |
20160134967 | Kwon | May 2016 | A1 |
20160134973 | Oliaei et al. | May 2016 | A1 |
20160137486 | Bharatan | May 2016 | A1 |
20160139173 | El-Gamal et al. | May 2016 | A1 |
20160139176 | Shirazi et al. | May 2016 | A1 |
20160140834 | Tran | May 2016 | A1 |
20160142829 | Berger et al. | May 2016 | A1 |
20160149542 | Mucha et al. | May 2016 | A1 |
20160155532 | Kokubo et al. | Jun 2016 | A1 |
20160156319 | Barbieri et al. | Jun 2016 | A1 |
20160157017 | Lesso et al. | Jun 2016 | A1 |
20160157022 | Zhou et al. | Jun 2016 | A1 |
20160157025 | Miles et al. | Jun 2016 | A1 |
20160161256 | Lee et al. | Jun 2016 | A1 |
20160165355 | Khenkin et al. | Jun 2016 | A1 |
20160165356 | Ikeda et al. | Jun 2016 | A1 |
20160167946 | Jenkins et al. | Jun 2016 | A1 |
20160172197 | Kirkpatrick et al. | Jun 2016 | A1 |
20160173001 | Langa et al. | Jun 2016 | A1 |
20160173967 | Nawrocki | Jun 2016 | A1 |
20160173992 | Nicollini et al. | Jun 2016 | A1 |
20160173993 | Han et al. | Jun 2016 | A1 |
20160173994 | Nicollini | Jun 2016 | A1 |
20160176704 | Cargill et al. | Jun 2016 | A1 |
20160182989 | Kim et al. | Jun 2016 | A1 |
20160183008 | Kropfitsch | Jun 2016 | A1 |
20160187289 | Rearick et al. | Jun 2016 | A1 |
20160187654 | Border et al. | Jun 2016 | A1 |
20160192084 | Oliaei | Jun 2016 | A1 |
20160192086 | Barzen et al. | Jun 2016 | A1 |
20160192511 | Won et al. | Jun 2016 | A1 |
20160202286 | Aaltonen et al. | Jul 2016 | A1 |
20160202755 | Connor | Jul 2016 | A1 |
20160209648 | Haddick et al. | Jul 2016 | A1 |
20160213934 | Shen et al. | Jul 2016 | A1 |
20160218688 | David et al. | Jul 2016 | A1 |
20160219374 | Hall et al. | Jul 2016 | A1 |
20160219378 | Hall et al. | Jul 2016 | A1 |
20160221822 | Krumbein et al. | Aug 2016 | A1 |
20160223319 | Munro et al. | Aug 2016 | A1 |
20160223579 | Froemel et al. | Aug 2016 | A1 |
20160231792 | Richter et al. | Aug 2016 | A1 |
20160232807 | Ghaffari et al. | Aug 2016 | A1 |
20160235494 | Shelton et al. | Aug 2016 | A1 |
20160241958 | Rombach et al. | Aug 2016 | A1 |
20160241961 | Josefsson | Aug 2016 | A1 |
20160241965 | Chau | Aug 2016 | A1 |
20160243827 | Hawkins et al. | Aug 2016 | A1 |
20160255441 | Hecht et al. | Sep 2016 | A1 |
20160255442 | Traynor et al. | Sep 2016 | A1 |
20160268084 | Gudeman et al. | Sep 2016 | A1 |
20160274141 | Enjalbert | Sep 2016 | A1 |
20160277844 | Kopetz et al. | Sep 2016 | A1 |
20160287166 | Tran | Oct 2016 | A1 |
20160295333 | Hall et al. | Oct 2016 | A1 |
20160298963 | Kapusta et al. | Oct 2016 | A1 |
20160304337 | Miao | Oct 2016 | A1 |
20160305780 | Comi et al. | Oct 2016 | A1 |
20160305835 | Kollias et al. | Oct 2016 | A1 |
20160305838 | Wiesbauer et al. | Oct 2016 | A1 |
20160305997 | Wiesbauer et al. | Oct 2016 | A1 |
20160309264 | Murthy et al. | Oct 2016 | A1 |
20160310020 | Warnking et al. | Oct 2016 | A1 |
20160320426 | Boysel et al. | Nov 2016 | A1 |
20160324564 | Gerlach et al. | Nov 2016 | A1 |
20160327446 | Classen et al. | Nov 2016 | A1 |
20160327523 | Shimoyama et al. | Nov 2016 | A1 |
20160329682 | Flanders et al. | Nov 2016 | A1 |
20160330550 | Berger et al. | Nov 2016 | A1 |
20160334439 | Malvern | Nov 2016 | A1 |
20160336013 | Wiesbauer et al. | Nov 2016 | A1 |
20160337751 | Gabai et al. | Nov 2016 | A1 |
20160338644 | Connor | Nov 2016 | A1 |
20160340173 | Klein et al. | Nov 2016 | A1 |
20160341758 | Waters et al. | Nov 2016 | A1 |
20160341761 | Waters et al. | Nov 2016 | A1 |
20160341762 | Waters et al. | Nov 2016 | A1 |
20160341765 | Adams et al. | Nov 2016 | A1 |
20160344360 | Kropfitsch et al. | Nov 2016 | A1 |
20160344368 | Ayazi et al. | Nov 2016 | A1 |
20160345097 | Akino | Nov 2016 | A1 |
20160347605 | Thompson et al. | Dec 2016 | A1 |
20160349056 | Thompson et al. | Dec 2016 | A1 |
20160352294 | Nicollini et al. | Dec 2016 | A1 |
20160360304 | Northemann | Dec 2016 | A1 |
20160360322 | Liu et al. | Dec 2016 | A1 |
20160360965 | Tran | Dec 2016 | A1 |
20160362292 | Chang et al. | Dec 2016 | A1 |
20160363575 | Von Herzen et al. | Dec 2016 | A1 |
20160370362 | Lin et al. | Dec 2016 | A1 |
20160373864 | Hecht et al. | Dec 2016 | A1 |
20160373874 | Guo et al. | Dec 2016 | A1 |
20160374703 | Yu et al. | Dec 2016 | A1 |
20160377569 | Rajaraman et al. | Dec 2016 | A1 |
20170001195 | Unger et al. | Jan 2017 | A1 |
20170003314 | Waters et al. | Jan 2017 | A1 |
20170003316 | Yang et al. | Jan 2017 | A1 |
20170023429 | Straeussnigg et al. | Jan 2017 | A1 |
20170025736 | McAllister | Jan 2017 | A1 |
20170025904 | Roy et al. | Jan 2017 | A1 |
20170034634 | Dehe et al. | Feb 2017 | A1 |
20170041708 | Barzen | Feb 2017 | A1 |
20170041716 | Barzen | Feb 2017 | A1 |
20170048634 | Muza | Feb 2017 | A1 |
20170051884 | Raring et al. | Feb 2017 | A1 |
20170052083 | Wiesbauer et al. | Feb 2017 | A1 |
20170059433 | Akingba et al. | Mar 2017 | A1 |
20170059530 | Kandori | Mar 2017 | A1 |
20170064449 | Furuya et al. | Mar 2017 | A1 |
20170067856 | Kandori | Mar 2017 | A1 |
20170068319 | Viswanathan | Mar 2017 | A1 |
20170070816 | Muza et al. | Mar 2017 | A1 |
20170074640 | Cable et al. | Mar 2017 | A1 |
20170074853 | Von Herzen et al. | Mar 2017 | A1 |
20170078400 | Binder et al. | Mar 2017 | A1 |
20170078798 | Palmer et al. | Mar 2017 | A1 |
20170078801 | Daley et al. | Mar 2017 | A1 |
20170086281 | Avrahamy | Mar 2017 | A1 |
20170086672 | Tran | Mar 2017 | A1 |
20170094436 | Sheplak et al. | Mar 2017 | A1 |
20170099549 | Wurzinger et al. | Apr 2017 | A1 |
20170102276 | Fuji et al. | Apr 2017 | A1 |
20170121173 | Hoekstra | May 2017 | A1 |
20170126206 | Nguyen et al. | May 2017 | A1 |
20170127189 | Miles et al. | May 2017 | A1 |
20170135592 | Fuji et al. | May 2017 | A1 |
20170135633 | Connor | May 2017 | A1 |
20170142519 | Lasseuguette | May 2017 | A1 |
20170142525 | Glacer et al. | May 2017 | A1 |
20170146364 | Aaltonen | May 2017 | A1 |
20170146484 | Milgrew et al. | May 2017 | A1 |
20170152135 | Hennes et al. | Jun 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170155225 | Villeneuve et al. | Jun 2017 | A1 |
20170155365 | Yan et al. | Jun 2017 | A1 |
20170156002 | Han et al. | Jun 2017 | A1 |
20170160308 | Alaoui | Jun 2017 | A1 |
20170160337 | Steele et al. | Jun 2017 | A1 |
20170164105 | Rocca et al. | Jun 2017 | A1 |
20170164119 | Sridharan | Jun 2017 | A1 |
20170164839 | Kandori | Jun 2017 | A1 |
20170164878 | Connor | Jun 2017 | A1 |
20170166437 | Klein | Jun 2017 | A1 |
20170167945 | Coronato et al. | Jun 2017 | A1 |
20170167946 | Coronato et al. | Jun 2017 | A1 |
20170168084 | Gafforelli et al. | Jun 2017 | A1 |
20170168085 | Gafforelli et al. | Jun 2017 | A1 |
20170168566 | Osterhout et al. | Jun 2017 | A1 |
20170176596 | Shpunt et al. | Jun 2017 | A1 |
20170180853 | Mehta et al. | Jun 2017 | A1 |
20170180864 | Zhang et al. | Jun 2017 | A1 |
20170180900 | Dehe et al. | Jun 2017 | A1 |
20170184644 | Vohra et al. | Jun 2017 | A1 |
20170185954 | McAllister | Jun 2017 | A1 |
20170191894 | Wiesbauer et al. | Jul 2017 | A1 |
20170194985 | Sugnet et al. | Jul 2017 | A1 |
20170195788 | Nicollini et al. | Jul 2017 | A1 |
20170199035 | Seeger | Jul 2017 | A1 |
20170199277 | Villeneuve et al. | Jul 2017 | A1 |
20170201059 | Villeneuve et al. | Jul 2017 | A1 |
20170201192 | Tumpold et al. | Jul 2017 | A1 |
20170205223 | Cable et al. | Jul 2017 | A1 |
20170215006 | van Nieuwkerk et al. | Jul 2017 | A1 |
20170217765 | Rajaraman et al. | Aug 2017 | A1 |
20170219521 | Suri | Aug 2017 | A1 |
20170219622 | Yang et al. | Aug 2017 | A1 |
20170223450 | Paton Alvarez et al. | Aug 2017 | A1 |
20170230750 | Pawlowski et al. | Aug 2017 | A1 |
20170238108 | Muza | Aug 2017 | A1 |
20170245035 | Lee et al. | Aug 2017 | A1 |
20170245059 | Durand et al. | Aug 2017 | A1 |
20170245061 | Yoshinaga | Aug 2017 | A1 |
20170247248 | Hoekstra | Aug 2017 | A1 |
20170251302 | Lesso et al. | Aug 2017 | A1 |
20170251303 | Lesso et al. | Aug 2017 | A1 |
20170254831 | Li et al. | Sep 2017 | A1 |
20170257093 | Buffa et al. | Sep 2017 | A1 |
20170258320 | Abreu | Sep 2017 | A1 |
20170258386 | Woltjer et al. | Sep 2017 | A1 |
20170258585 | Marquez et al. | Sep 2017 | A1 |
20170260044 | Cargill et al. | Sep 2017 | A1 |
20170265005 | Wiggins et al. | Sep 2017 | A1 |
20170265009 | Sridharan et al. | Sep 2017 | A1 |
20170265287 | Avrahamy | Sep 2017 | A1 |
20170271610 | Takahashi | Sep 2017 | A1 |
20170272878 | Partio et al. | Sep 2017 | A1 |
20170272886 | Family et al. | Sep 2017 | A1 |
20170275152 | Ziglioli | Sep 2017 | A1 |
20170276723 | Buffa et al. | Sep 2017 | A1 |
20170277125 | Jung et al. | Sep 2017 | A1 |
20170277138 | Kaji et al. | Sep 2017 | A1 |
20170277902 | Bae et al. | Sep 2017 | A1 |
20170278226 | Pacheco et al. | Sep 2017 | A1 |
20170278447 | Yaras et al. | Sep 2017 | A1 |
20170278465 | Wu | Sep 2017 | A1 |
20170278480 | Sung et al. | Sep 2017 | A1 |
20170278733 | Chang et al. | Sep 2017 | A1 |
20170278874 | Yamazaki et al. | Sep 2017 | A1 |
20170278878 | Kuwabara et al. | Sep 2017 | A1 |
20170278973 | Ando | Sep 2017 | A1 |
20170280041 | Yu | Sep 2017 | A1 |
20170280237 | Kopetz et al. | Sep 2017 | A1 |
20170280263 | Guo et al. | Sep 2017 | A1 |
20170280265 | Po | Sep 2017 | A1 |
20170281083 | Sawano | Oct 2017 | A1 |
20170284825 | Lesso et al. | Oct 2017 | A1 |
20170284882 | Baldo et al. | Oct 2017 | A1 |
20170285404 | Kubota et al. | Oct 2017 | A1 |
20170285815 | Yamazaki et al. | Oct 2017 | A1 |
20170285871 | Jung et al. | Oct 2017 | A1 |
20170286588 | Sukharev et al. | Oct 2017 | A1 |
20170287127 | Chung et al. | Oct 2017 | A1 |
20170287228 | Torii et al. | Oct 2017 | A1 |
20170287293 | Saboune et al. | Oct 2017 | A1 |
20170287414 | Uriostigue et al. | Oct 2017 | A1 |
20170287943 | Ma et al. | Oct 2017 | A1 |
20170288023 | Yamazaki et al. | Oct 2017 | A1 |
20170288125 | Glacer | Oct 2017 | A1 |
20170288670 | Kozuma et al. | Oct 2017 | A1 |
20170289678 | Melanson et al. | Oct 2017 | A1 |
20170289702 | Inoue | Oct 2017 | A1 |
20170290097 | Pindl et al. | Oct 2017 | A1 |
20170293155 | Saracco | Oct 2017 | A1 |
20170293156 | Saracco et al. | Oct 2017 | A1 |
20170293171 | Yamazaki et al. | Oct 2017 | A1 |
20170294543 | Yamazaki | Oct 2017 | A1 |
20170295325 | Yoon et al. | Oct 2017 | A1 |
20170295434 | Hoekstra | Oct 2017 | A1 |
20170297895 | Kautzsch et al. | Oct 2017 | A1 |
20170297899 | Dehe et al. | Oct 2017 | A1 |
20170299494 | Lin et al. | Oct 2017 | A1 |
20170299721 | Eichenholz et al. | Oct 2017 | A1 |
20170300162 | Jang | Oct 2017 | A1 |
20170301391 | Kurokawa | Oct 2017 | A1 |
20170301699 | Yamazaki et al. | Oct 2017 | A1 |
20170303383 | Kirkpatrick et al. | Oct 2017 | A1 |
20170308216 | Lee et al. | Oct 2017 | A1 |
20170309856 | Yamazaki et al. | Oct 2017 | A1 |
20170310743 | Aoyama et al. | Oct 2017 | A1 |
20170316487 | Mazed | Nov 2017 | A1 |
20170316713 | Hyman | Nov 2017 | A1 |
20170317610 | Loi et al. | Nov 2017 | A1 |
20170318385 | Harney et al. | Nov 2017 | A1 |
20170318388 | Risberg et al. | Nov 2017 | A1 |
20170318393 | Valli et al. | Nov 2017 | A1 |
20170318394 | Hashiguchi et al. | Nov 2017 | A1 |
20170319179 | Kandori et al. | Nov 2017 | A1 |
20170320726 | Leitgeb et al. | Nov 2017 | A1 |
20170323481 | Tran et al. | Nov 2017 | A1 |
20170323892 | Endo | Nov 2017 | A1 |
20170323908 | Yamazaki et al. | Nov 2017 | A1 |
20170325025 | Dorfmeister et al. | Nov 2017 | A1 |
20170325081 | Chrisikos et al. | Nov 2017 | A1 |
20170328702 | Vossough et al. | Nov 2017 | A1 |
20170328931 | Zhang et al. | Nov 2017 | A1 |
20170329162 | Yamazaki et al. | Nov 2017 | A1 |
20170329439 | Jeong et al. | Nov 2017 | A1 |
20170331899 | Binder et al. | Nov 2017 | A1 |
20170332170 | Laaksonen et al. | Nov 2017 | A1 |
20170332178 | Traynor et al. | Nov 2017 | A1 |
20170334187 | Kumakura et al. | Nov 2017 | A1 |
20170336205 | Thompson | Nov 2017 | A1 |
20170336396 | Yu et al. | Nov 2017 | A1 |
20170336903 | Rivaud et al. | Nov 2017 | A1 |
20170337888 | Nakagawa et al. | Nov 2017 | A1 |
20170338107 | Yamazaki et al. | Nov 2017 | A1 |
20170338108 | Yamazaki et al. | Nov 2017 | A1 |
20170338353 | Koezuka et al. | Nov 2017 | A1 |
20170338818 | Harada et al. | Nov 2017 | A1 |
20170340396 | Romo et al. | Nov 2017 | A1 |
20170343350 | Geisberger | Nov 2017 | A1 |
20170343874 | Kimura | Nov 2017 | A1 |
20170344114 | Osterhout et al. | Nov 2017 | A1 |
20170347886 | Tran | Dec 2017 | A1 |
20170348095 | Wortz et al. | Dec 2017 | A1 |
20170352233 | Rivaud et al. | Dec 2017 | A1 |
20170352540 | Watanabe et al. | Dec 2017 | A1 |
20170352746 | Yamazaki et al. | Dec 2017 | A1 |
20170354031 | Aoki et al. | Dec 2017 | A1 |
20170355591 | Hedenig et al. | Dec 2017 | A1 |
20170355594 | Zeleznik | Dec 2017 | A1 |
20170355599 | Bhagavat et al. | Dec 2017 | A1 |
20170356928 | Bernal et al. | Dec 2017 | A1 |
20170357113 | Yamazaki et al. | Dec 2017 | A1 |
20170357144 | Kim et al. | Dec 2017 | A1 |
20170357365 | Cho et al. | Dec 2017 | A1 |
20170359113 | Lee et al. | Dec 2017 | A1 |
20170359536 | Lee et al. | Dec 2017 | A1 |
20170359658 | Jenkins et al. | Dec 2017 | A1 |
20170359669 | Vilermo et al. | Dec 2017 | A1 |
20170362648 | Hassibi et al. | Dec 2017 | A1 |
20170363493 | Fain et al. | Dec 2017 | A1 |
20170363906 | Yanagisawa et al. | Dec 2017 | A1 |
20170364154 | Levesque et al. | Dec 2017 | A1 |
20170365224 | Okamoto | Dec 2017 | A1 |
20170365234 | Yamazaki et al. | Dec 2017 | A1 |
20170365451 | Yamazaki | Dec 2017 | A1 |
20170365648 | Yamazaki et al. | Dec 2017 | A1 |
20170366104 | Kandori et al. | Dec 2017 | A1 |
20170366235 | Kim et al. | Dec 2017 | A1 |
20170366898 | Melanson et al. | Dec 2017 | A1 |
20170367578 | Melodia et al. | Dec 2017 | A1 |
20170370869 | Yu et al. | Dec 2017 | A1 |
20170372114 | Cho et al. | Dec 2017 | A1 |
20170372542 | Romero et al. | Dec 2017 | A1 |
20170372669 | Takesue et al. | Dec 2017 | A1 |
20170373196 | Koezuka et al. | Dec 2017 | A1 |
20170374441 | Hoekstra et al. | Dec 2017 | A1 |
20170374442 | Pennock et al. | Dec 2017 | A1 |
20170374457 | Su et al. | Dec 2017 | A1 |
20170374469 | Pal et al. | Dec 2017 | A1 |
20170374473 | Hoekstra et al. | Dec 2017 | A1 |
20170374474 | Hoekstra | Dec 2017 | A1 |
20180000344 | Melodia et al. | Jan 2018 | A1 |
20180000545 | Giordano et al. | Jan 2018 | A1 |
20180002159 | Cargill et al. | Jan 2018 | A1 |
20180002160 | Piechocinski et al. | Jan 2018 | A1 |
20180002161 | Jenkins et al. | Jan 2018 | A1 |
20180002162 | Thompson et al. | Jan 2018 | A1 |
20180002167 | Frischmuth et al. | Jan 2018 | A1 |
20180002168 | Cargill et al. | Jan 2018 | A1 |
20180004047 | Yamazaki et al. | Jan 2018 | A1 |
20180004282 | Aonuma et al. | Jan 2018 | A1 |
20180004701 | Pappu et al. | Jan 2018 | A1 |
20180004702 | Pappu et al. | Jan 2018 | A1 |
20180005566 | Kurokawa | Jan 2018 | A1 |
20180005588 | Kurokawa | Jan 2018 | A1 |
20180005600 | Ikeda | Jan 2018 | A1 |
20180005946 | Alur et al. | Jan 2018 | A1 |
20180006356 | McAllister | Jan 2018 | A1 |
20180007032 | Pappu et al. | Jan 2018 | A1 |
20180007472 | Puria et al. | Jan 2018 | A1 |
20180007473 | Cargill | Jan 2018 | A1 |
20180007474 | Cargill et al. | Jan 2018 | A1 |
20180008356 | Giordano et al. | Jan 2018 | A1 |
20180008357 | Giordano et al. | Jan 2018 | A1 |
20180009374 | Kim et al. | Jan 2018 | A1 |
20180011355 | Miyake et al. | Jan 2018 | A1 |
20180011447 | Yoshizumi et al. | Jan 2018 | A1 |
20180011590 | Lee et al. | Jan 2018 | A1 |
20180012536 | Shishido | Jan 2018 | A1 |
20180012538 | Asami | Jan 2018 | A1 |
20180012588 | Albers et al. | Jan 2018 | A1 |
20180012912 | Yamazaki et al. | Jan 2018 | A1 |
20180013003 | Yamazaki | Jan 2018 | A1 |
20180014128 | Puria et al. | Jan 2018 | A1 |
20180017385 | Shirvani et al. | Jan 2018 | A1 |
20180017996 | Ryu et al. | Jan 2018 | A1 |
20180018014 | Lutnick et al. | Jan 2018 | A1 |
20180018565 | Kurokawa | Jan 2018 | A1 |
20180018752 | Kurokawa | Jan 2018 | A1 |
20180018918 | Miyake | Jan 2018 | A1 |
20180018934 | Lim et al. | Jan 2018 | A1 |
20180019425 | Yasumoto et al. | Jan 2018 | A1 |
20180020291 | Puria et al. | Jan 2018 | A1 |
20180021679 | Ito et al. | Jan 2018 | A1 |
20180024241 | Eichenholz et al. | Jan 2018 | A1 |
20180024286 | Schubert et al. | Jan 2018 | A1 |
20180024546 | Ha et al. | Jan 2018 | A1 |
20180024656 | Kim et al. | Jan 2018 | A1 |
20180024680 | Sakuishi et al. | Jan 2018 | A1 |
20180025297 | Knickrehm et al. | Jan 2018 | A1 |
20180025905 | Yamazaki et al. | Jan 2018 | A1 |
20180025913 | Yamazaki et al. | Jan 2018 | A1 |
20180025918 | Yamazaki et al. | Jan 2018 | A1 |
20180026037 | Shishido et al. | Jan 2018 | A1 |
20180026218 | Kobayashi et al. | Jan 2018 | A1 |
20180027325 | Kim | Jan 2018 | A1 |
20180027338 | Shajaan et al. | Jan 2018 | A1 |
20180027339 | Blumkin et al. | Jan 2018 | A1 |
20180029878 | Dehe et al. | Feb 2018 | A1 |
20180031601 | Anac et al. | Feb 2018 | A1 |
20180031603 | Huang et al. | Feb 2018 | A1 |
20180031943 | Yamazaki et al. | Feb 2018 | A1 |
20180032160 | Park et al. | Feb 2018 | A1 |
20180032163 | Park et al. | Feb 2018 | A1 |
20180033362 | Yamazaki et al. | Feb 2018 | A1 |
20180033399 | Kawashima et al. | Feb 2018 | A1 |
20180033696 | Nakagawa et al. | Feb 2018 | A1 |
20180033978 | Ohno et al. | Feb 2018 | A1 |
20180034912 | Binder et al. | Feb 2018 | A1 |
20180035190 | Hoekstra et al. | Feb 2018 | A1 |
20180035206 | Barzen | Feb 2018 | A1 |
20180035228 | Boyd | Feb 2018 | A1 |
20180035229 | Deas et al. | Feb 2018 | A1 |
20180035888 | Irazoqui et al. | Feb 2018 | A1 |
20180038699 | Ikeda | Feb 2018 | A1 |
20180038746 | Barnard et al. | Feb 2018 | A1 |
20180039117 | Ikeda et al. | Feb 2018 | A1 |
20180039302 | Levesque et al. | Feb 2018 | A1 |
20180039815 | Jung et al. | Feb 2018 | A1 |
20180040274 | Kurokawa | Feb 2018 | A1 |
20180040642 | Umezaki | Feb 2018 | A1 |
20180040722 | Obonai et al. | Feb 2018 | A1 |
20180041140 | Fujita et al. | Feb 2018 | A1 |
20180042513 | Connor | Feb 2018 | A1 |
20180044167 | Jenkins et al. | Feb 2018 | A1 |
20180046004 | Yamazaki et al. | Feb 2018 | A1 |
20180046305 | Kang et al. | Feb 2018 | A1 |
20180047260 | Ullrich et al. | Feb 2018 | A1 |
20180047582 | Lemke et al. | Feb 2018 | A1 |
20180047609 | Ohno et al. | Feb 2018 | A1 |
20180048359 | Kim et al. | Feb 2018 | A1 |
20180048953 | Park et al. | Feb 2018 | A1 |
20180050900 | Duffy et al. | Feb 2018 | A1 |
20180052274 | Nichol et al. | Feb 2018 | A1 |
20180052535 | Sakuishi et al. | Feb 2018 | A1 |
20180052844 | Seo et al. | Feb 2018 | A1 |
20180052950 | Hofmann et al. | Feb 2018 | A1 |
20180052951 | Hofmann et al. | Feb 2018 | A1 |
20180053459 | Fukai | Feb 2018 | A1 |
20180055159 | Park | Mar 2018 | A1 |
20180055625 | Wortz et al. | Mar 2018 | A1 |
20180058967 | Jang et al. | Mar 2018 | A1 |
20180059318 | Nichol et al. | Mar 2018 | A1 |
20180059466 | Koyama | Mar 2018 | A1 |
20180059690 | Coleman | Mar 2018 | A1 |
20180059708 | Wiesbauer et al. | Mar 2018 | A1 |
20180061344 | Kurokawa | Mar 2018 | A1 |
20180061638 | Yamazaki et al. | Mar 2018 | A1 |
20180061639 | Yamazaki et al. | Mar 2018 | A1 |
20180062588 | Barbieri et al. | Mar 2018 | A1 |
20180063644 | Bach et al. | Mar 2018 | A1 |
20180063647 | Blumkin et al. | Mar 2018 | A1 |
20180066980 | Zhou et al. | Mar 2018 | A1 |
20180067005 | Fuji et al. | Mar 2018 | A1 |
20180067303 | Sourani | Mar 2018 | A1 |
20180067373 | Kimura et al. | Mar 2018 | A1 |
20180067586 | Shishido et al. | Mar 2018 | A1 |
20180069064 | Ito et al. | Mar 2018 | A1 |
20180069367 | Villeneuve et al. | Mar 2018 | A1 |
20180070821 | Liebschner et al. | Mar 2018 | A1 |
20180072033 | Ohno et al. | Mar 2018 | A1 |
20180074592 | Birnbaum et al. | Mar 2018 | A1 |
20180075924 | Umezaki | Mar 2018 | A1 |
20180075994 | Gudeman | Mar 2018 | A1 |
20180076195 | Yamazaki et al. | Mar 2018 | A1 |
20180076231 | Yamazaki et al. | Mar 2018 | A1 |
20180076232 | Kimura et al. | Mar 2018 | A1 |
20180076332 | Yamazaki et al. | Mar 2018 | A1 |
20180076333 | Koezuka et al. | Mar 2018 | A1 |
20180076385 | Fuji et al. | Mar 2018 | A1 |
20180076394 | Kawakami et al. | Mar 2018 | A1 |
20180076507 | Heo | Mar 2018 | A1 |
20180076893 | Aoyama et al. | Mar 2018 | A1 |
20180077408 | Suzuki et al. | Mar 2018 | A1 |
20180077497 | Hatipoglu | Mar 2018 | A1 |
20180077499 | Yoo | Mar 2018 | A1 |
20180079429 | Prokhorov | Mar 2018 | A1 |
20180079640 | Gudeman et al. | Mar 2018 | A1 |
20180080954 | Ono et al. | Mar 2018 | A1 |
20180081449 | Tanabe et al. | Mar 2018 | A1 |
20180081536 | Ueno et al. | Mar 2018 | A1 |
20180082102 | Lee et al. | Mar 2018 | A1 |
20180082118 | Kozuma et al. | Mar 2018 | A1 |
20180083048 | Koezuka et al. | Mar 2018 | A1 |
20180083074 | Yamazaki et al. | Mar 2018 | A1 |
20180084245 | Lapstun | Mar 2018 | A1 |
20180084365 | Ugur et al. | Mar 2018 | A1 |
20180085593 | Fayram et al. | Mar 2018 | A1 |
20180085605 | Maharbiz et al. | Mar 2018 | A1 |
20180085859 | Yamazaki et al. | Mar 2018 | A1 |
20180086625 | Kub et al. | Mar 2018 | A1 |
20180086628 | Vossough et al. | Mar 2018 | A1 |
20180087984 | Hagelin et al. | Mar 2018 | A1 |
20180088068 | Yu et al. | Mar 2018 | A1 |
20180088236 | Eichenholz et al. | Mar 2018 | A1 |
20180088776 | Motta et al. | Mar 2018 | A1 |
20180090602 | Koezuka et al. | Mar 2018 | A1 |
20180090616 | Nakagawa et al. | Mar 2018 | A1 |
20180090621 | Yamazaki et al. | Mar 2018 | A1 |
20180091900 | Parker et al. | Mar 2018 | A1 |
20180091903 | Palmer et al. | Mar 2018 | A1 |
20180091906 | Khenkin et al. | Mar 2018 | A1 |
20180092313 | Avrahamy | Apr 2018 | A1 |
20180093117 | Hyland et al. | Apr 2018 | A1 |
20180095127 | Pappu et al. | Apr 2018 | A1 |
20180095336 | Fukutome | Apr 2018 | A1 |
20180095502 | Yamazaki et al. | Apr 2018 | A1 |
20180095504 | Knepper et al. | Apr 2018 | A1 |
20180096177 | Srinivasan et al. | Apr 2018 | A1 |
20180096735 | Pappu | Apr 2018 | A1 |
20180096971 | Pappu et al. | Apr 2018 | A1 |
20180096979 | Pappu et al. | Apr 2018 | A1 |
20180097040 | Yamazaki et al. | Apr 2018 | A1 |
20180097275 | Lee et al. | Apr 2018 | A1 |
20180097516 | Kim | Apr 2018 | A1 |
20180097622 | Kurokawa | Apr 2018 | A1 |
20180097983 | Park et al. | Apr 2018 | A1 |
20180098001 | Park et al. | Apr 2018 | A1 |
20180098139 | Arevalo Carreno et al. | Apr 2018 | A1 |
20180098143 | Silvestri et al. | Apr 2018 | A1 |
20180099867 | Walther et al. | Apr 2018 | A1 |
20180099868 | Gogoi | Apr 2018 | A1 |
20180100721 | Lee | Apr 2018 | A1 |
20180101359 | Harada et al. | Apr 2018 | A1 |
20180101388 | Hummel et al. | Apr 2018 | A1 |
20180101422 | Flanigan et al. | Apr 2018 | A1 |
20180101715 | Lee et al. | Apr 2018 | A1 |
20180101965 | Park et al. | Apr 2018 | A1 |
20180102086 | Katayama et al. | Apr 2018 | A1 |
20180102420 | Ando et al. | Apr 2018 | A1 |
20180102442 | Wang et al. | Apr 2018 | A1 |
20180102586 | Shin et al. | Apr 2018 | A1 |
20180102667 | Choi et al. | Apr 2018 | A1 |
20180102981 | Kurtzman et al. | Apr 2018 | A1 |
20180103029 | Visinescu et al. | Apr 2018 | A1 |
20180103132 | Prushinskiy et al. | Apr 2018 | A1 |
20180103320 | Kim | Apr 2018 | A1 |
20180103323 | Kim et al. | Apr 2018 | A1 |
20180103324 | Yoo | Apr 2018 | A1 |
20180103325 | Dehe et al. | Apr 2018 | A1 |
20180103326 | Veneri et al. | Apr 2018 | A1 |
20180104407 | Dacey, Jr. et al. | Apr 2018 | A1 |
20180105270 | Xu et al. | Apr 2018 | A1 |
20180106759 | de Oliveira Botelho et al. | Apr 2018 | A1 |
20180107221 | Droz et al. | Apr 2018 | A1 |
20180107280 | Oh et al. | Apr 2018 | A1 |
20180107303 | Park et al. | Apr 2018 | A1 |
20180107333 | Harrison et al. | Apr 2018 | A1 |
20180107353 | Lee | Apr 2018 | A1 |
20180107382 | Tamai et al. | Apr 2018 | A1 |
20180107849 | Park | Apr 2018 | A1 |
20180107908 | Park | Apr 2018 | A1 |
20180108002 | Jang et al. | Apr 2018 | A1 |
20180108172 | Huston et al. | Apr 2018 | A1 |
20180108227 | Levesque | Apr 2018 | A1 |
20180108440 | Stevens et al. | Apr 2018 | A1 |
20180108760 | Okamoto et al. | Apr 2018 | A1 |
20180109061 | Pardhan et al. | Apr 2018 | A1 |
20180109180 | Opris et al. | Apr 2018 | A1 |
20180109267 | Shionoiri et al. | Apr 2018 | A1 |
20180109676 | Yeoum et al. | Apr 2018 | A1 |
20180109710 | Lee et al. | Apr 2018 | A1 |
20180109724 | Kang et al. | Apr 2018 | A1 |
20180109751 | Choi et al. | Apr 2018 | A1 |
20180109752 | Aoki et al. | Apr 2018 | A1 |
20180109835 | Kozuma | Apr 2018 | A1 |
20180109869 | Opris et al. | Apr 2018 | A1 |
20180109875 | Opris et al. | Apr 2018 | A1 |
20180109892 | Wiesbauer et al. | Apr 2018 | A1 |
20180109947 | Kim et al. | Apr 2018 | A1 |
20180110148 | Jun et al. | Apr 2018 | A9 |
20180110466 | Ralston | Apr 2018 | A1 |
20180111824 | Wu et al. | Apr 2018 | A1 |
20180112837 | Sadwick | Apr 2018 | A1 |
20180112887 | Fanelli et al. | Apr 2018 | A1 |
20180113138 | Moran et al. | Apr 2018 | A1 |
20180113304 | Alexander et al. | Apr 2018 | A1 |
20180113305 | Alexander et al. | Apr 2018 | A1 |
20180113501 | Iwaki et al. | Apr 2018 | A1 |
20180113512 | Kang et al. | Apr 2018 | A1 |
20180113566 | Shigemori | Apr 2018 | A1 |
20180113607 | Kim et al. | Apr 2018 | A1 |
20180114047 | Kim et al. | Apr 2018 | A1 |
20180114386 | Steinmetz | Apr 2018 | A1 |
20180114942 | Chida | Apr 2018 | A1 |
20180115116 | Han et al. | Apr 2018 | A1 |
20180115579 | Schieman et al. | Apr 2018 | A1 |
20180115755 | Xu | Apr 2018 | A1 |
20180115756 | Xu | Apr 2018 | A1 |
20180115811 | Zhang et al. | Apr 2018 | A1 |
20180115836 | Hsieh et al. | Apr 2018 | A1 |
20180115837 | Zhang | Apr 2018 | A1 |
20180115838 | Zhang et al. | Apr 2018 | A1 |
20180115864 | Ryu | Apr 2018 | A1 |
20180115867 | Cho et al. | Apr 2018 | A1 |
20180116514 | Turner | May 2018 | A1 |
20180116535 | Fuji et al. | May 2018 | A1 |
20180116561 | Jo et al. | May 2018 | A1 |
20180116728 | Lang | May 2018 | A1 |
20180116904 | Lieberman et al. | May 2018 | A1 |
20180117341 | Kane et al. | May 2018 | A1 |
20180117436 | Coza et al. | May 2018 | A1 |
20180118560 | Liu et al. | May 2018 | A1 |
20180120172 | Kaji et al. | May 2018 | A1 |
20180120264 | Sato et al. | May 2018 | A1 |
20180120265 | Yoskovitz et al. | May 2018 | A1 |
20180120433 | Eichenholz et al. | May 2018 | A1 |
20180120436 | Smits | May 2018 | A1 |
20180120902 | Rider et al. | May 2018 | A1 |
20180120930 | Turner | May 2018 | A1 |
20180120948 | Aleem et al. | May 2018 | A1 |
20180121067 | Lee et al. | May 2018 | A1 |
20180121671 | Bhandari et al. | May 2018 | A1 |
20180121703 | Jung et al. | May 2018 | A1 |
20180121738 | Womack et al. | May 2018 | A1 |
20180121796 | Deisher et al. | May 2018 | A1 |
20180122356 | Yoo | May 2018 | A1 |
20180122506 | Grantcharov et al. | May 2018 | A1 |
20180122831 | Yamazaki | May 2018 | A1 |
20180123224 | Jung et al. | May 2018 | A1 |
20180123379 | Ha et al. | May 2018 | A1 |
20180123402 | Cheatham et al. | May 2018 | A1 |
20180123412 | Karplus et al. | May 2018 | A1 |
20180124181 | Binder et al. | May 2018 | A1 |
20180124225 | Boesen et al. | May 2018 | A1 |
20180124230 | Muthukumar | May 2018 | A1 |
20180124495 | Boesen | May 2018 | A1 |
20180124514 | Peeler et al. | May 2018 | A1 |
20180124521 | Giusti et al. | May 2018 | A1 |
20180124564 | Phillips et al. | May 2018 | A1 |
20180124601 | Vutukuri | May 2018 | A1 |
20180124846 | Jung et al. | May 2018 | A1 |
20180125363 | Kaib et al. | May 2018 | A1 |
20180125366 | Lucey et al. | May 2018 | A1 |
20180125404 | Bott et al. | May 2018 | A1 |
20180125584 | Lang | May 2018 | A1 |
20180126075 | Kaplan et al. | May 2018 | A1 |
20180126273 | Lee et al. | May 2018 | A1 |
20180127265 | Brioschi et al. | May 2018 | A1 |
20180127266 | Wachtler et al. | May 2018 | A1 |
20180128783 | Bittner et al. | May 2018 | A1 |
20180128851 | Malvern | May 2018 | A1 |
20180128896 | Kim et al. | May 2018 | A1 |
20180129112 | Osterhout | May 2018 | A1 |
20180129170 | Yun et al. | May 2018 | A1 |
20180129290 | Levesque | May 2018 | A1 |
20180129409 | Lim et al. | May 2018 | A1 |
20180129459 | Sylvan et al. | May 2018 | A1 |
20180129511 | Krzyzanowski et al. | May 2018 | A1 |
20180129831 | Yokoi et al. | May 2018 | A1 |
20180129849 | Strohmann et al. | May 2018 | A1 |
20180130318 | Shin et al. | May 2018 | A1 |
20180130320 | Khoshkava et al. | May 2018 | A1 |
20180130434 | Okamoto | May 2018 | A1 |
20180130441 | Jeon | May 2018 | A1 |
20180130483 | Dimino, Jr. et al. | May 2018 | A1 |
20180130484 | Dimino, Jr. et al. | May 2018 | A1 |
20180130539 | Ikeda et al. | May 2018 | A1 |
20180130861 | Eguchi et al. | May 2018 | A1 |
20180130940 | Chaput | May 2018 | A1 |
20180130967 | Hiroki et al. | May 2018 | A1 |
20180131091 | Chang et al. | May 2018 | A1 |
20180131201 | Calhoun et al. | May 2018 | A1 |
20180131478 | Song et al. | May 2018 | A1 |
20180131543 | Li et al. | May 2018 | A1 |
20180131664 | Kim et al. | May 2018 | A1 |
20180131797 | Choi | May 2018 | A1 |
20180131804 | Song et al. | May 2018 | A1 |
20180131858 | Goo et al. | May 2018 | A1 |
20180131869 | Kim et al. | May 2018 | A1 |
20180131873 | Vacura | May 2018 | A1 |
20180132023 | Yoo | May 2018 | A1 |
20180132024 | Polo et al. | May 2018 | A1 |
20180132031 | Seo et al. | May 2018 | A1 |
20180132043 | Bakish | May 2018 | A1 |
20180132048 | Usher et al. | May 2018 | A1 |
20180132116 | Shekhar et al. | May 2018 | A1 |
20180132171 | Mendahawi | May 2018 | A1 |
20180132192 | Yang et al. | May 2018 | A1 |
20180132815 | Tsai et al. | May 2018 | A1 |
20180133431 | Malchano et al. | May 2018 | A1 |
20180133504 | Malchano et al. | May 2018 | A1 |
20180133507 | Malchano et al. | May 2018 | A1 |
20180133583 | Tran et al. | May 2018 | A1 |
20180133801 | Buller et al. | May 2018 | A1 |
20180134385 | Lee et al. | May 2018 | A1 |
20180134544 | Seshia et al. | May 2018 | A1 |
20180134546 | Oh et al. | May 2018 | A1 |
20180136321 | Verghese et al. | May 2018 | A1 |
20180136363 | Yoon et al. | May 2018 | A1 |
20180136712 | Niikura et al. | May 2018 | A1 |
20180136715 | Kim et al. | May 2018 | A1 |
20180136801 | Lee et al. | May 2018 | A1 |
20180136819 | Lee et al. | May 2018 | A1 |
20180136899 | Risberg et al. | May 2018 | A1 |
20180137467 | Jung et al. | May 2018 | A1 |
20180137488 | Kim et al. | May 2018 | A1 |
20180137498 | Kim et al. | May 2018 | A1 |
20180138102 | Pan et al. | May 2018 | A1 |
20180138155 | Kim et al. | May 2018 | A1 |
20180138201 | Nakamura et al. | May 2018 | A1 |
20180138283 | Kimura | May 2018 | A1 |
20180138391 | Grosh et al. | May 2018 | A1 |
20180138416 | Seo et al. | May 2018 | A1 |
20180138882 | Kim et al. | May 2018 | A1 |
20180139389 | Park et al. | May 2018 | A1 |
20180139398 | Kovacovsky et al. | May 2018 | A1 |
20180139431 | Simek et al. | May 2018 | A1 |
20180139534 | Fishman et al. | May 2018 | A1 |
20180139536 | Nicollini et al. | May 2018 | A1 |
20180139543 | Clerici et al. | May 2018 | A1 |
20180139544 | Hu | May 2018 | A1 |
20180139545 | Goorevich et al. | May 2018 | A1 |
20180139862 | Park et al. | May 2018 | A1 |
20180186623 | Vossough | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2773131 | Sep 2014 | EP |
WO-2007062496 | Jun 2007 | WO |
WO 2010140106 | Dec 2010 | WO |
Entry |
---|
He, Siyuan, R. Ben Mrad, and J. S. Chang. “Development of a high-performance microelectrostatic repulsive-force rotation actuator.” Journal of microelectromechanical systems 19, No. 3 (2010): 561-569. (Year: 2010). |
Berenschot, Rob Legtenberg Erwin, Miko Elwenspoek, and Jan Fluitman. “Electrostatic Curved Electrode Actuators.” |
Baxter, Larry K. “Capacitive sensors.” Design and Applications (1997). |
Miles, Ronald N., Weili Cui, Quang T. Su, and Dorel Homentcovschi. “A MEMS low-noise sound pressure gradient microphone with capacitive sensing.” Journal of Microelectromechanical Systems 24, No. 1 (2014): 241-248. |
Kuntzman, Michael L., Nishshanka N. Hewa-Kasakarage, Alexandro Rocha, Donghwan Kim, and Neal A. Hall. “Micromachined in-plane pressure-gradient piezoelectric microphones.” IEEE Sensors Journal 15, No. 3 (2014): 1347-1357. |
Towfighian, Shahrzad, Siyuan He, and Ridha Ben Mrad. “A low voltage electrostatic micro actuator for large out-of-plane displacement.” In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 46353, p. V004T09A015. American Society of Mechanical Engineers, 2014. |
Zhou, Jian, and Ronald N. Miles. “Sensing fluctuating airflow with spider silk.” Proceedings of the National Academy of Sciences 114, No. 46 (2017): 12120-12125. |
Miles, R. N., and J. Zhou. “Sound-induced motion of a nanoscale fiber.” Journal of Vibration and Acoustics 140, No. 1 (2018). |
Miles, R. N., Q. Su, W. Cui, M. Shetye, F. L. Degertekin, B. Bicen, C. Garcia, S. Jones, and N. Hall. “A low-noise differential microphone inspired by the ears of the parasitoid fly Ormia ochracea.” The Journal of the Acoustical Society of America 125, No. 4 (2009): 2013-2026. |
He, Siyuan, R. Ben Mrad, and J. S. Chang. “Development of a high-performance microelectrostatic repulsive-force rotation actuator.” Journal of microelectromechanical systems 19, No. 3 (2010): 561-69. |
Chen, Yu-Min, Shih-Ming He, Chi-Hsien Huang, Cheng-Chun Huang, Wen-Pin Shih, Chun-Lin Chu, Jing Kong, Ju Li, and Ching-Yuan Su. “Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors.” Nanoscale 8, No. 6 (2016): 3555-3564. |
Kim, Byung-Hun, and Hwa-Sun Lee. “Acoustical-thermal noise in a capacitive MEMS microphone.” IEEE Sensors Journal 15, No. 12 (2015): 6853-6860. |
Bicen, Baris, Sunny Jolly, Kamran Jeelani, Caesar T. Garcia, Neal A. Hall, F. Levent Degertekin, Quang Su, Weili Cui, and Ronald N. Miles. “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms.” IEEE Sensors Journal 9, No. 12 (2009): 1933-1941. |
London, Albert. “Transmission of reverberant sound through single walls.” J. Research Nat. Bur. of Stand 42, No. 605 (1949): 2. |
Berger, Christian, Rory Phillips, Alba Centeno, Amaia Zurutuza, and Aravind Vijayaraghavan. “Capacitive pressure sensing with suspended graphene-polymer heterostructure membranes.” Nanoscale 9, No. 44 (2017): 17439-17449. |
PCT Search Report, PCT/US 2019/033855, dated Sep. 12, 2019. |
Number | Date | Country | |
---|---|---|---|
20210199494 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62676058 | May 2018 | US | |
62676071 | May 2018 | US |